

Alejandro Osses V.1, Léo Varnet, Christian Lorenzi

¹E-mail: ale.a.osses@gmail.com

DEC | département d'études cognitives

> Laboratoire des Systèmes Perceptifs, École Normale Supérieure (ENS), PSL University, Paris, France

> > 3-4 February 2022

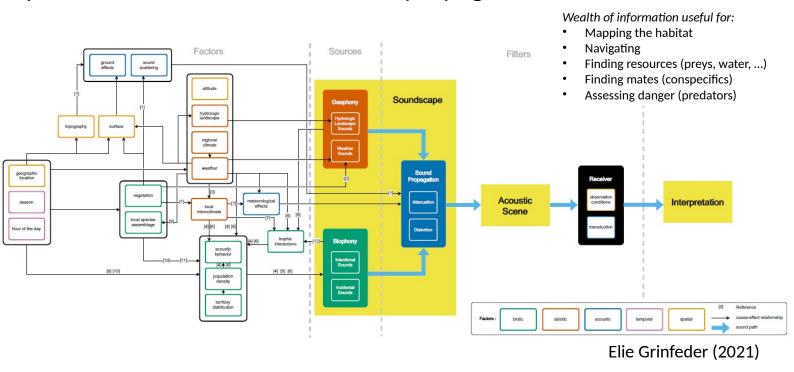
14th General Meeting AABBA, Vienna, Austria

Who are we?

- At ENS, you may already know: Christian Lorenzi, Daniel Pressnitzer, Alain de Cheveigné, and Shihab Shamma
- The Modulation Group: Christian and Léo
- The two most important projects:
 - Hearing biodiversity: the HEARBIODIV project
 - Individualised speech perception: the fastACI project

Hearing biodiversity: the HEARBIODIV project

Christian Lorenzi


Frédéric Apoux, Elie Grinfeder, Richard McWalter & Nicole Miller Bernie Krause, Jérôme Sueur & Régis Ferrière

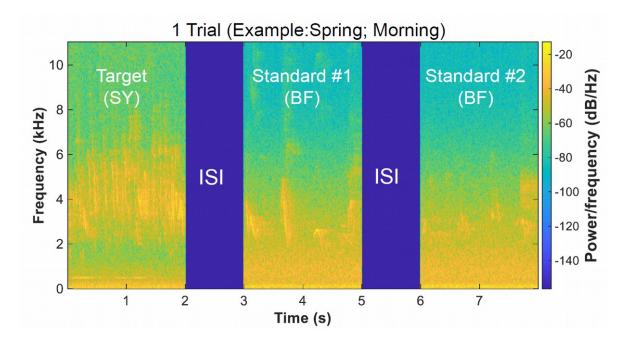
https://anr.fr/Project-ANR-20-CE28-0011

• Natural soundscapes correspond to complex patterns of biological and geophysical sounds shaped by the sound-propagation characteristics in the habitats, with respect to a point of observation ...

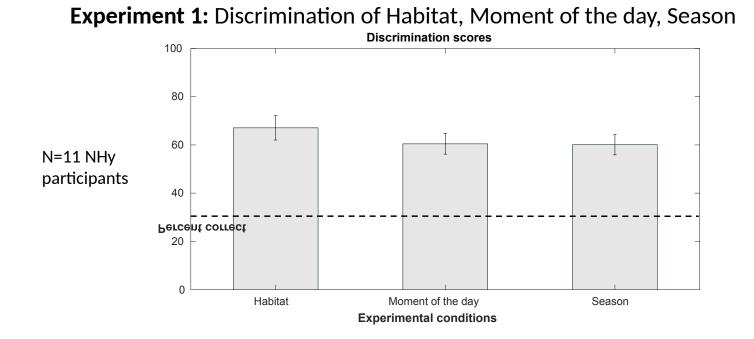
• Natural soundscapes are structured by ecological and geophysical processes and the rules of sound propagation (Farina, 2017)

