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Abstract

Background and Objective: Parkinson’s disease (PD) is a motor neurode-

generative disease principally manifested by motor disabilities, such as postural

instability, bradykinesia, tremor, and stiffness. In clinical practice, there exist

several diagnostic rating scales that coarsely allow the measurement, charac-

terization and classification of disease progression. These scales, however, are

only based on strong changes in kinematic patterns, and the classification re-

mains subjective, depending on the expertise of physicians. In addition, even

for experts, disease analysis based on independent classical motor patterns lacks

sufficient sensitivity to establish disease progression. Consequently, the disease

diagnosis, stage, and progression could be affected by misinterpretations that

lead to incorrect or inefficient treatment plans. This work introduces a multi-

modal non-invasive strategy based on video descriptors that integrate patterns

from gait and eye fixation modalities to assist PD quantification and to support

the diagnosis and follow-up of the patient. The multimodal representation is

achieved from a compact covariance descriptor that characterizes postural and

time changes of both information sources to improve disease classification.

Methods: Amultimodal approach is introduced as a computational method

to capture movement abnormalities associated with PD. Two modalities (gait

and eye fixation) are recorded in markerless video sequences. Then, each moda-

lity sequence is represented, at each frame, by primitive features composed of
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(1) kinematic measures extracted from a dense optical flow, and (2) deep fea-

tures extracted from a convolutional network. The spatial distributions of these

characteristics are compactly coded in covariance matrices, making it possible

to map each particular dynamic in a Riemannian manifold. The temporal mean

covariance is then computed and submitted to a supervised Random Forest al-

gorithm to obtain a disease prediction for a particular patient. The fusion of

the covariance descriptors and eye movements integrating deep and kinematic

features is evaluated to assess their contribution to disease quantification and

prediction. In particular, in this study, the gait quantification is associated with

typical patterns observed by the specialist, while ocular fixation, associated with

early disease characterization, complements the analysis.

Results: In a study conducted with 13 control subjects and 13 PD patients,

the fusion of gait and ocular fixation, integrating deep and kinematic features,

achieved an average accuracy of 100% for early and late fusion. The classifica-

tion probabilities show high confidence in the prediction diagnosis, the control

subjects probabilities being lower than 0.27 with early fusion and 0.3 with late

fusion, and those of the PD patients, being higher than 0.62 with early fusion

and 0.51 with late fusion. Furthermore, it is observed that higher probability

outputs are correlated with more advanced stages of the disease, according to

the H&Y scale.

Conclusions: A novel approach for fusing motion modalities captured in

markerless video sequences was introduced. This multimodal integration had

a remarkable discrimination performance in a study conducted with PD and

control patients. The representation of compact covariance descriptors from

kinematic and deep features suggests that the proposed strategy is a potential

tool to support diagnosis and subsequent monitoring of the disease. During

fusion it was observed that devoting major attention to eye fixational patterns

may contribute to a better quantification of the disease, especially at stage 2.

Keywords: Parkinson, multimodal approach, temporal mean covariance, deep

features, kinematic features
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1. Introduction

Parkinson’s Disease (PD) is a motor neurodegenerative disorder

that affects more than 6.1 million people around the world [1]. Even

worse, the disease is in geographic expansion, and there is no cure

or effective treatment [1]. PD is related with dopamine deficiency,5

and it is mainly associated to motor disabilities, among others: pos-

tural instability, slowness, reduced steps, bradykinesia, tremor, and

stiffness. Then, locomotion patterns constitute the basis of clini-

cal protocols to establish, quantify, and monitor the PD level. In

clinical practice, such patterns are evaluated independently during10

gait, evaluating postural configurations, and even doing exercises re-

lated to control and coordination. Parkinson detection, evaluation,

and stage characterization are then carried out from personal thera-

py protocols and supported according to different diagnosis rating

scales [2, 3]. For instance, the classical Hoehn and Yahr (H&Y)15

rating scale stratifies disease progression in five stages, considering

physical capabilities such as gait, postural stability, and balance

between others [4]. In H&Y, the disease is coarsely classified into

five stages: from zero (no sign) to five, corresponding to the largest

severity of the disease. However, in this rating scale, it is very diffi-20

cult to discriminate among intermediate stages, for instance, some

patients fail in pull test (corresponding to level three) but there

are no evident tremor patterns (as in the second level)[3]. This

fact results critical to define personalized treatments according to

the progression of PD, causing the H&Y scale to fall into disuse.25

Nowadays, Unified Parkinson’s Disease Rating Scale Motor Exami-
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nation (UPDRS-ME), has become more important in clinical prac-

tice, evaluating among other patterns: gait, facial mobility, action

tremor, bradykinesia, and hypokinesia [3]. Despite major sensiti-

vity of UPDRS-ME scale, the evaluation and patient stratification30

highly depends on the expertise of the professional which could be

prone to errors [5, 6].

A study with 50 patients and six different evaluators has evi-

denced a low level of agreement, which makes it difficult to deter-

mine the level of disease’s motor function [5]. Automatic tools to35

support diagnosis then result fundamental to properly follow and

personalize diagnosis and treatments. Such tools should integrate

quantification and modelling of disease heterogeneity, allowing an

earlier symptomatic diagnosis [7].

In such a sense the quantitative analysis of complementary dis-40

ease patterns could improve the robustness of motor scale assess-

ment, to detect and measure the progression of Parkinson with ma-

jor sensitivity. Hence, the constant search for new biomarkers and

the posterior integration with known patterns could be fundamental

to better diagnose, quantify, characterize and monitor the disease.45

In the literature, alternatives have been proposed to capture mo-

tion patterns using acceleration and angular velocity components.

These kinematics are in general captured from the lower limb dur-

ing locomotion, using inertial measurement unit sensors [8]. These

approaches nonetheless require multiple electrodes placed on each50

patient, which limits natural gestures during exercises. A more so-

phisticated alternative has proposed capture setups using Doppler-
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based linear quantifier to capture motion tremor patterns [9]. This

alternative overcomes invasive measurements and achieves a remar-

kable correlation of captured patterns with the disease, but requires55

sophisticated devices and capture setups that result difficult to de-

ploy in clinical scenarios. Also, to support more sensitivity among

stages, biomarkers such as sleep disorders, and eye movement have

emerged to detect early disease stages [10]. The video analysis has

also emerged as a potential alternative to observe and quantify ab-60

normal locomotion patterns related with Parkinson’s disease from

different key processes, such as the gait, or focusing on standing out

body parts like the arms, the face, and the eyes. Particularly, the

eye movements have demonstrated to stand out abnormal patterns

with the capability to describe the severity and disease progression,65

even in otherwise asymptomatic stages [11], [12]. Nevertheless, such

experimental observations require sophisticated capture devices and

protocols, limiting their effective integration on scale rating diagno-

ses [13].

