
HAL Id: hal-03553916
https://hal.science/hal-03553916

Submitted on 1 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reducing the depth of linear reversible quantum circuits
Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon

Martiel, Cyril Allouche

To cite this version:
Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon Martiel, Cyril Allouche.
Reducing the depth of linear reversible quantum circuits. IEEE Transactions on Quantum Engineering,
inPress, 2, pp.3102422. �10.1109/TQE.2021.3091648�. �hal-03553916�

https://hal.science/hal-03553916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Quantum Computing Engineeringuantum
Transactions onIEEE

Received May 10, 2021; accepted June 11, 2021; date of publication July 7, 2021;
date of current version August 26, 2021.

Digital Object Identifier 10.1109/TQE.2021.3091648

Reducing the Depth of Linear Reversible
Quantum Circuits
TIMOTHÉE GOUBAULT DE BRUGIÈRE1,3 , MARC BABOULIN1,
BENOÎT VALIRON2, SIMON MARTIEL3, AND CYRIL ALLOUCHE3
1 Laboratoire de Recherche en Informatique, Université Paris-Saclay, 91190 Orsay, France
2 Laboratoire de Recherche en Informatique, CentraleSupélec, 91190 Orsay, France
3 Atos Quantum Lab, 78340 Les Clayes-sous-Bois, France

Corresponding author: Timothée Goubault de Brugière (timothee.goubault@lri.fr).

This work was supported in part by the French National Research Agency (ANR) under the Research Project SoftQPRO
ANR-17-CE25-0009-02 and in part by the Directorate General of Enterprises of the French Ministry of Industry under the Research
Project PIA-GDN/QuantEx P163746-484124.

ABSTRACT In quantum computing the decoherence time of the qubits determines the computation time
available, and this time is very limitedwhen using current hardware. In this article, weminimize the execution
time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in
quantum computing (e.g., stabilizer circuits, “CNOT+T” circuits, etc.). We propose a practical formulation
of a divide-and-conquer algorithm that produces quantum circuits that are twice as shallow as those produced
by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range
of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for
small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible
functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.

INDEX TERMS Linear reversible circuits, quantum computation, reversible logic.

I. INTRODUCTION
Quantum computing is getting closer to the moment when it
will be able to solve problems insoluble using current com-
puters: the manipulation of qubits is increasingly controlled,
quantum gates are performed with better fidelity, and works
for achieving quantum supremacy have been proposed [1],
[2], even though the significance of such works remains
highly debated [3], [4].
In addition to the noise inherent in manipulating qubits,

there is another phenomenon to control: quantum decoher-
ence. The qubits must remain isolated from the outside world
during the execution of the algorithm, or else they may in-
teract unintentionally with external elements, which would
distort the results. It is still difficult to isolate these qubits for
a long time. If a hardware improvement is possible, it is also
possible to compress the set of instructions so that their ex-
ecution takes less time. These instructions are usually repre-
sented by a quantum circuit and, assuming that two nonover-
lapping gates can be executed in parallel, the execution time
of the circuit is strongly related to its depth. Thus, the proper
execution of complex algorithms can be significantly facili-
tated by optimizing the depth of quantum circuits.

In a fault-tolerant computational model, the T gate is the
most expensive gate to implement [5]. As a consequence,
during these last years a lot of effort has been made to
minimize this resource, whether it is the T-count [6]–[9] or
the T-depth [10]. However, these optimizations often come
with an increase of other resources, especially the number
of controlled-NOT gates (CNOTs) or the total depth of the
circuit. Such an additional cost is not negligible and can
affect the final outputs of a quantum algorithm; see [11] for
more details about why the cost of a quantum circuit should
not be reduced to the T-cost. It is, therefore, important to
minimize the secondary resources as well, if possible while
keeping the T-cost unchanged.
Work in this direction has been carried out recently. It

has mainly focused on the number of CNOTs but in a noisy
intermediate-scale quantum (NISQ) setting. Overall, a sig-
nificant decrease of the CNOT count is reported but with
an increase of the T-depth [12]. With NISQ computers the
T-depth is less important to optimize because the T-gate is
not implemented fault-tolerantly, but for fault-tolerant com-
putations we have to find a better compromise between the T-
depth and the CNOT cost. Our goal in this article is to achieve

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 2, 2021 3102422

https://orcid.org/0000-0001-8543-6871

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

TABLE I Synthesis Algorithms and Theoretical Upper Bounds With the Approximate Ranges of Validity for Each Method

this better compromise by improving the depth of quantum
circuits while keeping the T-depth as low as possible.
For this, we are interested in the optimization of a subclass

of circuits called “linear reversible circuits.” These circuits
can be rewritten with only CNOT gates and have direct appli-
cations in othermore complex circuit structures such as stabi-
lizer circuits or CNOT+T circuits, two classes of circuits that
have shown crucial utility in the design of efficient quantum
compilers [6], [10] and error-correcting codes [13]. Hence,
the synthesis of CNOT circuits occurs naturally in general
quantum compilers and can be used as a first approach for
optimizing general circuits.
In this article, we present two kinds of algorithms for the

synthesis of linear reversible circuits. Our contributions are
the following.