Lack of knowledge about how we perceive natural soundscapes

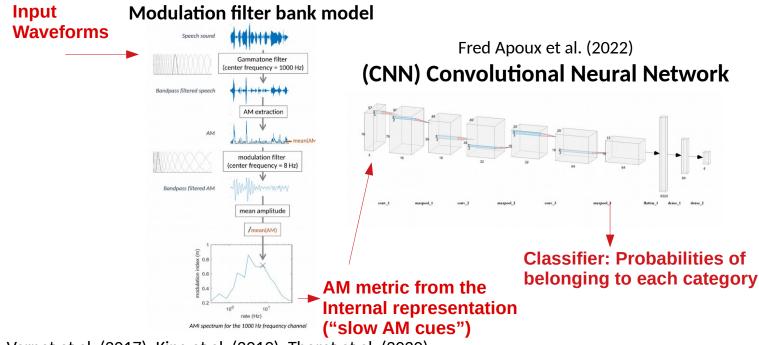
Main research questions adressed via psychophysical and modelling studies :

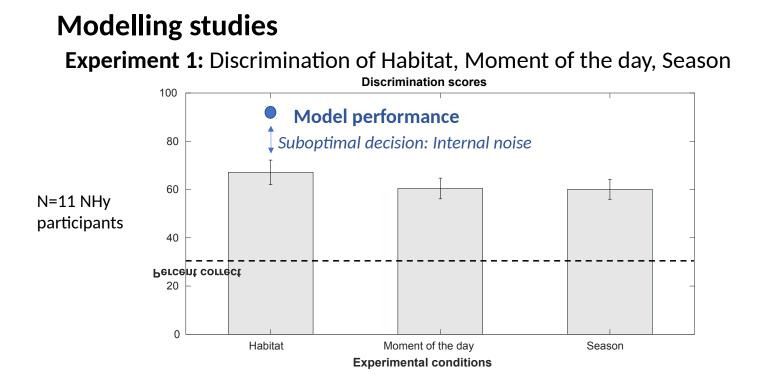

- 1) Are we able to discriminate differences across soundscapes corresponding to changes in *habitat* (where), *season* and *moment of the day* (when)?
- If so, how do we achieve this (what are the **cues** & sensory **mechanisms**)?
- 2) What auditory cues and processes distinguish biological from geophysical sounds?
- 3) Are we able to discriminate levels of **biodiversity** when listening to soundscapes?
- Again, if so, how do we achieve this (what are the cues & sensory mechanisms)?
- 4) How does sensorineural hearing loss affect these capacities?

The Hearbiodiv Database: 13 terrestrial biomes

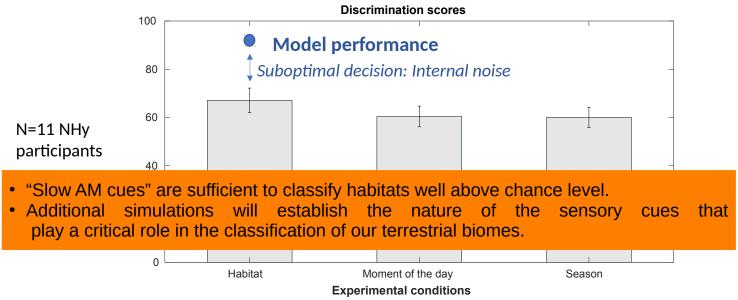


Nicole Miller (2021)


Psychophysical experiments


Psychophysical experiments : Preliminary results

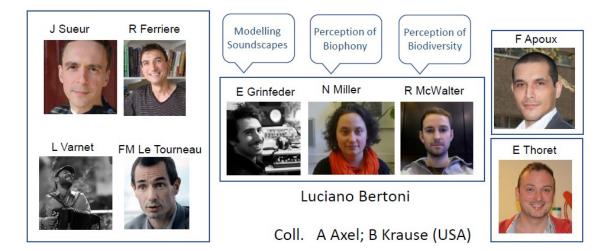
Modelling studies



Varnet et al. (2017); King et al. (2019); Thoret et al. (2020)