This paper introduces a novel approach that captures movement70

abnormalities associated with PD from different sources, and assists

in the disease quantification. The gait and eye fixation movement

patterns are herein recorded and analyzed from video descriptors to

characterize the disease. Each video sequence, at each modality, is

represented by frame-covariance matrices that summarize responses75

of deep and kinematic features. These frame-covariances form a

video manifold that codes motion pattern modalities in a compact

representation. Then, a geometrical Riemmanian mean is computed
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as a video descriptor. The same method is applied to both modali-

ties to facilitate their interpretation, merging for any kind of (deep or80

kinematic) features. Such multimodal video descriptors are projec-

ted to a tangent plane to allow them to undergo linear operations.

Then, the descriptor is mapped to a supervised machine learning

strategy to obtain a PD classification. The proposed approach was

validated from early (at the level of covariance descriptors) and late85

(at the level of output probabilities) integration of both modalities

to better understand the capability of discrimination of the proposed

video descriptors.

2. Related work

Parkinson’s disease causes different motor and non-motor ma-90

nifestations, at different stages, that could be recorded from dif-

ferent sensors, and focus on different human functionalities [10].

These manifestations allow to represent and quantitatively evalu-

ate the disease progression or the effect of a particular treatment.

The most common consequences are the motor disabilities develo-95

ped progressively during the disease, which have been quantified

from global locomotor observations such as bradykinesia, rigidity,

hypokinesia, tremor, and others [10, 14]. Despite their importance,

these patterns lack of sufficient sensitivity, for instance to the early

disease detection, and also to precisely characterize and score the100

disease progression. Recently, eye movement has been proposed as

a new complementary biomarker, where abnormal tiny motions are

highly correlated with PD [15]. For instance, micro-tremors during

6



eye fixation is fully correlated with the disease. Then, in this work,

global locomotion patterns and eye fixational movements were an-105

alyzed together to provide a rich dynamic description and better

support disease characterization. The computation of both motor

modalities is carried out from a non-invasive perspective, allowing

to capture natural patient movements. In the next subsections, we

briefly describe each modality and current state-of-the-art strategies110

used to capture and process the related motion patterns.

2.1. Gait analysis

Gait is a complex locomotion process that requires the coordi-

nation of neuromotor commands, muscle activation, and structural

pose configurations to produce an optimal displacement. PD al-115

terations produce unbalanced postures, requiring additional control

and effort to mitigate tremor patterns, therefore producing non-op-

timal locomotion displacements. Gait movement patterns such as

stride length, postural flexion, lack of swing arms and bradykinesia,

currently constitute the main source of information to describe and120

quantify PD. In fact, most clinical diagnosis scales are based on such

locomotion patterns.

Kinematic gait analysis, during a clinical routine, is achieved us-

ing sophisticated systems, e.g. optical marker-based frameworks to

capture joint relationships during displacements [16], force plates to125

measure reaction forces [17] and acceleration [18]. Also, typical al-

ternatives in motion analysis are based on inertial sensors attached

to specific body parts to capture long kinematic patterns, during

particular routines [19],[8]. Related to Parkinson’s disease, these
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alternatives have allowed collecting motion patterns that achieve130

a discrimination to control population. Despite these advantages,

these methodologies result invasive and limit the natural gestures.

To overcome such issue, Lin et. al proposed a microwave mo-

tion detector to recover tremor signs without invasive protocols [9].

These approaches nevertheless need a complex calibration process135

and their effectiveness depends on the proper localization of sensors.

Regarding kinematic analysis, the structural body model is strongly

simplified to a set of joints, which could be restrictive to understan-

ding regional Parkinsonian patterns such as the tremor at the ini-

tial stages of the disease. Hence, new alternatives of video analysis140

could significantly improve the quantification of abnormal patterns

associated with PD. In such line, Guayacan et al. introduced a 3D

convolutional neural networks to classify and recover salient learned

regions related to Parkinson’s disease [20]. This approach recovers

explainable maps but a further interpretation is needed to correlate145

such findings with clinical know patterns. Despite their relevance to

express natural movements during locomotion, many existing mar-

kerless methods aim at reproducing classical marker models, which

turns restrictive to compute global trajectories, and strongly sim-

plifies such complex phenomenon.150

2.2. Fixational oculomotor patterns

In recent studies, oculomotor patterns have been established as

potential Parkinson’s disease biomarkers, reporting a strong corre-

lation with dopamine deficiency, which makes them candidates to

support early detection and diagnosis of the disease [12]. To cha-155
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racterize such patterns, different experiments were proposed in the

literature, allowing to measure the eye capability response and the

control of eye movement [21]. For instance, an experiment has been

carried out to evaluate the ocular fixation, i.e., the ability to stabi-

lize the gaze at a given point. Actually, it was found that in control160

patients, eyes register small involuntary movements called micro-

saccades at intervals of 1 to 2 Hz, while for Parkinson patients, the

fundamental frequency of movements is around 5.7 Hz [22]. Hence,

these kinds of eye patterns could be determinant to characterize PD

patterns even in very early stages (including asymptomatic patients)165

[13].

The observation of abnormal patterns in eye movements are typ-

ically conducted using electro-oculography protocols, with the main

objective to recover speed up movements as the saccades [23, 24].

This technique is limited to tracking movements only in the horizon-170

tal plane, reporting low sensitivity to capture abnormal fixational

patterns, and any flicker induces noise in the signal, reducing the

accuracy of the estimation. Alternatively, the video-oculography

(VOG) allows to record bidimensional movements and estimate mea-

sures such as velocity, latency and other kinematic relationships re-175

lated with dopamine deficiency [25], [26]. These works have revealed

some significant differences between Parkinsonian and control pat-

terns in the specific experiment of fast vergence eye movements, for

which the latency of divergence and convergence was increased in

PD subjects, using infrared video-oculography [27]. Nevertheless,180

the VOG is limited to monitoring global patterns and the quan-
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tification of the kinematic variables of the eye. Furthermore, the

required equipment is expensive, it requires a precise calibration

protocol and it is invasive, by covering the entire ocular region.

Recently, some spatiotemporal relationships have been captured185

from the analysis of raw video sequences, computing dense pixel-

wise motion-based representations that allow to characterize and

distinguish some abnormal motion patterns on a particular popula-

tion of study [28–30]. New markerless video schemes have also been

introduced to magnify ocular video patterns, emphasizing fixation190

patterns [31]. These approaches have demonstrated capabilities to

discriminate among Parkinson and Control population, but their

analysis is dependent on video segmentation, manually performed

from the video sequences. In fact, the use of video slices implies a ge-

ometric dependency on the eye shape. These approaches, however,195

can hardly represent small or short patterns, that could nonetheless

be highly correlated with some stages of PD. Additionally, these

patterns should be integrated with other Parkinsonian patterns to

better quantify and enhance abnormal behaviors of patients.

