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ABSTRACT

The current outbreak of a coronavirus, has quickly escalated
to become a serious global problem that has now been de-
clared a Public Health Emergency of International Concern
by the World Health Organization. Infectious diseases know
no borders, so when it comes to controlling outbreaks, timing
is absolutely essential. It is so important to detect threats as
early as possible, before they spread. After a first successful
DiCOVA challenge, the organisers released second DiCOVA
challenge with the aim of diagnosing COVID-19 through the
use of breath, cough and speech audio samples. This work
presents the details of the automatic system for COVID-19
detection using breath, cough and speech recordings. We de-
veloped different front-end auditory acoustic features along
with a bidirectional Long Short-Term Memory (bi-LSTM) as
classifier. The results are promising and have demonstrated
the high complementary behaviour among the auditory acous-
tic features in the Breathing, Cough and Speech tracks giving
an AUC of 86.60% on the test set.

Index Terms— COVID-19, auditory acoustic features,
bi-LSTM, respiratory sounds.

1. INTRODUCTION

Coronavirus disease, so-called COVID-19, is an infectious
disease caused by the recently discovered coronavirus, the
SARS-CoV-2. This disease has spread rapidly worldwide
over the past year, causing a global crisis with serious health,
social and economic consequences. To put an end to this pan-
demic, various initiatives are being carried out worldwide, in-
cluding the development of new systems for rapid diagnosis
of the disease.

Recently, the DiCOVA 2021 Challenge [1] was carried out
to promote research in development of systems for the detec-
tion of COVID-19 through recordings of respiratory sounds.
Several systems have been proposed to detect the COVID-
19 signature within acoustic indicators [2, 3, 4, 5, 6, 7].
Only a few of them focused on the study of acoustic clues,
giving more emphasis to classifiers. The study reported
in [8] explores the Autoregressive Predictive Coding (APC)
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to pre-train a unidirectional LSTM and spectral augmenta-
tion. In [9], authors used ComParE 2016 feature set, and two
classical machine learning models, namely Random Forests,
and Support Vector Machines (SVMs). The use of breathing
patterns for the diagnosis of COVID-19 is studied in [10].
COVID-19 detection by means of a Contextual Attention
Convolutional Neural Networks and gender information is
studied in [11].

The first COVID-19 challenge consisted on 2 tracks:
Track-1 focused on diagnosing COVID-19 using cough
sounds, while Track-2 focused on a collection of breath,
sustained vowel phonation, and a number of counting speech
recordings. As a follow up of the first successful DiCOVA
2021 challenge, the second DiCOVA challenge has been
organised [12]. The second challenge aimed at 4 different
tracks, namely, breathing, cough, speech and fusion. The or-
ganisers provided a baseline system for the second challenge
based on Log Mel Spectrogram front-end and Bidirectrional
Long Short-Term Memory (bi-LSTM) back-end.

In this paper, we describe and propose a system for auto-
matic COVID-19 detection presented on all the four different
tracks of the second DiCOVA challenge. Our system focuses
more on features than classifiers by using 4 perceptually-
motivated acoustic features at front-end. The features we
explored are Teager energy operator cepstral coefficients
(TECCs), Instantaneous Amplitude Cepstral Coefficients
(IACCs), Constant Q-Cepstral Coefficients (CQCCs) and Fil-
terbank Constant Q Transform (FBCQT) [13, 14, 15], along
with the bi-LSTM classifier.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the technical details of auditory acoustics fea-
tures used for the detection of COVID-19. Section 3 describes
the second DiCOVA challenge database. Experimental setup
and results are presented in Section 4 and Section 5, respec-
tively. Finally, the main conclusions of this work and future
research lines are drawn in Section 6.

2. AUDITORY ACOUSTICS FEATURES

In this section we discuss the acoustic features used to diag-
nose COVID-19 from breath, cough and speech.

2.1. MelSPEC

Studies have shown that humans do not perceive frequencies
on a linear scale. We are better at detecting differences in



lower frequencies than higher frequencies [16]. The Mel
spectrum contains a short-time Fourier transform (STFT) for
each frame of the spectrum (energy/amplitude spectrum),
from the linear frequency scale to the logarithmic Mel-scale,
and then goes through the filter bank to get the eigen vector,
these eigenvalues can be roughly expressed as the distribution
of signal energy on the Mel-scale frequency.

