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Abstract This paper presents an efficient simulated

annealing algorithm for solving multi-objective layout

problems where several rectangular components are pl-

aced, respecting non-overlap and non-protrusion con-

straints in the given space. Resolving layout problems

can be very hard in some industrial cases because prob-

lems are over-constrained and computing feasible opti-

mal layout designs are time consuming. In most prac-

tical problems, both real and virtual components exist.

The virtual components represent the required accessi-

ble space allowing the user to access to the component.

The virtual components can overlap with each other,

while the overlap is not allowed for the real compo-

nents. Considering the limited layout design space, the

capacity of the layout problem is analyzed using con-

structive placing techniques. To explore the feasible lay-
out space, a hybrid simulated annealing is proposed to

determine the order of placement; then, a constructive

placing strategy based on empty maximal space is de-

veloped. What’s more, an interactive visualization en-

vironment is introduced between the optimization and

expert. The proposed algorithm is the first attempt to

search feasible space of multi-objective layout design by

constructive placing method.

Keywords Layout problem · Capacity · Simulated
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optimization
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1 Introduction

The layout problems (LPs) concern finding the op-

timal arrangements of a given number of components

with known dimensions within a given container. The

component can be the equipment, device, cabinet or

building, work-space depending on the application. LPs

are generally considered as optimization problems. Solv-

ing optimization problems consists of finding one or

several solutions that optimizes the objectives and re-

spects a set of constraints. Generally, each placement

problem presents non-overlap and non-protrusion con-

straints. These constraints express the fact that there is

no collision between components and each component

must stay inside the container.

For most complex LPs, there is no prior informa-
tion about the capacity. However, solving LPs are time

consuming and designers know whether an optimal so-

lution is accessible until the end of the optimization.

Solving LPs without capacity analyzed in advance may

be in vain. Many studies use density of all components

as an indicator of capacity [21]. But it is not suitable

when there are virtual components without mass. In [1],

the author comes up with an innovative indicator to as-

sess capacity. Actually, it’s an estimation of density of

all components including real and virtual items with-

out considering their geometry. In this paper, we use a

more accurate method to find the minimum space occu-

pied by all components and provide prior information

to assess the capacity of LPs.

The formulation of LPs uses either single-objective

or multi-objective optimization. In single-objective op-

timization, finding the optimal solution corresponds to

the minimum or maximum value of the objective func-

tion. On the contrary, multi-objective optimization usu-

ally solves multi-objective simultaneously without con-
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verting them into single one. Therefore there is no single

optimal solution but a set of compromised solutions,

widely known as Pareto front [5]. For convex prob-

lems, traditional single-objective optimization can be

used through weighted sum method to find the Pareto

front in many individual runs if the weights are consis-

tently modified for each run. However, non-dominance

based is a generic way to find well distributed Pareto

front in a single run. Moreover, the interaction with op-

timization processes helps the expert find the optimal

solutions and select the final solution among the set of

compromised alternatives.

Various methods have been developed to solve LPs.

Exact approaches are widely used to solve small-sized

LPs, while it’s not applicable for large-sized LPs with

high computational efforts and extensive memory capa-

bilities [8]. Motivated by this, constructive heuristic and

meta-heuristic methods that can provide sub-optimal

solutions have been proposed. Constructive heuristic

procedures build a layout from scratch by successively

selecting and placing facilities until a completed lay-

out is obtained [13]. Meta-heuristic is also an effective

stochastic optimization technique. For example, Simu-

lated Annealing (SA) [14] is single-objective optimiza-

tion with provably convergence. The efficiency in solv-

ing complex combinatorial problems making it interest-

ing for extension to multi-objective optimization [19].

Moreover, more and more researchers now work on hy-

brid methods by combining the global and local opti-

mization strategies [12,17,18,20].