2.3. Multimodal approaches on PD200

In recent years the multimodal approaches have taken importance

to complement disease patterns and perform a better analysis of

the disease. For instance, typical Parkinsonian writing tests are

complemented with speech patterns to provide decision tables that

support disease characterization, but the final classification remains205

dependent on specialist expertise [32]. Gait, writing, and speech

have been combined in a low dimensional feature space in [33], where
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each selected modality, for each patient, was modeled using Gaussian

mixtures. The Bhattacharyya distance was then used to predict

MDS-UPDRS-III, based on a simple linear regression hypothesis.210

In [34] the writing, speech, and gait spectrograms were modeled

with convolutional nets, and thereafter the embedding vectors were

concatenated and used to predict the disease. This approach deals

with asynchronous modalities integration, and the contribution of

each modality was not investigated.215

3. Materials and Methods

This work presents a novel multimodal methodology to capture

and integrate movement abnormalities associated with Parkinson’s

disease by using as video representation a special Riemmanian man-

ifold of temporal frame-covariance matrices.220

The pipeline of the proposed approach is illustrated in figure 1.

Firstly, videos that record particular modalities of interest are repre-

sented as a set of frame-covariance matrices. This set forms a special

manifold that can be summarized by a Riemannian mean. The

fusion of the two modalities can be performed at the video descriptor225

level (early fusion) or at the prediction level, after mapping in a

supervised learning strategy as Random Forest.

3.1. Frame-level Representation

A markerless strategy is herein introduced by computing a spa-

tially dense representation for each frame along the video sequence.230

The local representation refers to the set of features extracted for

each frame It at time t, denoted Ft. The features in Ft aim at
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Figure 1: The pipeline of the proposed approach. Top: Gait. Bottom: Ocular fixation. In

both modalities, we calculate the features for each frame along with the video, and then

compute frame-level spatial covariance of the features. Finally, we summarize the information

into a unique covariance matrix for the complete video (Riemann’s mean). We propose two

fusion approaches: early (concatenate the descriptors of each modality) and late (weight the

probabilities of the two modalities to obtain a final probability).

enhancing relevant motion and characteristics that could be discri-

minative to PD, allowing thereafter a proper coding of abnormal

patterns. Each frame It is then represented by a set of N features.235

Ft =
{
f(1,t), f(2,t), . . . , f(n,t)

}
. In this work, two different schemes

were evaluated to characterize each frame: kinematic features and

deep features calculated using pre-trained networks. On the one

hand, kinematic features are computed from a dense optical flow

field. On the other hand, taking advantage of the expressivity of240

deep representations, each frame is processed by a filter bank com-

posed of the convolution kernels extracted from the first layers of

a pre-trained convolutional network (see figure 2). The two next

subsections detail these two sets of features.
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3.2. Kinematic features from a Dense flow field245

The optical flow is a 2d vector field that corresponds to the es-

timation of the apparent velocities of all pixels of the video bet-

ween two consecutive frames. Such quantity is naturally relevant to

characterize patients movement by computing kinematic local pri-

mitives on gait or eye fixation. To compute the optical flow, the250

video sequence is first pre-processed by computing a local entropy

map to lower redundancy and enhance edges. The movement is

then calculated using Farnebäck’s method, [35] that uses a quadratic

polynomial approximation of each pixel’s neighborhood to estimate

local velocity: It(z) ≃ zTAtz + bT
t z + ct, where z = (x, y)T is the255

pixel position, and matrix At, vector bt and scalar ct are estimated

from the image It. The displacement vector dt between It and It+1

is then obtained as: dt = −1
2
A−1

t (bt+1 − bt).

The obtained dense field dt provides a rich and dense kinematic

description of recorded video sequences. Hence, to characterize gait260

and eye motion patterns, a set of kinematic measures are extracted

from the flow field. Specifically, we decompose the normalized ve-

locity vector in unit tangential Tt and unit normal Nt components

to obtain greater specificity of the velocity [36]. These two com-

ponents allow determining a possible decrease in gait velocity in265

patients [37]. They also allow to determine the variation in eye

movement focused on a fixed point, which could have a linear trend

[38]. Similarly, scalar components of the acceleration are calculated

as the magnitudes of the tangential and normal components of the

acceleration, respectively denoted aTt and aNt . These components de-270
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termine the possible abrupt velocity changes due to the imbalances

in the patient’s gait [18]. Also, it is expected that the correlation

between velocity and acceleration is lower in gait for patients with

PD than in control subjects [37]. In the ocular fixation modality,

the square wave jerks (SWJs) are inappropriate movements that275

occur through kinetic changes when the eye is dispersed from the

fixed point. SWJs saccades have more frequency and magnitude

in PD patients than control subjects [39]. In summary, kinematic

features are encoded as the first order kinematics, corresponding to

the horizontal and vertical components of the unit tangential vector280

f(1,t) and unit normal vector f(2,t) velocity, and as the second order

kinematics, corresponding to the magnitude of tangential f(3,t) and

normal acceleration f(4,t) [36]. The features based on the optical flow

are illustrated on the left side of figure 2. Tangential and normal

velocity is reflected in different parts of the body according to their285

components. The accelerations in f(3,t) and f(4,t) are less perceptible.

However, they are visible on the feet and wrists.

3.3. Deep Features

The deep convolutional networks have recently demonstrated great

capability to represent very complex visual patterns in classification290

and detection tasks, showing remarkable robustness to camera lens

distortions, illumination changes or occlusions, among many others

[40]. Nevertheless, proper end-to-end learning with these architec-

tures requires a huge amount of data to carry out the training.

Therefore, to achieve major flexibility modelling, we chose to repre-295

sent each frame using learned features from pre-trained nets. These
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features are then computed from convolutional deep pre-trained nets

as an alternative and complementary description of each frame. So

the first layers learn a set of kernel filters that provide a rich repre-

sentation of images, including non linear relations achieved by acti-300

vation functions. Specifically, these filters process an input image It

from the video, that can be either an RGB frame (3 channels), or an

optical flow map (2 channels), through a set of S learned convolution

filters Φ = {Φk}1≤k≤S to form a set of S features Fk
t = ak (It ∗ Φk),

where ak is a non linear activation function. For instance, for opti-305

cal flow frames, the learned filters can compute acceleration related

maps that may contribute to describe Parkinson disease patterns

from video sequences.