1) We present DaCSynth, a practical implementation of a
divide-and-conquer framework that divides the synthe-
sis into parallelizable subproblems that can be solved
with several strategies.

2) We give strict upper bounds on the depth of the cir-
cuits. First we prove that, in all generality, the depth
is upper bounded by 2n+ 2�log2(n)� where n is the
number of qubits. Then, we present a specific strategy
that gives the upper bound 4

3n+ 8�log2(n)�. This is an
improvement over the best algorithms in the literature
for medium-sized registers (between a few hundreds
and several thousands qubits; see Table I for more
details).

3) We present greedy methods based on cost minimiza-
tion techniques. They are complementary with DaC-
Synth in the sense that they are best suited for small
problem sizes or best-case scenario while DaCSynth
is better for large problems or worst-case operators.

4) We propose an extension to the case where encoded
ancillary qubits are used.

5) We also give benchmarks of our method to support our
theoretical results and compare them to state-of-the-art
algorithms. In a worst case, DaCSynth provides cir-
cuits of depth smaller than n where n is the number
of qubits. This improves the state-of-the-art algorithms
by a factor of two. For small or best-case operators, the
greedy methods provide almost optimal results.

6) Finally, we apply our algorithms to the optimization
of a class of reversible functions, with and without
ancillary qubits. Starting from a circuit with optimized
T-depth, we resynthesize every chunk of purely CNOT
circuits. We manage to consistently reduce the total
depth of the circuits while keeping the T-count and the

T-depth unchanged. Overall, we reduce the depth in
average by 47% (58% with ancillary qubits) and up to
92% (99% with ancillary qubits).

The plan of this article is the following. In Section II,
we present some background about the synthesis of linear
reversible circuits. In Section III, we describe a new divide-
and-conquer algorithm and give some strict upper bounds
on the depth of the circuits synthesized by our method. In
Section IV, we describe the greedy algorithms based on cost
minimization techniques. We take into account encoded an-
cillary qubits in Section V. Benchmarks are given in Sec-
tion VI. We discuss some future work in Section VII and we
conclude in Section VIII.

II. BACKGROUND AND STATE OF THE ART
A. NOTION OF LINEAR REVERSIBLE FUNCTION
Let F2 be the Galois field of two elements. A Boolean func-
tion f : Fn

2 → F2 is said to be linear if

f (x1 ⊕ x2) = f (x1)⊕ f (x2)

for any x1, x2 ∈ Fn
2 where ⊕ is the bitwise xor operation.

Let ek be the kth canonical vector of Fn
2 . By linearity we can

write for any x =∑k αkek (with αk ∈ {0, 1})

f (x) = f

(∑
k

αkek

)
=
∑
k

αk f (ek)

and the function f can be represented with a column vec-
tor α = [f (e1), . . ., f (en)]T such that f (x) = α · x, where ·
stands for the scalar product on Fn2 and (−)T is the matrix-
transpose operation. This easily extends to the n-input m-
outputs functions f : Fn

2 → Fm
2 where f is defined by an

m× n Boolean matrix A such that f (x) = Ax.
In the case of reversible Boolean functions, n = m, and

we have a one-to-one correspondence between the inputs and
the outputs. We then consider n-inputs n-outputs functions f
for which the equation y = f (x) = Ax must have a unique
solution for any y ∈ Fn

2 . In other words 1) the matrix A must
be invertible in F2 and 2) there is a one-to-one correspon-
dence between the linear reversible functions of arity n and
the invertible Boolean matrices of size n. This can be used to
count the number of different linear reversible functions of
n inputs (see, e.g., [16]). The application of two successive
operators A and B is equivalent to the application of the
operator product BA.