In the practical LP applications, the conventional

optimization usually takes a couple of hours or days

to solve the problem which is computationally expen-

sive. People are looking for the hybridization optimiza-

tion that takes less computational efforts to find the

high-quality layout designs. Constructive heuristics are

widely used in parallel with other meta-heuristics to

solve LPs. A genetic algorithm (GA) coupled with con-

structive optimization is designed [16] to do rectangular

components packing where the packing sequence are

encoded in a chromosome. One hybrid approach [10]

combines a BRKGA, to determine the order of place-

ment and the dimensions of each component, a con-

structive placement strategy, to position each facility,

and a linear programming model, to fine-tune the so-

lutions is proposed to solve the single-objective LP. In

fact, GA and SA are the most popular meta-heuristics.

SA was first proposed as a method for solving combina-

torial optimization problems such as traveling salesman

problem and knapsack problem [7]. One example that

combines constructive heuristic and SA can be found

in [11]. Compared to other heuristic optimizations, SA

has global search ability and simpler structure with less

parameters.

The LP studied here involves the real and virtual

rectangular components. The space of accessibility as-

sociated with the real component is virtual, which al-

lows the user to access the real component in reality,

such as facility maintenance. Moreover, most of the LPs

are NP hard. The great complexity of LPs increase

the difficulty in finding a feasible layout design in a

reasonable time. To resolve these problems, we con-

tribute an efficient SA based algorithm coupled with

a constructive placing strategy to solve the innovative

multi-objective LPs that formulated by the real and vir-

tual components. First, using SA based optimization to

determine the placement order of components, an ac-

ceptable order is non-dominated in the corresponding

objective space. Second, to explore the feasible space

and guarantee non-overlap constraints, a constructive

placing strategy is applied to benefit overlap of virtual

components while keeping the maximal free space. It

proves the algorithm can generate high quality solu-

tions in relatively small computing efforts. In addition,

the user can make the final decision through interactive

visualization of the final Pareto front.

This paper is organized as follows. Sect. 2 presents

the practical LP formulation. Then the assessment of

the capacity is described in Sect. 3. In Sect. 4, the hy-

brid optimization scheme is proposed and applied to the

practical LP in Sect. 5. Conclusion is given in Sect. 6.

2 Formulation of the problem

The chosen LP is taken from [4]. This case study is a

shelter with four cabinets, two desks and two electrical

boxes as illustrated in Fig. 1 [4]. In order to simplify

the optimization problem, there are two assumptions:

1. Components have the same height and no superpo-

sition.

2. Components are cuboids.

Consequently, the configuration of the problem is de-

fined in two-dimensions, shown in Fig. 2. We use rect-

angle to represent each component. Considering the ac-

cessibility, a virtual component (dotted line) is attached

to each cabinet and desk. For example, the virtual space

of cabinet allows interaction between human and itself

or insert some materials into the cabinet. The hatched

rectangle is a virtual space below air-conditioner but

no cabinet can be placed. Besides, one virtual corri-

dor located in the middle is connected to the door of

the entry, which guarantees all real components should

be accessible. The detailed geometry parameters of the

problem can be found in [3].
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Fig. 1: Overview of CAD model [4]

Fig. 2: 2D configuration model

The purpose of the case study is to place properly

the components in the feasible space to achieve given

objectives. The overall formulation of the problem in-

cluding variables, constraints and objectives.

2.1 Variables

Each component Ci = {xi, yi, wi, hi}, i ∈ n, n is

the number of components, is defined by the bottom

left coordinates (xi, yi) and the width and height of

the rectangle (wi, hi), shown in Fig.3. The accessibility

space attached to the real component is named virtual

component. This accessibility space can be considered

as a set of rectangles allowing the user to access to the

component or for occasional use or action of the real

component. So for each component Ci, it has a list of

associate ni accessibility spaces named virtual compo-

nents vij = {xvij , yvij , wvij , hvij}, j ∈ ni. The virtual

component vij is defined by its bottom left coordinates

(xvij , yvij ) in the local frame of real component and the

size (wvij , hvij ). Each virtual component is fixed to the

real component and can be deduced in the same way

by the relatives coordinates to the associates the real

component. If there is rotation, the coordinates and size

will update in the corresponding local frame as shown

in Fig.3 (b).