Modelling studies

Experiment 1: Discrimination of Habitat, Moment of the day, Season



More about this in the ARO poster by Apoux et al. (ID: 721)

C Lorenzi

The Hearbiodiv project

Exploring phoneme representations and their adaptability using fast Auditory Classification Images – fastACI

Léo Varnet (PI), Alejandro Osses Vecchi Christian Lorenzi, Laurianne Cabrera, Willy Serniclaes

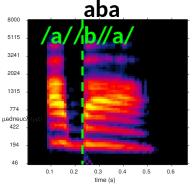
https://anr.fr/Project-ANR-20-CE28-0004

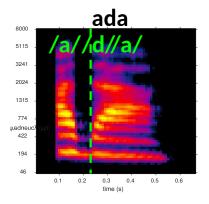
Cracking the speech code

Speech is a **complex code** (acoustics \rightarrow phonetics)

Which **acoustic cues** allow the listener to differentiate one phoneme from another?

No easy answer, due to the spectrotemporal complexity of natural speech

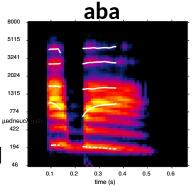


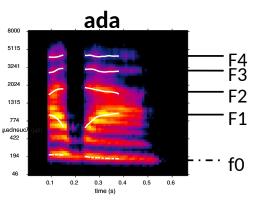

Cracking the speech code

How do we distinguish « aba » from « ada »?

(VCVs from the Oldenburg Logatome Corpus [Wesker et al., 2005], gammatone-based TF representation)

 Many acoustical differences between « aba » and « ada »

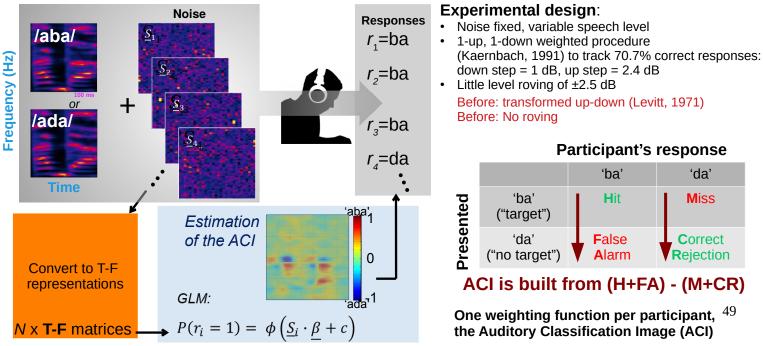



Cracking the speech code

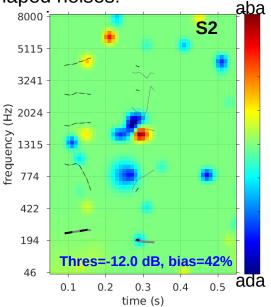
How do we distinguish « aba » from « ada »?

(VCVs from the Oldenburg Logatome Corpus [Wesker et al., 2005], gammatone-based TF representation)

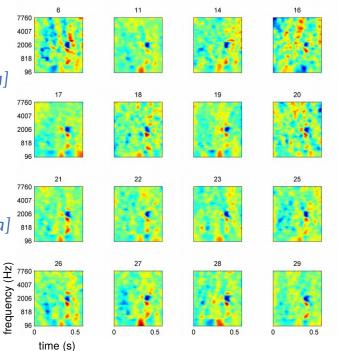
- Many acoustical differences between « aba » and « ada » (e.g. formant trajectories)
- Which ones are actually used by the auditory system?