2.2. TECC and ESA-IACC

The Teager Energy Operator (TEO) (ψ{·}) track the running
estimate of instantaneous energy fluctuations of the narrow-
band signal. The Teager energy profile obtained from the
bandpass filter is further given to the Energy Separation Al-
gorithm (ESA) to isolate the Instantaneous Amplitude (IA)
(ai[n]) and Instantaneous Frequency (IF) (Ωi[n]) and is given
as [17, 18, 19]:

Ψd{xi[n]} = x2i [n]−xi[n− 1]xi[n+ 1] ≈ a2i [n]Ω2
i [n], (1)

where xi[n] is ith bandpass filtered signal.

ai[n] ≈ 2Ψd{x[n]}√
Ψd{x[n+ 1]− x[n− 1]}

, (2)

where xi[n] is ith bandpass filtered signal. The block diagram
of Teager Energy Cepstral Coefficients (TECC) and Energy
Separation Algorithm Instantaneous Amplitude Cepstral Co-
efficients (ESA-IACC) feature set is shown in Figure 1. The
TECC feature set is computed as per our earlier studies in
[13, 20] and ESA-IACC feature set according to [14, 21].

Fig. 1. Block diagram of TECC, and ESA-IACC feature sets.

2.3. Filterbank CQT and CQCC

The constant Q transform (CQT) is a perceptually motivated
approach to time-frequency analysis introduced by Young-
berg and Boll [22] in 1978 and refined over the last few
decades by Brown [23]. In contrast to Fourier-based ap-
proaches, the CQT gives a greater frequency resolution for
lower frequencies and a greater temporal resolution for higher
frequencies, which emulate the human auditory perception.
The CQT of a discrete signal x(n) is defined by:

XCQ(k, n) =

n+bNk/2c∑
j=n−bNk/2c

x(j)a∗k(j − n+Nk/2) (3)

where k = 1, 2, ...,K is the frequency bin index, ak(n) are
the basis functions, ∗ is the complex conjugate and Nk is a
variable window length. The center frequencies fk are de-
fined according to fk = 2(k−1)/(B)f1, where fk is the center
frequency of bin k, f1 is the center frequency of the lowest
frequency bin and B is the number of bins per octave.

The filter selectivity Q which reflects the ratio between
center frequency and bandwidth is constant and defined as:

Q =
fk

fk+1 − fk
= (21/B − 1)−1 (4)

In practice,B determines time-frequency resolution trade-off.

2.3.1. FBCQT

Similar to MelSPEC, FBCQT is calculated filteringXCQ(k, n)
with a filterbank composed of nfb triangular filters equally
spaced along the linear-scale, and then calculating the loga-
rithm of the energy in each band.

2.3.2. CQCC

Constant Q cepstral coefficients (CQCCs) were introduced re-
cently and successfully in the context of fake audio detec-
tion [15]. CQCC features are based on a combination of the
constant Q transformation (CQT) and cepstral analysis. The
cepstral coefficients are calculated from the transformation at
constant Q, which imply a re-sampling in frequency domain
from the geometric scale to a linear scale, according to:

CQCC(p) =

L−1∑
l=0

log
∣∣X̄CQ(l)

∣∣2 cos

[
p
(
l − 1

2

)
π

L

]
(5)

where X̄CQ is the linearised CQT-derived spectrum, l is the
linear-scale index and p = 0...L− 1. The full CQCC extrac-
tion algorithm is described in [15].

3. SECOND DICOVA CHALLENGE DATASET

After the first successful DiCOVA Challenge, the organis-
ers released the second DiCOVA challenge focusing on four
different tracks, namely, breathing, cough, speech, and fu-
sion [12].

The training/validation set for the all the tracks contains
965 audio files stored in .FLAC format at 44.1 kHz sampling
frequency. Each audio file corresponds to a single subject.
This set comprises an audio recording from 172 COVID-19
positive subjects and 793 COVID-19 negative subjects. Gen-
der and age of the subjects is also provided as extra meta-
data. Validation set are performed using 5-fold cross valida-
tion from train lists. The test set consists of 471 audio files
with the same format as the training/validation set, but with
the COVID-19 status hidden from the participants. The de-
tailed information of the respective tracks are reported below:



Track 1: Breathing - The goal of this track is to use the key
differences and analyze the breathing signal from COVID-19
positive and negative subjects that can contribute towards the
detection of the disease. In total, the samples provided by
the organizers include the data of 965 subjects that is further
split into train and validation set. The dataset contains lists
corresponding to a 5-fold cross validation split.

Track 2: Cough - The goal of this track is to use cough sound
recordings from COVID-19 positive and negative subjects.
The validation set is composed of cough audio data from 965
subjects. The dataset also contains lists corresponding to a
5-fold cross validation split.