3.(a) 3.(b)

Fig. 3: Component representation

2.2 Constraints

The design constraints of the LP are non-overlap

and non-protrusion constraints, including:

1. Non-overlap between real components.

2. Non-overlap between real and virtual components.

3. Non-protrusion between container and components.

Besides, there are also implicit remarks of the LP:

1. The cabinets are restricted in the allowed spaces,
where non-overlap between cabinets and the free

hatched space.

2. The second electrical box has to be placed against

the wall near the door or the hatched space, where

no rotation is allowed.

Actually, SA is usually used in unconstrained optimiza-

tion. One way to extend SA for the constrained case is

to use penalty method [9], where a large cost is added to

the objective function for the solutions that violate con-

straints. However, the multiple geometric constraints

makes it harder to find the feasible layout solutions

through traditional optimization methods.

2.3 Objectives

There are two objective functions. The first one is

to balance the mass inside the layout design by min-

imizing the Euclidean distance between the geometry
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centre of the container and the centre of gravity of all

real components calculated as follows:

f1 =

√(
Xgra −X ′gra

)2
+
(
Ygra − Y ′gra

)2
(1)

Xgra =

∑n
i=1 (xci ×mi)∑n

i=1mi
, Ygra =

∑n
i=1 (yci ×mi)∑n

i=1mi
(2)

where X
′

gra and Y
′

gra are the geometry center of the

container. mi represents the mass and (xci, yci) is the

centre of gravity of the component Ci and can be de-

duced from the coordinates and size easily. The second

objective f2 is maximization of the Euclidean distance

between the cabinet 1 (energy work), cabinet 3 and cab-

inet 4 and electrical box 2, in order to limit interactions

between electric and energy network. A cost table is de-

signed to measure the activity relationship between the

components.

3 Capacity of layout problem

Before applying optimization algorithm to find fea-

sible solutions of the LP, it’s necessary to analyze the

capacity β of the container. Based on the given dimen-

sions of container and components, the density of the

real components can be calculated as:

β =

∑n
i=1(wi × hi)
W ×H

(3)

Where W and H are the dimension along x-axis and

y-axis of container. Since the real components cannot

overlap with others, the total occupied space is equiv-
alent to the sum of area of real components. Here,

β = 0.4. However, if the virtual components (6 spaces

of accessibility, 1 corridor, 1 door and 1 free space) are

included and overlap between them are ignored, then

β = 1.05, which means there is no feasible solution.

In [1], the author use intersection matrix to calculate

the capacity β = 0.66. However, the value is based on

estimation and no geometry included. Hence, we extend

the constructive placing method to find the minimum

occupied space by packing the components.

For the placing problem, we need to generate a plac-

ing order and strategy. Suppose we have 8 real compo-

nents, the number of permutations equals 8! = 40320.

Exploring all possibilities is time consuming. Besides,

the main idea of placing is to maximize space utiliza-

tion, in other word, to place all components as compact

as possible. So we apply SA to optimize placing or-

der and use constructive placing strategy to determine

the position of components that minimizes the occupied

space.

3.1 Simulated annealing

The algorithm optimizes the order X in which the

components are placed into the container. X is repre-

sented as permutation of integer values in the interval

[1, n]. In each iteration of inner loop, a new orderX ′ will

be generated by swapping elements. During the swap

procedure, two components could be selected randomly

based on step parameter σ. To control the performance

of the swap, we define σ relating to the temperature t.