Phoneme discrimination using the ACI method


 The reverse correlation method allows to experimentally assess the cues that are relevant in a discrimination task: ACIs

Phoneme discrimination using the ACI method


- An ACI from a previous study (Osses & Varnet 2021, DAGA).
 - Aba / ada discrimination, female speaker
 - Speech-shaped noises:

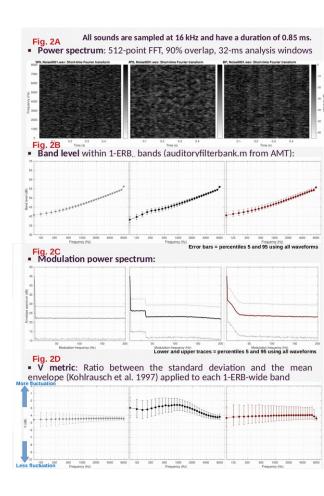
•

ACIs for a group of participants

- ACI for a /da/-/ga/ categorisation task measured on 16 individuals [Varnet et al., 2015a]
- Comparison between groups of listeners:
 - Musicians [Varnet et al., 2015b]
 - Listeners with dyslexia [Varnet et al. 2016a]
 - Hearing-impaired listeners [Varnet et al., 2019].

50

Methods


The method is nice but it requires too many trials During data collection:

Stimuli: Target sounds (65 dB SPL) in background noise

Task: Is it /aba/ or /ada/?

SNR: Adaptive procedure to reach a score of 70.7%

Roving: ± 2.5 dB

Methods

The method is nice but it requires too many trials

During data collection:

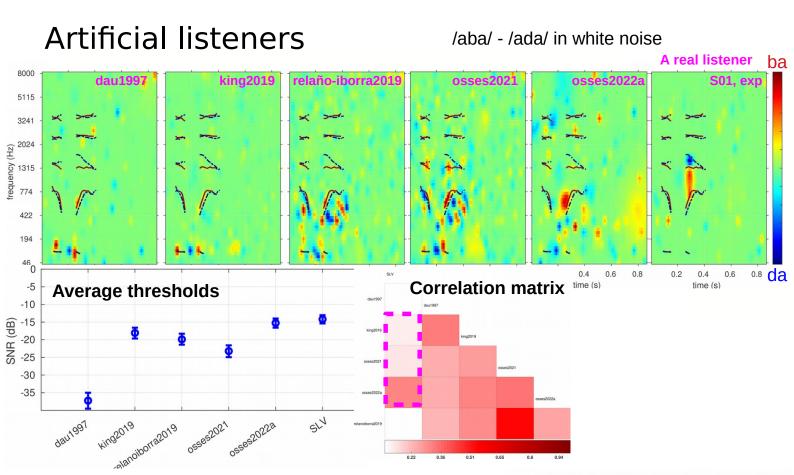
Stimuli: Target sounds (65 dB SPL) in background noise

Task: Is it /aba/ or /ada/?

SNR: Adaptive procedure to reach a score of 70.7%

Roving: ± 2.5 dB

During the ACI derivation T-F conversion: FFT, ERB spaced


Task: Fitting responses to /aba/ or /ada/ (binary decision)

GLM fitting procedure: Normalisation, fitting algorithm - priors

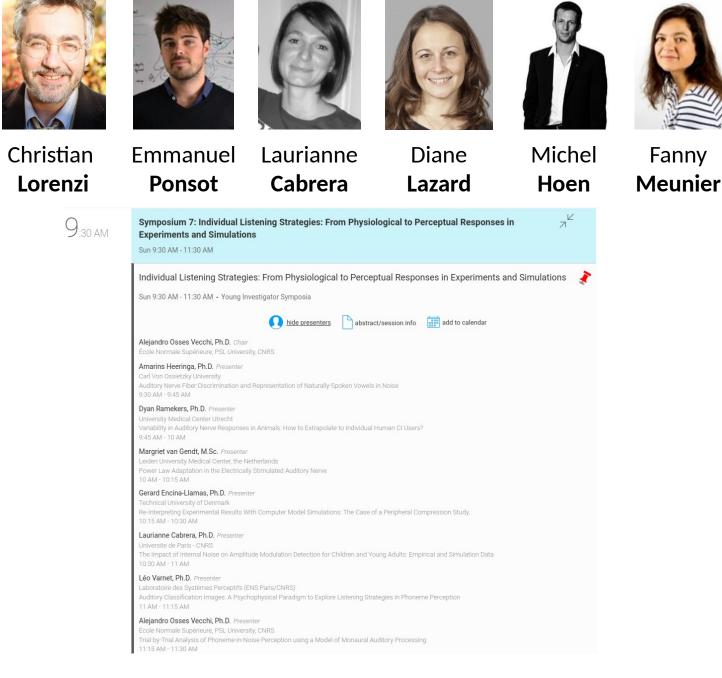
We plan to collect data *N*=10 listeners