Track 3: Speech - Similar to the Track 1, the goal of this
track also aims to detect the COVID-19 disease using the
speech signals from positive and negative COVID-19 sub-
jects. The data distribution and 5-fold cross validation is also
similar to the previous tracks.

Track 4: Fusion - In this track, all the scores from the breath,
speech and cough track of the corresponding folds are used to
have the simple arithmetic mean of those particular folds. The
validations scores are the concatenation of all the folds.

3.1. Baseline and evaluation metrics

The organisers of the challenge provide a baseline system for
4 different tracks based on log Mel spectrogram. The back-
end classifier used is a bidirectional Long Short-Term Mem-
ory (bi-LSTM) Classification performance evaluation is mea-
sured using traditional detection metrics, namely, true positive
rate (TPR) and false positive rate (FPR) over a range of de-
cision thresholds. From these metrics, the probability scores
for each audio file are used to compute the receiver operat-
ing characteristic (ROC) curve, and the area under the curve
(AUC) metric to quantify the model performance [24].

4. EXPERIMENTAL SETUP

We have performed the experiments on the second DiCOVA
Challenge database. Five acoustic features discussed in
Section 2 have been used along with a cascade of two bi-
directional long-short term memory (bi-LSTM) and a fully
connected neural network with an encoder-decoder style net-
work. The encoder consists of two bi-LSTM layers with
128 units in both the forward and back-ward direction. This
is fully connected neural network comprising of 256 nodes
in the first layer and 64 nodes and a tanh(·) non-linearity
in the second layer. Finally, a single node output, passed
through a sigmoid non-linearity is obtained as the COVID-19
probability score for the input feature matrix.

Parameters used to extract acoustic features are detailed
hereafter.

MelSPEC: The MelSPEC feature set was extracted, simi-
larly for the baseline system, using 64-dimensional log Mel
spectrogram with ∆ and ∆∆ resulting in total 192-D feature
vector.

TECC: The TECC feature set was extracted using 40 Mel-
spaced Gabor filterbank with fmin=10 Hz, and fmax=fs/2
Hz [13]. For each subband filtered signals, we obtain 40-D
static features appended along with their ∆ and ∆∆ coeffi-
cients resulting in 120-D feature vector.

ESA-IACC: The ESA-IFCC feature set was extracted using
same parameters as used for TECC feature set expect the
frequency scale in Gabor filterbank, here we used linearly-
spaced Gabor filterbank. However, ESA-IACC feature set
is computed with the pre-processing technique and cepstral
mean normalization (CMN) technique for COVID-19 classi-
fication task.

CQCC: The CQCC features are extracted with a maximum
frequency of Fmax = FNYQ, where FNYQ is the Nyquist
frequency of 44.1kHz. The minimum frequency is set to
Fmin = Fmax/2

9 ' 43Hz (9 being the number of octaves).
The number of bins per octave B is set to 96. Only 20 static
coefficients (with log-energy) were considered, resulting in
total 60-dimensional (D) feature vector (including 20-∆ and
20-∆∆).

FBCQT: The Filterbank CQT features set were extracted us-
ing 63-dimensional log linearised CQT with with a maximum
frequency of Fmax = FNYQ/2 and a minimum frequency
of Fmin = Fmax/2

10 ' 43Hz, with ∆ and ∆∆ resulting in
total 189-D feature vector.

5. EXPERIMENTAL RESULTS

The results in terms of AUCs obtained on the validation folds
for Breathing and Cough tracks are reported in Table 1 and
for Speech and Fusion tracks reported in Table 2. For each
fold the classifier is trained using the training data and evalu-
ated on the validation data. The average validation AUC de-
notes the average over the AUCs for the 5 folds. The acous-
tic features considered have their strengths and weaknesses
and therefore the AUC for some folds and tracks are better
compared to other folds and tracks. For all the tracks of val-
idation set, FBCQT gave the higher AUC compared to other
features. In particular, for breathing track FBCQT gave an av-
erage AUC of 80.52%. For Cough, Speech and Track Fusion
it yielded an average AUC of 79.60%, 81.04, and 84.18%, re-
spectively. IACC and FBCQT feature obtained the same AUC
of 81.04% for the speech track.

We now focus on the results obtained on the blind test set
that we submitted to the challenge. For evaluation on the test
dataset, the COVID-19 positive likelihood score for each file



Table 1. Results on validation set for Breathing and Cough on Second DiCOVA Challenge database in terms of AUC (%).