When the temperature is high, σ is large, any two com-

ponents can be swapped; when the temperature closes

to the final temperature, only the last few components

could be selected. In other words, the placing order may

widely change at beginning but will converge to the op-

timal solution X∗ finally. The optimization will stop if

it reaches to the final temperature or it is up to the

number of iterations. The overall idea is described in

Algorithm 1.

Algorithm 1: Simulated annealing

Input: X, X∗=X;
Output: X∗;
β(X) = Place (X);
while stop condition not met do

while iteration in inner loop do
X′=X(σ);
# Randomly swap two elements of X;
β(X′) = Place (X′);
δβ = β(X′)-β(X);
if δβ < 0 or Accept(δβ) then

X = X′;
β(X)=β(X′);
if β(X′) < β(X∗) then

X∗ = X′;
end

end

end
Decrease temperature t and step σ;

end

3.2 Placing strategy

The placing strategy is based on the difference pro-

cess of empty maximal spaces (EMSs) [15]. EMSs rep-

resent the list of largest rectangle empty space in the

container. In the LP, there are both real and virtual

components. Considering their different properties, we

use two lists of EMS for real components, real and vir-

tual components separately, named S, S′ respectively.

The list S′ is used for real components and guarantees

non-overlap between real and virtual components while

the list S is used for virtual components and benefits
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overlap between virtual components. In the following

sections, we describe the space generation and the main

idea of the placing strategy.

3.2.1 Space generation

The EMS is a rectangle and defined by its vertices

with lower bound and width and height along x-axis

and y-axis where s = [xs, ys, ws, hs]. A simple example

of space generation is shown in Fig. 4. At beginning,

since there is no component inside the container, there

is one empty space s0 = [0, 0,W,H] in S and S′. After

placing the real component C1, new empty spaces are

generated. So we update the lists S and S′ as {s1, s2}.
A slicing tree illustrates the space generation in Fig.4

(c),(d). If there is a virtual component attached to the

real component, for example v11, then we update the

list S′ as {s3, s4, s5, s2}. With these two lists, we can

keep all the empty spaces generated by the new com-

ponents during the placing procedure.

4.(a) Space generation of S 4.(b) Space generation of S′

4.(c) Tree representation of S 4.(d) Tree representation of S′

Fig. 4: Example of space generation

3.2.2 Placing procedure

During the previous step, there will be many avail-

able empty spaces that can be used for the new compo-

nent. The constructive placing strategy and the selec-

tion of the optimal empty spaces are necessary. In order

to pack the components compactly, the placement needs

satisfy:

– The new real component closes to these already

placed real components.

– The overlap between the new virtual component and

placed virtual components should be maximized.

To place a new component into the container, there

are two things to measure: the size of the empty space

and the overlap of virtual space. No other constraints

are taken into account except the non-protrusion. Fig.5

illustrates an example of placing two components. The

detailed steps of constructive placing are described as

follows:

5.(a) 5.(b)

Fig. 5: Example of placing component

Step 0 : Place the first component C1 according to the

placing order into the bottom left corner of the con-

tainer and calculate all the coordinates and size of the

attached virtual component v11 in the local frame. Up-

date the lists S and S′ (see Fig.4).

Step 1 : Place the second component C2 and virtual

components v21. Enumerate all permutations of ele-

ments in the lists S′ and S, for each pair of space

(s′, s), s′ ∈ S′, s ∈ S, check four rotations of the com-

ponent and filter some pairs that not satisfy the size

requirement such as (s5, ∗). The illustrative example

in Fig.5(a) uses (s4, s1). Suppose the component C2

is placed to space of s4 that closes to the component

C1. Then check if the coordinates (xi, yi) are inside the

space by computing the relation of the pair of space

(s4, s1) and the size of virtual component v21 through

Eq.4. If the pair of space (s4, s1) satisfies Eq.4, then we

compute the placement that closes to C1 in the space

(s4, s1) by Eq.5 and deduce the relative coordinates of

v21 with this configuration.