Classically, the deep Convolutional Neural Networks (CNN) cal-

culate features from layer to layer in such a way that, if the layer310

l has nl neurons (i.e. calculates nl features), and each neuron has

dl × dl weights (i.e. calculates a dl × dl convolution), then the layer

l actually computes nl convolutions of size dl×dl×nl−1, where nl−1

is the number of features (or channels) of the previous layer.

More recently, other CNN approaches have been proposed that315

perform separable convolution in depth, i.e. for each layer, nl−1

(depth-wise) convolutions of size dl × dl are first applied, and then,

nl (point-wise) convolutions of size nl−1 are applied. This produces

the same number of features and the same data size, while reducing

the computational cost by an order of magnitude [41, 42]. This320

decomposition allows less redundancy at the output compared to

standard convolution [43]. Besides, the experiments on different
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Figure 2: Left: Kinematic Features from the optical flow. The first order kinematics features

are the horizontal and vertical components of the unit tangential f(1,t) and unit normal

f(2,t) velocity. The second-order kinematics features are the magnitude of normal f(3,t) and

tangential f(4,t) acceleration. Right: some of the 32 deep features coming from the fourth

layer of MobileNet V2.

data sets show that a network with separable layers requires fewer

data to achieve similar or better performance compared to the dense-

layer architecture [43].325

In this work we evaluated both the conventional and the separable

architectures (such as MobileNet). Figure 2 (right) shows feature

maps extracted from the gait modality. This figure highlights the ex-

pression of the different features within different parts of the body,

and the co-variation of the different features, which justifies the330

interest of a covariance based representation.

3.4. Riemaniann space of covariance descriptors

The integration of gait and eye motion patterns is expected to

provide a more sensitive description of Parkinson’s patterns and a

better quantification of the disease. Because computed video des-
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criptors are represented as covariance matrices, a natural fusion can

be done for the different modalities. A compact integration can

be achieved by aggregating gait and eye descriptors. In this work

two levels, early and late fusion were evaluated. Considering the

fact that Parkinson’s disease has a typical unilateral involvement,

we considered one covariance descriptor for each eye, and one cova-

riance for the gait, to recover the whole motion spectrum to charac-

terize each patient. The description starts then by computing, for

each frame t, a spatial covariance matrix Ct relative to the set of

feature maps Ft = {f(1,t), . . . , f(n,t)}, where the n features can be the

kinematic features, the deep features, or the union of all features.

The covariance matrix is computed as:

Ct(i, j) = E
(
(f(i,t) − E(f(i,t)))(f(j,t) − E(f(j,t)))

)
where the expectation E is calculated over the W ×H points of each

feature map f(i,t) ∈ RW×H , where W and H represent the width and

height of the feature maps, respectively.335

Then, a very compact representation is obtained for each frame,

allowing to model complex patterns from a low temporal dimen-

sional manifold: indeed, the covariance matrices lie on a half cone

space, the actual dimension of the covariance matrix being given by

dim(C) = n(n+1)
2

where n is the number of features.340

Such measures allow to summarize motion characteristics that

may be typical of Parkinsonian patterns from a global (gait) and

from a local (eye fixation) evaluation. Then, for a given video se-

quence, the frame feature maps are summarized as a sequence of spa-

tial covariance matrices, represented as C = (C1, C2, C3, . . . , CN).345
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These symmetric positive matrices Ci are part of a non Euclidean

space which is a Riemmanian manifold M[44], and then Euclidean

metrics is not suitable to compute temporal statistics on C.

To make such measures, each covariance point should be pro-

jected to a tangent plane to the manifold (logarithmic operation).350

Accordingly, a projected covariance could be mapped to the original

Riemannian manifold, which corresponds to the exponential oper-

ation. Particularly, the mean in M of a set of covariance matrices

C can be iteratively found by optimization, where the mean µ is

the point (covariance matrix) with minimum distance ρ among the355

sample covariance matrices [44]. Thus, the geometrical mean can

be expressed as:

µt+1 = expµt

(
1

k

k∑
i=1

logµt
(Ci)

)
where µ0 is the initial guess and µt+1 it the (t+1) approximation

of the geometric mean. This expression requires in each iteration

the computation of the matrix function logµt
and expµt

, expressed360

as:

logµt
(Ci) = µt

1
2 log

(
µ
− 1

2
t Ciµ

− 1
2

t

)
µt

1
2

expµt
(Ci) = µt

1
2 exp

(
µ
− 1

2
t Ciµ

− 1
2

t

)
µt

1
2

(1)

where µt
1
2 = exp(1

2
log(µt)) and log(µt) =

∑
t

log(λt)Λ
T
t (in the

same way: exp(µt) =
∑
t

exp(λt)Λ
T
t ), where Λ and λ are the eigen-

vectors and eigenvalues of the matrix µ, respectively. Here exp and

log are the corresponding functions of matrices that extend the real365
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exponential and logarithmic functions. As frame-covariance sam-

ples, the geometrical mean covariance has the dimension of µt ∈

Rd×d, being symmetric (µt = µt
⊤) and positive (det (µt) > 0).

Therefore the final descriptor has the dimension of dim(µt) = n(n+1)
2

where n is the number of features. Finally, each video descriptor is370

defined as the Riemannian mean of frame-level covariance matrices.

In this work, the implementation of the covariance mean has been

computed as described in Algorithm 1.

Algorithm 1 Global video descriptor from intrinsic Riemannian mean

Require: C = (C1, C2, C3, . . . , CN )

1: start with: µ0 = C1

2: repeat

3: Xk = 1
N

∑N
i=1 logµk

(Ci)

4: µk+1 = expµk
(Xk)

5: until ||Xk|| < ε

Ensure: [µk+1]

This global statistic provides a compact representation that sum-

marizes the main tendencies observed along the different phases of375

the action and naturally reduces noise or error artifacts that could

suddenly appear in one frame. Furthermore, because the global des-

criptor ignores the temporal relations between the different frames,

it is also invariant to the phase of the action.

3.5. Parkinson prediction using Covariance descriptors380

The covariance mean, that represents a global measure for any

video, can be used as a patient signature to quantify the level of

Parkinson’s disorder or to automatically classify between Parkinson
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and Control motion patterns. For this classification, a supervised

strategy can be implemented to learn patterns from classes and to385

build a disease space, where new samples can be projected to be

automatically labeled with a particular class. Nonetheless, these

supervised algorithms generally operate under a Euclidean metric.

To project each covariance into a Euclidean space, a logarithmic

projection was carried out as log(Ci) = Σ log(λi)Σ
T , that defines a390

space with reference to the identity [44].