But, while waiting to test the real listeners...



Summary

- Reverse correlation method:
 Trial by trial analysis for a supra-threshold task
- Between-participant variability: Many analyses are possible
- Auditory models: Can be strategically used, but a warning: They can provide very different results


Fig. 10 from Osses, Varnet, Carney, Dau, Bruce, Verhulst, & Majdak (2022, ArXiv)

Fully reproducible figures with AMT 1.1

Thank you for your attention!

And thanks to our collaborators:

Almost all references...

- Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. *Percept*. *Psychophys.*, *49*(3), 227–229. <u>https://doi.org/10.3758/BF03214307</u>
- King, A., Varnet, L., & Lorenzi, C. (2019). Accounting for masking of frequency modulation by amplitude modulation with the modulation filter-bank concept. *J. Acoust. Soc. Am.*, 145, 2277– 2293. <u>https://doi.org/10.1121/1.5094344</u>
- Osses, A., & Varnet, L. (2021). Consonant-in-noise discrimination using an auditory model with different speech-based decision devices. *DAGA*, 298–301.
- Osses, A., Varnet, L., Carney, L., Dau, T., Bruce, I., Verhulst, S., & Majdak, P. (2022). A comparative study of eight human auditory models of monaural processing. *ArXiv*, 1–24. https://arxiv.org/abs/2107.01753
- Osses, A., & Varnet, L. (2021). *fastACI toolbox: the MATLAB toolbox for investigating auditory perception using reverse correlation (v1.0)*. <u>https://doi.org/10.5281/zenodo.5500139</u>
- Osses, A., & Kohlrausch, A. (2021). Perceptual similarity between piano notes: Simulations with a template-based perception model. *J. Acoust. Soc. Am.*, *149*, 3534–3552. <u>https://doi.org/10.1121/10.0004818</u>
- Varnet, L., Knoblauch, K., Serniclaes, W., Meunier, F., & Hoen, M. (2015). A psychophysical imaging method evidencing auditory cue extraction during speech perception: A group analysis of auditory classification images. *PLoS One*, 10(3), 1–23. <u>https://doi.org/10.1371/journal.pone.0118009</u>
- Varnet, L., Langlet, C., Lorenzi, C., Lazard, D., & Micheyl, C. (2019). High-frequency sensorineural hearing loss alters cue-weighting strategies for discriminating stop consonants in noise. *Trends in Hearing*, 23, 1–18. <u>https://doi.org/10.1177/2331216519886707</u>
- Varnet, L., Meunier, F., Trollé, G., & Hoen, M. (2016). Direct viewing of dyslexics' compensatory strategies in speech in noise using Auditory Classification Images. *PLoS One*, 11(4), 1–17. <u>https://doi.org/10.1371/journal.pone.0153781</u>
- Varnet, L., Ortiz-Barajas, M., Guevara, R., Gervain, J., & Lorenzi, C. (2017). A cross-linguistic study of speech modulation spectra. J. Acoust. Soc. Am., 142, 1976–1989. <u>https://doi.org/10.1121/1.5006179</u>
- Varnet, L., Wang, T., Peter, C., Meunier, F., & Hoen, M. (2015). How musical expertise shapes speech perception: Evidence from auditory classification images. *Sci. Rep.*, *5*, 14489. <u>https://doi.org/10.1038/srep14489</u>