{
xs4 ≤ xs1 +max(wv21 , xs4 − xs1) + w2 ≤ xs4 + ws4

max(0,min(ys4 + hs4 , ys1 + hs1)−max(ys4 , ys1)) ≥ hv21
(4){

x2 = xs1 +max(wv21 , xs4 − xs1)

y2 = max(ys4 , ys1)
(5)

Another example with pair of space (s3, s1) is shown in

Fig.5(b), the placement has a 90◦ rotation compared to
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Fig. 6: The compact configuration, β = 0.55

Fig.5(a). Determining the placement is rather straight-

forward by swapping the size of component C2 and fol-

lowing the same idea of Eq.4 and Eq.5.

In this way, the placement maximizes the overlap

area between virtual space and satisfies no overlap be-

tween real and virtual components. If there is feasible

solution, record the temporary placement and orienta-

tion of components and compute the occupied space of

components. Select the placement that generates the

largest free space, here, the placement in Fig.5(b) is

prior.

Step 2 : Update the lists S and S′. Repeat placing new

components until a complete layout is finished. Other-

wise, marked the placing order as unfeasible.

3.3 Evaluation of capacity

For the LP that consists of real and virtual compo-

nents, we define the index of capacity as a function of

the empty space that evaluated by:

β = 1−
∑
S′

W ×H
(6)

By applying SA and placing strategy with 1000 itera-

tions, it takes 12 minutes to find the minimum occupied

space of the case study where β =0.55, the correspond-

ing layout design is shown in Fig.6. And it is smaller

than 0.66 that computed according to the intersection

matrix. Besides, when we place the components sequen-

tially, it may generate some small spaces, which are

empty, but no components can be placed (hatched area

in Fig.6). Indeed, these small spaces should be identified

as unfeasible spaces. After obtaining the prior feasible

information, we now apply optimization algorithm to

find the set of feasible solutions of the LP.

Fig. 7: Criteria to select offspring

4 Solving layout problem

To solve the LP, the main challenge is the multiple

geometric constraints. From Sect. 3, it proves that con-

structive placing method can be used to separate the

components, which transforms the constrained problem

into unconstrained case. In this section, we propose a

hybrid optimization algorithm: on the one hand, we

extend SA to multi-objective optimization (MSA) to

guide the search direction. The population P has Npop

individuals and each individual Xk, k ∈ Npop is the per-

mutation between [1, n]; on the other hand, we adopt

the constructive placing method to search the feasible

region and find the corresponding value f = [f1, f2] in

the objective space. The configuration of the compo-

nents is determined successively by constructive place-

ment according to the optimized order. The framework

of MSA that coupled with constructive placement is

shown in Algorithm 2.

4.1 Premise

In order to simplify the problem while satisfying

multiple geometric constraints, we define:

1. For the hatched free space, the corridor and the

door, they are all virtual components, and they are

fixed during the optimization process.

2. Considering the non-overlap constraint between the

cabinets and hatched free space, we assign specific

constraints that restrict all cabinets below the space

of hatched rectangle. While other components are

constrained by the container boundary, in other word,

non-protrusion.

4.2 MSA

The proposed MSA is based on non-domination cri-

teria. During the optimization process, non-dominated

points are kept in the archive F . Crowding distance



Efficient multi-objective simulated annealing algorithm for interactive layout problems 7

strategy [6] will be used if the size of the archive ex-

ceeds the limited number. Overall, it is similar to the

original SA with significant changes in its acceptance

mechanism. But, unlike in SA, there is an additional

annealing loop of solutions in archive F to find more

points on Pareto front. These two ideas are described

as follows:

1) Acceptance mechanism :

Accepting the worse solutions allows more extensive

search for the global optimal solution. For a new solu-

tion X ′, it has three possibilities (B,C,D) compared to

the current solution X = A, as shown in Fig.7.

– Case B: point B dominates point A, then the new

solution is better than the current solution. Update

X with X ′.