Folds Breathing Cough
MelSPEC TECC IACC CQCC FBCQT MelSPEC TECC IACC CQCC FBCQT

0 76.40 74.40 78.50 78.60 80.00 66.80 74.30 76.00 79.40 79.60
1 75.00 73.90 80.30 78.10 80.00 77.10 67.50 78.70 74.50 84.20
2 75.00 74.80 76.60 78.30 74.80 77.40 69.80 74.60 77.70 78.80
3 80.30 72.30 77.70 75.00 78.90 74.80 81.00 74.70 78.20 77.50
4 82.10 87.80 86.40 82.60 88.90 77.40 73.40 79.00 83.20 77.90

Avg 77.76 76.64 79.90 78.52 80.52 74.70 73.20 76.60 78.60 79.60

Table 2. Results on validation set for Speech and Fusion on Second DiCOVA Challenge database in terms of AUC (%).

Folds Speech Track Fusion
MelSPEC TECC IACC CQCC FBCQT MelSPEC TECC IACC CQCC FBCQT

0 74.60 70.70 75.10 74.20 78.10 75.00 77.30 79.90 80.70 82.20
1 85.90 79.20 80.30 82.50 87.00 82.90 76.90 83.90 80.30 86.70
2 81.20 75.90 80.60 75.50 76.50 82.70 78.10 80.70 80.10 79.90
3 78.90 76.80 81.80 76.80 77.70 81.20 81.90 82.20 78.90 81.60
4 83.80 81.00 87.40 81.70 85.90 88.40 87.40 90.90 88.00 90.50

Avg 80.88 76.72 81.04 78.14 81.04 82.04 80.20 83.52 81.60 84.18

was computed by taking the average over the score outputs
from the 5 validation fold models. As discussed earlier on
validation set, for all the tracks FBCQT gave high AUC com-
pared to all the features considered here. However, on test
set the results were contradictory to the validation set. The
FBCQT feature did not perform well on test set and results in
lower AUC for all the tracks compared to all the other features
taken into consideration.

The best and second best system on the test set includes
MelSPEC and CQCC features giving an AUC of 84.50% and
82.21% on breathing track (with sensitivity of 31.67 % and
36.67 % at specificity of 95.13 %) and 74.89% and 76.98% on
cough track (with sensitivity of 36.67 % and 25.00 % at speci-
ficity of 95.13 %), respectively. On speech track, MelSPEC
and IACC feature set are the best and second best giving an
AUC of 84.70% and 80.92%, respectively, (with sensitivity
of 43.33 % and 45.00 % at specificity of 95.13 %) as can be
viewed from Table 3.

Table 3. Single System results on test set of the Second Di-
COVA Challenge Database

Subset Single System
MelSPEC TECC IACC CQCC FBCQT

Breathing 84.50 67.92 79.02 82.21 55.10
Cough 74.89 68.31 71.55 76.98 52.20
Speech 84.26 77.41 80.92 76.90 51.90
Fusion 84.70 77.75 83.26 82.01 53.00

Last but not least, we also report fusion experiments to
understand the complementary information that is present in
each acoustic feature under investigation. Systems were se-
lected each time by adding the next worst in terms of AUC
according to the Track Fusion results reported in Tables 2.

Fusion results are shown in Table 4. Unexpectedly, the best
combination results in MelSPEC + IACC + FBCQT feature
set giving an AUC of 86.60%. All the combinations outper-
form the single system based on MelSPEC except the IACC
+ FBCQT.

Table 4. System’s Fusion on test set of the Second DiCOVA
Challenge Database

System’s Fusion
MelSPEC TECC IACC CQCC FBCQT AUC
× × X × X 82.70
X × X × X 86.60
X × X X X 86.00
X X X X X 85.80

6. SUMMARY AND CONCLUSIONS

This paper reports on the exploration of acoustic cues using
different auditory-based features for the diagnosis of COVID-
19. Particularly, the systems presented are based on 5 dif-
ferent acoustic features based on Mel frequency scale, Tea-
ger energy operator, speech demodulation, and constant Q
transform. For a proper comparison of these features we use
the same back-end consisting of a bi-LSTM network. The
FBCQT system outperforms all the proposed systems for the
validation set on all the tracks, however, for the test set, it
demonstrated a low capacity for generalisation with limited
accuracy. Fusion experiments showed that the features con-
sidered are highly complementary. The best fusion gave an
AUC of 86.60% for the MelSPEC + IACC + FBCQT fea-
ture combination on the test set, which led us to a result be-
tween the challenge baseline system (84.70%) and the chal-
lenge winner system (88.44%).
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