In this work was implemented the Random Forest as a super-

vised strategy due to the demonstrated effectiveness to represent

very complex problems over discrete space, to address overfitting

problems, and to be less sensitive to atypical data [45, 46]. Specif-395

ically in this work, a set of Riemannian mean descriptors of study

subjects C1, C2, ...Ci with the disease stage notations y ∈ {0, 1} are

used to learn boundaries between Parkinson and control. Then, the

Random forest defines a set of decision trees, into a Bootstrap aggre-

gating strategy through an ensemble learning, that allows to obtain400

multiple classifications and maximize the expected mean prediction.

For so doing, the strategy randomly selects a set of covariance fea-

tures to build different tree versions. Each tree is constructed using

the (CART) technique based on a recursive procedure that seeks

to obtain the division of the data that minimizes the label variance405

from each node [47]. The final prediction is made by averaging the

predictions of the individual trees, as follows: ŷ =
∑B

i=1
θi
B

, where B

is the number of trees.
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3.6. Fusion modalities

The different Parkinsonian observations can be fused once the410

videos are described by the set of frame covariances, forming the

special sequence manifold. In this work, two different levels of fusion

are proposed, evaluated over the two motions of interest, i.e., gait

and eye fixation, described as follows:

3.6.1. Early Fusion415

In the early fusion approach, we propose a joint representation

(Je) of Riemann’s descriptors: in ocular fixation (Ce) (each eye

separately) and gait (Cg) per i-patient. Je
i = [C

eleft
i , C

eright
i , Cg

i ]

This descriptor represents the covariation among selected fea-

tures to represent videos (kinematic and/or deep features) in the420

different actions of the same person. The formed descriptor Ji is then

used to build a classification space with the Random forest strate-

gy. Then, during training, different tree versions can be formed by

grouping different features from different modalities. Finally, those

hybrid random trees are used for classifying an unknown subject425

from his eyes and gait sequences.

3.6.2. Late Fusion

A second fusion alternative proposed in this work was to learn

independent classification spaces using each modality separately. In

such case, each mean covariance, for gait Cg
i → RF g and for eyes430

(C
eleft
i , C

eright
i ) → RF e is used to learn independent modality trees,

resulting in two different random forest models: (RF g, RF e).

In such case, each of the specialized random forest provides its

own probability of disease. Then, we model the resulting probability
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Pf as a linear combination of the probabilities of each classifier by:435

Pf = wPg + (1 − w)Pe, where Pe and Pg are the ocular fixation

and gait probabilities respectively, and w is a modality importance

weight in the final disease prediction.

4. Experimental setup

4.1. Data440

A total of 26 participants was included in this study: 13 control

subjects (average age of 72.2±6.1) and 13 PD patients (average age

of 72.3 ± 7.4). The PD patients were diagnosed in the second or

third stage of the disease by a physician using standard protocols

of the Hoehn-Yahr scale. This study was approved by the Ethics445

Committee of Universidad Industrial de Santander and written in-

formed consent was obtained. Regarding the motion modalities, the

following protocols were applied:

• For eye fixational recording, the patients observed a fixed spot-

light projected on a screen with a dark background, for an450

average duration of 6 seconds. The eye region was manually

cropped (210 × 140 pixels) to obtain the sequences of interest.

• For gait, markerless sagittal-plane videos were recorded with

a spatial resolution of 520 × 520 pixels and a temporal resolu-

tion of 60 fps. The locomotion was recorded along a 6 meter455

displacement, for an average duration of 6 seconds. For each

participant, one video for gait and one video for each eye were

recorded, resulting in a total dataset of 78 videos.
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4.2. Parameters tuning

The proposed approach was adjusted at different stages to op-460

timize the representation w.r.t. description and quantification of

Parkinsonian disease patterns. According to each stage, the follo-

wing parameters were set:

• Kinematic features. In both modalities the video sequences

were processed with the Farnebäck optical flow with 5 scales465

and 3 × 3 window size, to obtain velocity fields at each frame.

From each computed frame was then computed a total of 6

kinematics, namely the horizontal and vertical components of

the tangential and normal unit velocity vectors, along with the

tangential and normal acceleration magnitudes.470

• Deep features.

The deep features were taken from the first layers output using

two different pre-trained nets: the VGG16 (standard convo-

lutions) and the MobileNet V2 (depth wise separate convolu-

tions). For VGG net was selected the first to fourth deep layers,475

that count from 64 (kernel size of 3 × 3) to 128 (kernel size of

3 × 3) filters. Then, each activation output from this net has

spatial size from (112× 112) to (224× 224). For MobileNetV2,

the second to fifth layer were selected. Each layer counts a

total of 32 filters and activation output with spatial size of480

(112 × 112).

• Riemann descriptor. A covariance mean is calculated for

each video. Three descriptors are obtained for each patient,

23



for each eye and for the gait independently. The resulting co-

variance descriptor, for each video, is formed by only 6 scalar485

motion features and/or 32 deep features. The descriptor fusing

all modalities corresponds to a vector whose dimension can vary

from 108 to 4 332.

• Random Forest. The classifier was trained using the boot-

strap aggregating strategy with optimization metrics based on490

entropy criterion. A comprehensive evaluation of different sets

of trees and numbers of samples per leaf in the Random Fo-

rest was carried out to get the best classification results in each

modality and using different types of fusion.

4.3. Experimental configuration495

To evaluate the performance of the proposed approach a cross-

validation leave-one-patient-out was implemented with the multi-

modal dataset. In such a scheme at each iteration, one patient is

left out to test and the remaining ones (25 subjects in our partic-

ular experiment) are used for training. For these experiments, the500

Parkinsonian patients correctly classified were counted as true pos-

itive (TP) and the correct control patients were identified as true

negative (TN). Then a set of metrics was used to fully understand

the performance of the approach in its different configurations. The

metrics herein implemented are the sensitiviy (sen = TP
TP+FN

), spec-505

ificity (spec = TN
FP+TN

), accuracy (acc = TP+TN
TP+FP+FN+TN

), precision

(prec = TP
TP+FP

), the F1-score (F1 = 2×prec×sen
prec+sen

) and Matthews cor-

relation coefficient (MCC), defined as:
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MCC = TP×TN−FP×FN√
(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

. Also, the con-

fusion matrices (TP, TN, FP, FN) were calculated to assess the510

effectiveness of the classifier by giving the same weighting to each

of the four groups [48–50].

5. Results

The proposed approach was firstly evaluated with respect to the

features capabilities to describe each motion mode, to find the best515

configuration to proceed with the further multimodal analysis. Also,

two different versions of multimodal information fusion were evalu-

ated. The next subsections summarize the reported results in each

of the considered evaluation phases.