– Case C: point A dominates point C meaning the

new solution is worse than the current solution. The

probability of accepting the worse solution is speci-

fied by an acceptance probability p

p = e−(f(X
′)−f(X))/t (7)

where t is the current temperature. The probability

decreases exponentially with t. Therefore, at begin-

ning inferior solutions are likely to be accepted but

the probability will decrease as the temperature de-

creases.

– Case D: the new solution D and the current solution

A are non-dominated to each other. It is not easy to

tell which one is better according to the domination

criteria only. Here, we compare them in two steps:

(a) : Considering the F , if the new solution is not

dominated by any point in F , then we consider it

as a better solution.

(b) : If it is dominated by any existing point, then

we compute the Euclidean distance d between the

new solution and solutions in F . Taking the min-

imum distance as the transition energy, we accept

the new solution when it closes to the optimal Pareto

front.

2) Additional loop :

In the first loop, population size Npop = 1, we eval-

uate one individual at each iteration and keep all non-

dominated solutions in the archive F . To enlarge the

number of the final points along Pareto front, a sec-

ond annealing loop is followed. Taking current non-

dominated solutions as the input population P = F

and applying a small perturbation to the search re-

gion near current non-dominated solutions. This helps

to find more alternatives.

To analyze the performance of the proposed MSA,

we also apply a basic MSA with simple acceptance

mechanism that mixes case B and case D together and

do not use the last additional loop of the archive F .

Then we apply MSA to benchmark unconstrained multi-

objective functions ZDT1 and KUR. ZDT1 is a 30-

variable problem with a convex Pareto-optimal set, while

3-variable problem KUR is discontinuous, asymmetric

and non-convex in nature. The performance of obtained

Pareto front of the basic MSA, improved MSA and com-

parative algorithm NSGAII are carried out using these

two indicators [6]:

1. Generational distance γ:

γ =
1

N

√√√√ N∑
i=1

d2i (8)

where N is the number of non-dominated points,

di measures distance between each point and the

nearest point in Pareto front. It measures the con-

vergence of the algorithm. The smaller the value of

γ, the better convergence.

2. Diversity metric ∆:

∆ =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1)d̄

(9)

where df and dl measure how far that boundary

solutions away from extreme solutions. d̄ is the av-

erage of all distance di between consecutive points.

It reveals the diversity among the optimal solutions.

The smaller the value of ∆, the better uniformity of

the distribution.

The parameters γ and ∆ are computed over five in-

dependent runs for MSA and NSGAII. The results ob-

tained in the form of mean and standard deviation (SD)

are shown in Table 1. Basic MSA is able to converge to

the convex function ZDT1 but not in the non-convex

function KUR, where the improved MSA found much

better convergence. In general, KUR is difficult for solv-

ing because very small changes in the variables can

cause big differences in the objective space. By compar-

ing the results, it proves that the additional loop and

new acceptance mechanism improve the performance

of obtained solutions. It is also observed that in both

cases, the improved MSA has better convergence while

the population based algorithm NSGAII has superior

diversity.
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Table 1: Comparative results of proposed MSA and NSGAII

Function Indicator
NSGAII Basic MSA Improved MSA

Mean SD Mean SD Mean SD

ZDT1
γ 0.00578 0.00043 0.00503 0.00025 0.00492 0.00035
∆ 0.35813 0.02482 0.37962 0.03508 0.37341 0.01133

KUR
γ 0.01002 0.00089 0.04161 0.00051 0.00876 0.00019
∆ 0.40488 0.00871 0.66883 0.04108 0.43079 0.01421

Algorithm 2: Multi-objective Simulated an-

nealing

Input: P = X1, X2, ...XNpop
;

Output: F ;
F ∪ P #Initialize archive;
f = Place(P );
while stop condition not met do

while iteration in inner loop do

P
′
=P (σ);

#Generate new population based on step
parameter σ;

F := Pareto(F ∪ P ′);
f ′ = Place(P ′);
while i < Npop do

if fi dominates f ′i then
δ = f ′i − fi;

if rand < e−δ/t then
Xi = X′i, fi = f ′i;

end

else
if f ′i dominates fi then

Xi = X′i, fi = f ′i;
else

d = dis(F, f ′i) ;

if rand < e−min(d)/t then
Xi = X′i, fi = f ′i;

end

end

end

end

end
Decrease temperature t and step σ;

end

4.3 Constructive placing

The placement is determined by applying a conven-

tion and a selection criteria during the placing process.