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

B. SYNTHESIS OF LINEAR REVERSIBLE BOOLEAN
FUNCTIONS
We are interested in synthesizing general linear reversible
Boolean functions into a reversible circuit, i.e., a series of
elementary reversible gates that can be executed on a suitable
hardware. For instance in quantum computing the CNOT is
used in universal gate sets for superconducting and photonic
qubits and performs the following 2-qubit operation:

CNOT(x1, x2) = (x1, x1 ⊕ x2).
Clearly the CNOT gate is a linear reversible gate. It can be
shown to be universal for linear reversible circuit synthesis:
any linear reversible function of arity at least two can be
implemented by a reversible circuit containing only CNOT
gates. In this article, we aim at producing CNOT-based re-
versible circuits for any linear reversible functions.
In terms of matrices, a CNOT gate controlled by the line

j acting on line i �= j can be written Ei j = I + ei j where I
is the identity matrix and ei j the elementary matrix with all
entries equal 0 but the component (i, j) of value 1.
Generally the synthesis of an operator is done by reducing

it to the identity operator. In our case, we want to compute a
sequence of N elementary matrices such that

N∏
k=1

Eik, jkA = I.

Finally, using the fact that E−1i j = Ei j, we get

A =
1∏

k=N
Eik, jk

and a circuit implementing A is given by concatenating the
CNOT gates with control jk and target ik.

This can be generalized to the case where we allow both
left and right multiplication by elementary matrices and the
possibility to permute the rows and columns of A before and
after the reduction to the identity operator. In other words,
we look for two sequences of elementary matrices (of sizeN1
and N2) and three permutation matrices P,P1,P2 such that

N1∏
k=1

Eik, jkP1AP2

N2∏
k=1

Eik, jk = P.

Even with such generalization, it is still possible to rearrange
the product to write

A = P′ ×
N∏
k=1

Eik, jk

where N = N1 + N2 and P′ is a permutation matrix. We read
this as a CNOT circuit followed by a qubit permutation.
Left-multiplying the operator A by Ei j performs an ele-

mentary row operation

ri← ri ⊕ r j

writing rk for the kth row of A. Similarly, right-multiplying
the operator A by Ei j performs an elementary column
operation

c j ← ci ⊕ c j
writing ck for the kth row of A.
Thus, synthesizing a linear reversible function into a

CNOT-based reversible circuit is equivalent to transforming
an invertible Boolean matrix A to the identity by applying
elementary row and column operations. For the rest of this ar-
ticle, we will consequently privilege this more abstract point
of view because it gives more freedom and often appears
clearer for the design of algorithms. We note by Row(i, j)
the elementary row operation r j ← ri ⊕ r j and Col(i, j) the
elementary column operation c j ← ci ⊕ c j.
In order to evaluate the quality of a synthesis of a linear

reversible circuit a couple of metrics can be considered. The
size of the circuit given by its number of CNOT gates is a first
one: this gives the total number of instructions the hardware
has to perform to execute the circuit. Due to the presence
of noise when executing every logical gate, it is of interest
to have the shortest circuit possible. In this article, we focus
on the second metric, which is the depth of the circuit, i.e.,
the number of time steps the hardware needs to execute the
circuit if we suppose that nonoverlapping gates are executed
simultaneously. The depth is closely related to the execution
time of the circuit. In quantum computing, the time available
to perform computations is limited due to the short decoher-
ence time of the qubits. Therefore, it is crucial to be able to
produce shallow circuits for complex algorithms.

C. STATE OF THE ART
In this article, we focus on improving the depth of linear
reversible circuits with a full qubit connectivity, meaning that
any CNOT gate between any pair of qubits can be done—
equivalently this means that any row operation is available.
Recently an algorithm that produces asymptotically optimal
circuits in O(n/ log2(n)) was proposed [15]. The theoretical
depth is given approximately by the formula

d = α
n

log2(n)
+ β
√
n log2(n).

A detailed description of the algorithm is given in Ap-
pendix B, where we estimate α and β both to 20. Thus, for
practical values of n this algorithm does not provide shallow
circuits.
To our knowledge, for practical register sizes, four algo-

rithms were designed. Three of them provide similar results:
the standard Gaussian elimination algorithm, the skeleton
circuits in [17], and a practical algorithm proposed in [15].
All give circuits for which the depth is upper bounded by 4n.
Kutin et al. [14] proposed an algorithm for computing linear
reversible circuits for the linear nearest neighbor architecture
(LNN) in a depth of at most 5n. In Appendix A, we describe
this algorithm and we show that it can actually be extended
straightforwardly to an algorithm for a full qubit connectivity

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

and the depth of the output circuits is upper bounded by 2n.
To our knowledge, this algorithm then is the best algorithm
when the number of qubits does not exceed a few thousands.