5.1. Feature evaluation520

In this work a frame-level representation from kinematic (velocity

and/or acceleration, computed from a dense optical flow) and/or

deep (using the first layer output from two different nets: VGG16

and/or MobileNetV2) features was considered. These features were

evaluated independently over each motion mode to select the best525

configuration based on their capability in this task. Table 1 sum-

marizes the individual performances of the different features.

The best PD prediction capability of deep features (DFs) has

been reported for gait sequences, which may be associated with

recovering particular postures during locomotion. The features ex-530

tracted from the fourth layer of MobileNet resulted in the best fea-

tures for the two motion modes, achieving an average accuracy of

0.96 ± 0.19 and 0.84 ± 0.36, for gait and eye fixation, respectively.
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Regarding kinematic patterns, very compact covariance descrip-

tors of 36 scalar values were obtained by integrating the velocity535

and acceleration patterns. Table 1 also illustrates the performance

of such kinematic patterns in two different versions, using only ve-

locities, and accelerations. For kinematics, the complete descriptor

results in the best representation option in both modes, while re-

maining extremely compact in size.540

Hence, from this study, the DFs computed from the fourth layer

of MobileNet (DF-Mobilenet/4th) and the complete kinematic de-

scriptor (KF-vel-acel) were selected. A more exhaustive evaluation

was then carried out for these two configurations. The results are

reported in Table 2. DFs achieved a remarkable performance for the545

different metrics considered. Regarding fixational eye patterns, the

kinematic features KFs had higher MCC and accuracy scores, but

DFs had a major specificity.

Table 3 displays the confusion matrices for each modality. In oc-

ular fixation, the covariation of DFs presents a classification error of550

23.1% in Parkinsonian patients and 7.7% in control subjects. How-

ever, the covariation of the kinematic characteristics of eye move-

ments reduces the classification error of patients to zero but doubles

the classification error of control subjects. This fact may be asso-

ciated to the capability of kinematic patterns to recover tiny micro-555

tremor in Parkinsonian patients but introducing artifacts in control

subjects. The complementarity of the two types of feature is also

observed in the gait modality, so that the DFs classified with zero

error in the control subjects, but with 7.7% error in the PD patients.
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Similarly, the KFs reduce the error in the patient classification to560

zero but increase the classification error in 15.4% of control sub-

jects. In fact, the kinematic locomotion of control subject results

highly variable and therefore such representation may be unable

to cover the whole spectrum of possible movements. In contrast,

the Parkinsonian patients have locomotion signatures that can be565

properly recovered from kinematic descriptors but with increasing

variability of postural configurations, representing a limitation for a

deep feature representation.

To better illustrate the discriminatory behavior of the motion de-

scriptors constructed, a low-dimensional space was built from a pro-570

jection of resultant covariance matrices using KFs ans DFs features.

The first three components were plotted using principal component

Analysis (PCA). Figure 3 illustrates the resultant projections in a

3D geometrical space for descriptors that correspond to eye, gait,

and the fusion of both modalities. As expected, the low-dimensional575

representation of such geometrical means is useful for analyzing the

grouping of points labeled with the same class. It appears that a

discrimination rule can be easily implemented for the three descrip-

tors.

5.2. Early fusion classification580

A first multimodal motion integration was achieved by concat-

enating (early fusion) the gait covariance descriptor and the eye

fixation covariance descriptors (one for each eye). This fusion from

mean covariance matrices allows a straightforward integration of the

main features that characterize Parkinsonian patterns during the585
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Figure 3: Projection over the three principal components of sample descriptors, for eyes,

gait and fusion modalities. Red and blue points represent Parkinson and Control patients,

respectively.

sequence. In this study, gait and eye integration was validated using

KFs and DFs. Also, it was considered a descriptor that integrates

both features (KF-DF). The KF covariances have a dimension of

6 × 6 (KF). The KF-DF covariances have a dimension of 38 × 38

(KF-DF), for each video descriptor of gait, eyes, and fusion.590

Table 4 summarizes the scores achieved from this early integra-

tion using different sets of features. For all the studied subjects, the

proposed approach achieved a perfect score by using a mixed rep-

resentation of kinematic and deep features. The postural represen-

tation obtained from DFs together with the kinematic description595

was sufficient to distinguish PD and control patients.

Furthermore, covariance coding is a highly interpretable descrip-

tor that can be used to recover salient information for each motion

modality. Finally, the independent use of deep or kinematic features

already achieves a good performance.600

A more detailed analysis was carried out by computing the con-
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fusion matrices for the different kinds of fusion (see in table 6).

Regarding independent sets of features, the deep features achieve a

better integration with only one false negative. For KFs, two PD

subjects were incorrectly classified as controls. This behavior could605

be associated with patients reporting small changes in gait because

of the early stage of the disease.

A feature importance analysis was conducted to measure the con-

tribution of each feature in the descriptor, ordered with respect to

the impurity reduction at each split during the Random Forest train-610

ing. In this experiment a full descriptor that included KFs and

DFs was considered. The total descriptor dimension corresponds

to the three covariance matrices (one for gait and two for eyes), i.e.

3×38×38 = 4 332. In Figure 4, the classification performance of the

proposed descriptor was illustrated by selecting an incremental set615

of the most important features, according to the ranking performed

by the Random Forest classifier. In such cases, using only 20% of

the most important features, the proposed descriptor achieved an

average score of 65%. From the observed results, we can hypothe-

size that each feature contributes approximately equally to the final620

prediction.

5.3. Late fusion classification

The second multimodal integration proposed corresponds to build-

ing a discrete space classification for each modality independently,

and then to fusing the probabilities obtained in each space. Each625

discrete space is obtained from a Random Forest, and each predicted

sequence is projected onto the respective modality to obtain a cor-
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Figure 4: Feature importance analysis using Random forest with the general descriptor that

includes kinematic and deep features. In the experiment was defined sets with the percentage

of the most important features.

responding probability of PD. The final probability Pf is the linear

weighting of the ocular fixation probability Pe and gait probability

Pg, as: Pf = wPg + (1 − w)Pe.630

In the parameter study, the mode weight parameter w was varied

from 0.1 to 0.9, and the best score was obtained by setting w to 0.4,

which means 40% for the gait and 60% for the eye fixation modal-

ities. This experiment is summarized in Figure 5 which plots the

distributions of probability prediction for PD patients, for different635

values of w. For w = 0.4, the prediction for patients diagnosed with
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the disease has remarkable confidence and the outliers from the dis-

tribution reveal a probability prediction higher than 0.5. In contrast,

w < 0.4 induces a significant variability in the probability predic-

tion, with at least one example reported as false-negative (outlier640

point lower than 0.5). On the other hand, w > 0.4 increases the me-

dian of the predicted probability, which highlights the eye fixation

contribution, but with false-labeled samples. Two outliers (that still

obtain a positive prediction) with w = 0.4 correspond to patients in

an early stage of the disease. This analysis highlighted the potential645

of eye fixational patterns as early PD biomarkers, while postural

gait motion acts as a complementary cue, and can strengthen the

disease analysis and quantification.