To place the component properly, we enumerate the ele-

ments in the lists S and S′. Then we apply the boundary

convention to determine the configuration of the com-

ponent and select the one with maximal empty space.

The constructive placing is formulated as follows:

Step 0 : Place the first component into one corner of

the container then update S and S′.

Step 1 : Place the new component sequentially accord-

ing to the placing order. If the pair of space (s′, s) satis-

fies the size requirement for the component Ci, then we

go through 4-way orientations of Ci to find all the feasi-

ble configurations by Eq.10 to Eq.13. {xai , yai , wai , hai}
defines a rectangle of the allowed space of Ci. By de-

fault, the placement of the component always closes to

the boundary of the selected empty space min(s′, s) or

max(s′, s). The placement follows the boundary con-

vention and will generate new empty spaces with less

margin.

max(0,min(min(xs′ + ws′ , xai + wai)− wi,

xs + ws)−max(min(xs′ + ws′ ,

xai + wai)− wi − wvij , xs)) ≥ wvij

(10)

max(0,min(max(xs′ , xai) + wi + wvij , xs + ws)

−max(max(xs′ , xai) + wi, xs)) ≥ wvij

(11)

max(0,min(min(ys′ + hs′ , yai + hai)− hi,
ys + hs)−max(min(ys′ + hs′ ,

yai + hai)− hi − hvij , ys)) ≥ hvij

(12)

max(0,min(max(ys′ , yai) + hi + hvij , ys + hs)

−max(max(ys′ , yai) + hi, ys)) ≥ hvij
(13)

If the component Ci and virtual components vij sat-

isfy one of the above conditions under a certain con-

figuration in the space pair (s′, s), then the space is

applicable. If there is feasible solution, record the tem-

porary placement and orientation of components. If one

component has several feasible placements, the one with

maximal empty space will be selected as the prior place-

ment.

Step 2 : Update the lists S and S′. Repeat placing new

components until a complete layout is finished. Other-

wise, marked the placing order as unfeasible.
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Fig. 8: Display of Pareto front

Fig. 9: Interactive display of Pareto-optimal designs

10.(a) 10.(b)

10.(c) 10.(d)

Fig. 10: Display of Pareto-optimal designs

Fig. 11: Evolution of Pareto front

5 Application

Based on the previous analysis, now we test the pro-

posed algorithm in the industrial application. The hy-

brid optimization algorithm is programmed as a Python

class and the interactive environments are developed

based on the PyQt5 package. The obtained Pareto front

is shown in Fig.8. It takes 5 minutes to finish 400 iter-

ations, which is very efficient compared to algorithms

that take hours or days. The interactive display of de-

signs in Fig.9 helps the user evaluate performance of

the designs by locally manipulating or modifying the

information of the component and guarantees the in-

teraction in time. Besides, in order to help the user

perform the fine optimization manually, different con-

straint modes are properly defined:

1. Cont bd represents the container non-protrusion con-

straint where the component can be anywhere inside

the container.

2. DxDy bd defines the distance that the component

can be moved from the current position.
3. Specific bd stands for the rectangle space in which

the component can be located.

