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Who are we?

● At ENS, you may already know: Christian Lorenzi, 
Daniel Pressnitzer, Alain de Cheveigné, and Shihab Shamma

● The Modulation Group: Christian and Léo
● The two most important projects:

– Hearing biodiversity: the HEARBIODIV project
– Individualised speech perception: the fastACI project
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Hearing biodiversity: the HEARBIODIV project

c dChristian Lorenzi

Frédéric Apoux, Elie Grinfeder, Richard McWalter & Nicole Miller

Bernie Krause, Jérôme Sueur & Régis Ferrière
https://anr.fr/Project-ANR-20-CE28-0011 

• Natural soundscapes correspond to complex patterns of biological 
and geophysical sounds shaped by the sound-propagation 
characteristics in the habitats, with respect to a point of 
observation …

Elie Grinfeder (2021)



• Natural soundscapes are structured by ecological and geophysical 
processes and the rules of sound propagation (Farina, 2017) 

Wealth of information useful for: 
• Mapping the habitat
• Navigating
• Finding resources (preys, water, …)
• Finding mates (conspecifics)
• Assessing danger (predators)

Elie Grinfeder (2021)

Lack of knowledge about 
how we perceive natural soundscapes

Main research questions adressed via psychophysical and modelling studies :

1) Are we able to discriminate differences across soundscapes corresponding to 

   changes in habitat (where), season and moment of the day (when)? 

• If so, how do we achieve this (what are the cues & sensory mechanisms)? 

2) What auditory cues and processes distinguish biological from geophysical sounds ?

3) Are we able to discriminate levels of biodiversity when listening to soundscapes?

• Again, if so, how do we achieve this (what are the cues & sensory mechanisms)? 

4) How does sensorineural hearing loss affect these capacities?



The Hearbiodiv Database: 13 terrestrial biomes

Nicole 
Miller 
(2021)

Psychophysical experiments



Psychophysical experiments : Preliminary results

Experiment 1: Discrimination of Habitat, Moment of the day, Season
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Modelling studies

(CNN) Convolutional Neural Network
Fred Apoux et al. (2022)

Modulation filter bank model

Varnet et al. (2017); King et al. (2019); Thoret et al. (2020)

Input
Waveforms

AM metric from the 
Internal representation
(“slow AM cues”)

Classifier: Probabilities of 
belonging to each category



Modelling studies
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Experiment 1: Discrimination of Habitat, Moment of the day, Season

Modelling studies
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Experiment 1: Discrimination of Habitat, Moment of the day, Season

● “Slow AM cues” are sufficient to classify habitats well above chance level.
● Additional simulations will establish the nature of the sensory cues that

 play a critical role in the classification of our terrestrial biomes.

More about this in the ARO poster by Apoux et al.  (ID: 721)



The Hearbiodiv project
C Lorenzi
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Exploring phoneme representations and their adaptability 
using fast Auditory Classification Images – fastACI

c d

Léo Varnet (PI), Alejandro Osses Vecchi

Christian Lorenzi, Laurianne Cabrera, Willy Serniclaes

https://anr.fr/Project-ANR-20-CE28-0004 

Cracking the speech code
Speech is a complex code (acoustics → phonetics)

No easy answer, due to the 
spectrotemporal complexity of 
natural speech

Which acoustic cues allow the 
listener to differentiate one 
phoneme from another?



Cracking the speech code
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How do we distinguish « aba » from « ada »?
(VCVs from the Oldenburg Logatome Corpus [Wesker et al., 2005], gammatone-based 
TF representation)

• Many acoustical differences 
between « aba » and « ada »
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TF representation)

• Many acoustical differences 
between « aba » and « ada »

(e.g. formant trajectories)

• Which ones are actually used 
by the auditory system?



Auditory revcorr studies (full diagram on https://dbao.leo-varnet.fr/)

[Ahumada & Lovell, 1971; Shub & Richards, 2009; Ponsot et al. 2013]

[Ponsot et al., 2018a, 2018b]

[Ponsot et al., 2020; 
Joosten & Neri, 2012]

[Venezia et al., 2016, 2019]

[Varnet et al., 2013, 2015]
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Phoneme discrimination using the ACI method
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Experimental design:
● Noise fixed, variable speech level
● 1-up, 1-down weighted procedure

(Kaernbach, 1991) to track 70.7% correct responses: 
down step = 1 dB, up step = 2.4 dB

● Little level roving of ±2.5 dB
Before: transformed up-down (Levitt, 1971)
Before: No roving
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ACI is built from (H+FA) - (M+CR)

● The reverse correlation method allows to experimentally assess the cues 
that are relevant in a discrimination task: ACIs
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● An ACI from a previous study (Osses & Varnet 2021, DAGA).
– Aba / ada discrimination, female speaker
– Speech-shaped noises:

Phoneme discrimination using the ACI method

aba

ada

S2

Thres=-12.0 dB, bias=42%

ACIs for a group of participants

• ACI for a /da/-/ga/ categorisation task 
measured on 16 individuals [Varnet et al., 2015a]

• Comparison between groups of listeners: 

– Musicians [Varnet et al., 2015b]

– Listeners with dyslexia [Varnet et al. 2016a]

– Hearing-impaired listeners [Varnet et al., 

2019].
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Methods

Stimuli: Target sounds (65 dB SPL) in 
background noise

Task: Is it /aba/ or /ada/?

SNR: Adaptive procedure to reach a score of 70.7% 

Roving: ± 2.5 dB

The method is nice but it requires too many trials

During data collection:

Methods

Stimuli: Target sounds (65 dB SPL) in 
background noise

Task: Is it /aba/ or /ada/?

SNR: Adaptive procedure to reach a score of 70.7% 

Roving: ± 2.5 dB

fastACI toolbox v1.0: a MATLAB toolbox for investigating auditory perception using 
reverse correlation (https://github.com/aosses-tue/fastACI, cf. ARO poster 800) 

The method is nice but it requires too many trials

During data collection: During the ACI derivation
T-F conversion: FFT, ERB spaced

Task: Fitting responses to /aba/ or /ada/ 
(binary decision)

GLM fitting procedure: Normalisation, 
fitting algorithm - priors

We plan to collect data N=10 listeners

But, while waiting to test the real listeners...



Artificial listeners
ba

da

     dau1997                    king2019     relaño-iborra2019              osses2021               osses2022a                  S01, exp

A real listener

/aba/ - /ada/ in white noise

Average thresholds Correlation matrix

Summary
● Reverse correlation method: 

Trial by trial analysis for a supra-threshold task

● Between-participant variability: 
Many analyses are possible

● Auditory models: Can be strategically used, 
but a warning: 
They can provide very different results

Fig. 10 from Osses, Varnet, Carney, 
Dau, Bruce, Verhulst, & Majdak (2022, ArXiv)

Fully reproducible figures with AMT 1.1



Thank you for your attention!

And thanks to our 
collaborators:

Christian 
Lorenzi

Emmanuel
Ponsot

Diane
Lazard

Michel
Hoen

Fanny
Meunier

Laurianne
Cabrera
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