Table 5 summarizes the results of the proposed late fusion using650

different configurations of frame-level features to compute the Rie-

mannian mean. This multimodal integration also results successful

to discriminate between PD and control patients. In addition, the

configuration of the classifier from a rich representation of both fea-

tures is more effective than a single feature type to achieve perfect655

scores. A more detailed analysis can be obtained from the con-

fusion matrices (see Table 6). The use of only DFs shows comparable

results with respect to early fusion. Nevertheless, late fusion obtains

two false positives, i.e., control patients that were classified as PD

patients. Finally, a comprehensive experiment was carried out to660

analyze the probability outputs from the random forest classifier

in early and late fusion for each patient. Figure 6 displays the
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Figure 5: Distribution of probability predictions for Parkinson patients, for different w

values. For w = 0.4, the outliers get a probability prediction higher than 0.5, achieving a

proper classification. In contrast, all other values of w induce at least one false-negative.

PD probability, as outputted by the Random Forest classifier for

each patient in the two fusion schemes. Control patients remain

on probabilities lower than 0.3, which is a fairly confident index for665

binary classification. In addition, for PD patients, the probabilities

are generally close to one. Interestingly, the three patients (p4, p5,

and p6), in the early stage of the disease (second stage, according

to the annotation of an expert following the H&Y scale), had gait

locomotion patterns very similar to control subjects of the same age.670

Typically, patient p5 (second stage) had a lower probability than the

patient p1 that had been categorized as third stage, according to the

H&Y scale. For such patients, the oculomotor description appears
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to be the most discriminant with respect to the PD. For the other

patients, the gait modality offers a greater contribution to the final675

probability because the gait patterns show more pronounced impair-

ments than in the early stages. However, these patients had a higher

PD probability in the early fusion scheme, which could indicate that

early covariance integration leads to a better representation of the

disease and could be more effective.680

6. Discussion

A novel approach was introduced for fusing motion modalities

captured in markerless video sequences. In this study, a population

of 26 patients, distributed as Parkinson (13 patients) and Control

(13 patients), was considered. For each patient multiple sequences685

were recorded during gait locomotion from the sagittal view, with-

out any invasive device. In addition, eye fixation patterns were

recorded with a standard camera, and with weakly controlled con-

ditions. Each frame of the sequence was first represented with DFs

and/or KFs, computed from pre-trained convolutional networks and690

a dense optical flow, respectively. In this work, the DFs were com-

puted from conventional (VGG) and separable architectures (Mo-

bileNetV2). Regarding KF, the horizontal and vertical components

of the unit tangential vector and unit normal vector velocity were

considered, as well as the magnitude of tangential and normal ac-695

celeration. Then, frame-level covariance coding was carried out to

represent instantaneous posture and kinematics, which were there-

after summarized in a Riemannian temporal mean covariance. In
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multiple experiments, the proposed approach showed remarkable re-

sults, in configurations for early fusion (average accuracy of 100%)700

and late fusion (average accuracy of 100%). In the best configu-

rations, the proposed approach combines KFs and DFs to achieve a

more robust representation at the frame level. In addition, eye fix-

ation had a high discrimination power and was therefore weighted

with more importance in multimodal fusion.705

These mean covariance matrices are very compact, ranging from

6 to 38 features. They are used as motion descriptors that can be

fused (early or late) through a random forest classifier. A main

limitation on covariance representation occurs when the prediction

is based on only KFs or DFs, for both types of fusion. In such case,710

the kinematic information properly models Parkinsonian patterns

in both modes but results insufficient to cover the whole variability

for control subjects. In contrast, the proposed approach obtained

excellent results by integrating both types of KFs and DFs in a total

population of 26 subjects recorded three times, including 13 patients715

diagnosed with PD. It turns out that complementary features can

deal with proper modelling of disease patterns, but also covering the

control population. According to the random forest probabilistic

results, early fusion was the best option, achieving an accuracy of

100%, using 38 features. Thus, the combination of both types of720

features significantly improves the differentiation between the motor

patterns of control subjects and patients with PD.

Nowadays, the quantification of patients strongly depends on

medical expertise based only on coarse motor scales and reported
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indices. These scales only consider strong motion changes, which725

limits the sensitivity to monitor the progression of the disease or to

make an early diagnosis, and often produces high variance in final

scores associated with a particular patient [5]. To overcome this

issue, an approach is proposed to better monitor the disease, taking

advantage of the markerless quantification of known patterns such730

as gait, but also integrating new biomarkers of the disease, such

as tremor from the eyes. The integration of these motions results

naturally from covariance frames, and markerless capture may offer

potential applications in other types of non-controlled scenario. As

demonstrated by the results, the combination of DFs and KFs make735

it possible to distinguish between control and PD patterns, with ex-

tremely small size descriptors (between 108 and 4 332), making real-

time recognition possible, which is promising for clinical scenarios.

Multimodal approaches have been previously reported to ana-

lyze PD better: for instance, integration of walking patterns, speech740

signal analysis, and controlled writing experiments [32–34]. None-

theless, these methodologies depend on sophisticated capture de-

vices and tedious experiments, making their use in routine clinical

practice difficult. More recently, markerless strategies based on deep

learning representations from video-sequences have emerged [20]. In745

the latter work, an average accuracy of 90% was reported for the

task of classifying PD with respect to the control population. These

strategies have characterized gait patterns from end-to-end learn-

ing representations, but remain dependent on a huge and balanced

training set to compute spatio-temporal patterns that discriminate750
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Figure 6: Probabilities of Parkinson with 13 control subjects (C) and 13 patients (P) consid-

ering kinematics and deep features in the two fusion’s types.The wider horizontal blue stripe

shows a higher confidence range for early fusion than for late fusion (horizontal green stripe).

patients with PD from the control population. Similarly, Lin et.

al proposed a microwave motion detector to characterize tremor

patterns using a non-invasive device, but it required complex cali-

bration processes and protocols to capture motion signs [9]. Other

studies have reported the sensitivity of the disease associated with755

eye motion patterns. In these studies for instance, in a population

of 112 patients and only two controls (two from 60 control sub-

jects), an ocular tremor with an average fundamental frequency of

5.7 Hz and an average magnitude of 0.27 in the horizontal plane
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and 0.33 in the vertical plane has been found. This shows the po-760

tential characteristics of PD biomarkers related to eye patterns [22].