The corresponding layout designs are displayed in Fig.10

(a) to (c). The red and blue points in each layout config-

uration represent the geometry center of container and

centre of gravity of all components. The configuration

of the expert solution is described in Fig.2. And the

previous optimal solution based on interactive modular

optimization is presented in [2], the corresponding lay-

out is shown in Fig.10 (d). All layout designs satisfy the

non-overlap, non-protrusion and the additional user de-

fined constraints. And the obtained non-dominated so-

lutions are better compared to the initial and previous

optimal solutions.

Fig.11 illustrates the evolution of Pareto front ob-

tained by the optimization algorithm and the corre-

sponding layout designs are shown in Fig.12. It can be

observed that in the first 400 iterations , the algorithm

could find some feasible solutions efficiently. By display-



10 Xiaoxiao Song1 et al.

 
 
 
 
 
 
 
 

 
Number of iterations = 400 

 

 

 
Number of iterations = 2000 

 

 
Number of iterations = 10000 

 
 

 Fig. 12: Evolution of Pareto-optimal designs
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ing the obtained Pareto front, the expert could interact

with the solutions and make the final choice. The con-

structive placing strategy splits the space to evaluate

the overlap and transforms the design variables into

discrete, here, the number of variables equals 8, which

highly reduces the optimization complexity of MSA.

6 Conclusion

LPs arise more and more attention in the industrial

field. The research shows that optimal layout design will

improve production efficiency. However, the complexity

of the LP is related to the problem formulation, includ-

ing the number of variables, constraints and objectives.

Regarding the virtual components of LP, first of all,

we define a new indicator β to formulate the capabil-

ity of the LP. The proposed indicator is based on the

empty space computation. The minimum packing area

of all components provides a prior information about

the density. If β is larger than 1, the LP could not be

solved properly.

The application study in this paper containing both

real and virtual components that increases the complex-

ity. Hence, a hybrid multi-objective simulated annealing

algorithm is presented for solving complex LPs. To ex-

plore the feasible layout space, simulated annealing is

proposed to determine the order of placement; then, a

constructive placing strategy based on maximal space is

developed. The proposed algorithm is the first attempt

to directly search the feasible space of multi-objective

layout design. The results prove the interactive opti-

mization efficiency and performance of the proposed
algorithm.
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10. Gonçalves, J.F., Resende, M.G.: A biased random-key ge-
netic algorithm for the unequal area facility layout prob-
lem. Eur.J.Ope.Res. 246, 86–107 (2015)

11. Hanafi, R., Kozan, E.: A hybrid constructive heuristic
and simulated annealing for railway crew scheduling.
Comput.Ind.Eng 70 (2014). DOI 10.1016/j.cie.2014.01.
002

12. Hasda, R., Bhattacharjya, R., Bennis, F.: Modified ge-
netic algorithms for solving facility layout problems.
Int.J.Interact.Des. Manuf. 11, 713–725 (2016). DOI
10.1007/s12008-016-0362-z

13. Hosseini nasab, H., Fereidouni, S., Ghomi, S., Fakhrzad,
M.: Classification of facility layout problems: a review
study. Int.J.Adv.Manuf.Technol. 94, 957–977 (2018).
DOI 10.1007/s00170-017-0895-8

14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization
by simulated annealing. Sci. 220, 671–680 (1983)

15. Lai, K., Chan, J.W.: Developing a simulated annealing al-
gorithm for the cutting stock problem. Comput.Ind.Eng.
32, 115–127 (1997)

16. Li, X., Zhao, Z., Zhang, K.: A genetic algorithm for the
three-dimensional bin packing problem with heteroge-
neous bins. IIE.Annual.Conf. and Expo pp. 2039–2048
(2014)

17. Mariem, B., Marc, Z., AFFONSO, R., Masmoudi, F.,
Haddar, M.: A methodology for solving facility layout
problem considering barriers – genetic algorithm coupled
with A* search. J.Intell.Manuf. 31, 615–640 (2019). DOI
10.1007/s10845-019-01468-x

18. Méndez, M., Rossit, D.A., González, B., Frutos, M.: Pro-
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