These fundamentals have been explored to propose video strategies

that recover and learn eye fixation patterns, making possible the

representation of disease in weakly controlled scenarios [31]. In this

case an approach proposed in previous work [31] achieved an aver-765

age accuracy of 95%, in a population with 13 control subjects and

13 patients. Despite the remarkable results, this approach is lim-

ited by focusing on eye analysis and, losing other signs that may

complement disease characterization.

Our work is based on a simple video system with a standard770

camera that provides objective information to the specialist in sup-

porting the diagnosis and treatment of the disease. The proposed

approach proved effective in classification tasks by achieving perfect

classification scores in multimodal configurations. In addition, it is

robust in assigning categorical probabilities to positive classified pa-775

tients. Furthermore, many of the classic patterns are only detectable

in advanced stages of the disease, restricting the analysis to the ad-

vanced Parkinson population. In contrast, the proposed approach

considers gait patterns but also uses new eye fixational patterns,

which have recently shown a major sensitivity to very early stages780

of the disease.

In summary, the proposed method integrates a local and global

representation from KFs and DFs, which are effectively combined

into covariance matrices to form a special Riemmanian manifold for

each video sequence. The Riemannian mean from the manifold is785
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easily integrated among different sequences and motion modes. The

validation reported in this work should be extended in future studies

to evaluate the ability of the proposed approach to distinguish dif-

ferent levels of the disease. In addition, patient diagnosis should be

carried out on more sophisticated scales, such as the UPDRS-ME, to790

better correlate symptoms, to address the inter-experts variability,

and to define a relevant inclusion of this tool within a clinical routine.

Despite the remarkable results of deep learning networks, these

representations remain dependent on a large set of data to address

the variability of samples, with a stratified condition among classes795

of the problem. In the biomedical context, meeting such require-

ments is difficult and leads to unnatural implementations to support

routine treatments. For instance, the deep representation proposed

by Guayacan et. al [20] achieved PD discrimination through an

end-to-end learning scheme from 3D video analysis. However, this800

approach has reported average accuracy around 90%. These results

show some limitations in operating with spatiotemporal maps, which

may be associated with insufficient data for training. In addition,

this type of approach has restrictions to include additional modali-

ties. In contrast, recent advances in representation of deep learning805

strategies are exploited using DFs that can generalize the represen-

tation of input images without requiring any additional training.

The proposed scheme has the advantage of being robust in PD dis-

crimination, but also very compact (video descriptors with a size

between 108 and 4 332 scalar values). In addition, the proposed ap-810

proach can integrate several motion modalities without any change
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in the pipeline of the method, which may benefit to a broader anal-

ysis from the clinical domain.

The proposed approach was validated through a limited study of

26 subjects, due to difficulties to acquire data from more patients.815

The main issue around data is the quantification of populations

with comparable demography characteristics that allow to address

methodologies related with the capability to discriminate disease

patterns. Hence, as perspectives is proposed a further validation

with larger datasets and stratified patients according to the pro-820

gression of the disease. This validation may be useful to discover new

multimodal patterns that enhance the sensitivity of clinical scales

like the UPDRS and may better measure disease progression or the

effectiveness of a particular treatment. Also, the inclusion of new

modalities may enrich disease representation and impact as a tool825

to support early diagnosis.
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Table 1: Comparison of the accuracy obtained by each feature alone, in each modality

Features
Acc Descriptor

SizeGait Eye

DF-VGG/1st 0.923 0.807 4096

DF-VGG/2nd 0.961 0.807 4096

DF-VGG/3rd 0.923 0.846 4096

DF-VGG/4th 0.923 0.846 16384

DF-MobileNetV2/2nd 0.923 0.769 1024

DF-MobileNetV2/3rd 0.923 0.807 1024

DF-MobileNetV2/4th 0.961 0.846 1024

DF-MobileNetV2/5th 0.884 0.769 1024

KF-vel 0.576 0.730 16

KF-vel-acel 0.923 0.923 36

Table 2: Scores in ocular fixation (Eye) and gait modality using only deep features (DF) or

only kinematic features (KF)

Eye-DF Eye-KF Gait-DF Gait-KF

sen 0.769 1 0.923 1

spec 0.926 0.846 1 0.846

prec 0.909 0.866 1 0.866

acc 0.846 0.923 0.961 0.923

F1-s 0.824 0.928 0.959 0.928

MCC 0.700 0.856 0.925 0.856
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Table 3: Confusion matrices per modality using only kinematic (KF) or deep features (DF),

for Parkinson (PK) and Control (C) subjects.

Eye-DF Eye-KF Gait-DF Gait-KF

PK C PK C PK C PK C

PK 10(76.9%) 3(23.1%) 13(100%) 0 12(92.3%) 1(7.7%) 13(100%) 0

C 1(7.7%) 12(92.3%) 2(15.4%) 11(84.6%) 0 13(100%) 2(15.4%) 11(84.6%)

Table 4: Early fusion scores for the two modalities, using kinematic (KF), deep (DF) or joint

features (KF-DF)

Early Fusion

KF-DF

Early Fusion

DF

Early Fusion

KF

sen 1 0.923 0.846

spec 1 1 1

prec 1 1 1

acc 1 0.961 0.923

F1-s 1 0.959 0.916

MCC 1 0.925 0.856

Table 5: Late fusion scores for the two modalities, using kinematic (KF), deep (DF) or joint

features (KF-DF)

Late Fusion

KF-DF

Late Fusion

DF

Late Fusion

KF

sen 1 0.923 0.846

spec 1 1 0.923

prec 1 1 0.916

acc 1 0.961 0.884

F1-s 1 0.959 0.879

MCC 1 0.925 0.771
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Table 6: Confusion matrices for the different fusion modes, using kinematic (KF), deep (DF),

or joint (KF-DF) features, for Parkinson (PK) and Control (C) subjects.
Early Fusion

(KF-DF)

Early Fusion

(DF)

Early Fusion

(KF)

Late Fusion

(KF-DF)

Late Fusion

(DF)

Late Fusion

(KF)

PK C PK C PK C PK C PK C PK C

PK 13(100%) 0 12(92.3%) 1(7.7%) 11(84.6%) 2(15.4%) 13(100%) 0 12(92.3%) 1(7.7%) 11(84.6%) 2(15.4%)

C 0 13(100%) 0 13(100%) 0 13(100%) 0 13(100%) 0 13(100%) 1(7.7%) 12(92.3%)
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