D. OUR CONTRIBUTIONS
We exploit the promising idea developed in [15] to use a
divide-and-conquer method in order to produce shallow cir-
cuits for reasonable sizes of registers. First, we show that
synthesizing an operator via a divide-and-conquer algorithm
is equivalent to zeroing binary matrices with a given set of
elementary operations. This provides a general framework,
DaCSynth, giving another view of the problem from which
new strategies can be applied. The algorithm in [15] can
be regarded as one particular strategy for this framework.
Although not the goal of this article, this means that we can
recover the asymptotic optimal behavior of their algorithm.
We propose two strategies to solve this new problem: the

first one—essentially theoretical—is a block algorithm and
gives improved upper bounds on the total depth in the worst
case. The second algorithm is a greedy one and aims at pro-
ducing the shallowest circuits possible such that they can be
executed on a quantum hardware in a near future. Overall, our
first algorithm produces circuits whose depth is bounded by
4
3n+ 8�log2(n)�, where n is the number of qubits, improving
the result in [14] and [15] for intermediate sized problems.
A summary of the theoretical results of the different algo-
rithms is given in Table I. The benchmarks show that our
second algorithm improves the actual depth by a factor of
two compared to the extension of Kutin et al.’s algorithm
and synthesizes circuits of depth n in the worst case.
We also study the use of purely greedy algorithms. The

global idea is to use cost minimization techniques with differ-
ent cost functions to find “quickly” a shallow circuit. Greedy
methods generally give good results for small problem sizes
or for simple operators, but at the cost of no theoretical guar-
antee. In our benchmarks, we will observe similar character-
istics: greedymethods are the best up to a certain point where
their performance degrades because they do not exploit the
specific structures of the problem.
Next, we extend our framework in the case where ancillary

qubits are encoded outputs of the function, i.e., we want to
synthesize an operatorAout ∈ Fm×n2 withm > nwith an input
operator Ain ∈ Fm×n2 . We propose a simple block algorithm
and we show that the depth increases logarithmically with
the number of ancillas.
Finally we integrate our algorithms (DaCSynth and the

greedy ones) into the quantum compiler Tpar [10] and test
our method on a set of well-known reversible functions. This
gives an overview of the total depth of quantum circuits im-
plementing important arithmetic functions like adders, mul-
tipliers, etc.

III. ALGORITHM DACSYNTH
Given an operator A ∈ Fn×n2 to synthesize, our proposed al-
gorithm DaCSynth is a divide-and-conquer algorithm and
consists in the following steps.

1) First compute a permutation matrix P such that PA =(
A1 A2
A3 A4

)
and A1 ∈ F�n/2�×�n/2�2 is invertible.

2) Apply row operations on A to zero the block A3 such

that the resulting matrix is A′ =
(
A′1 A′2
0 A′4

)
.

3) Apply row operations on A′ to zero the block A′2 such

that the resulting matrix is A′′ =
(
A′′1 0

0 A′′4

)
.

4) Call recursively the algorithm on A′′1 and A
′′
4.When n =

1 return an empty set of row operations.

Step 1 is straightforward: consider the rows of the subma-
trix A[:, 1 : �n/2�] (using MATLAB notation). Start from an
empty set and at each step add a row to the set. If the rank of
the set is increased, keep the row otherwise remove it. If the
resulting set is not of rank �n/2� this wouldmean that the first
�n/2� columns of A are not linearly independent, which is
impossible by invertibility of A. In addition, we assume that
the qubits are fully connected so we can avoid to apply P by
doing a postprocessing on the circuit that would transfer the
permutation operation directly at the end of the total circuit.
This can be done without any overhead in the number of
gates. Hence, the core of the algorithm lies in steps 2 and
3. We now give the details for processing step 2. This can be
easily transposed to do step 3 as well.
Theorem 3.1: Given

A =
(
A1 A2
A3 A4

)
∈ Fn×n2

with A1 ∈ F�n/2�×�n/2�2 invertible, zeroing A3 by applying
row operations on A is equivalent to zeroing the matrix B =
A3A
−1
1 by applying any row and column operations on B or

flipping any entry of B.
Proof: First, note that by hypothesis A1 is invertible so the

matrix B does indeed exist.

1) Applying an elementary row operation Row(i, j) onA3
gives the matrix EjiA3 and B is updated by EjiB. Thus,
a row operation on A3 is equivalent to a row operation
on B.

2) Applying an elementary row operation Row(i, j) on
A1 gives the matrix EjiA1 and B is updated by BEji.
Thus, a row operation on A1 is equivalent to a column
operation on B.

3) B is a �n/2� × �n/2� matrix. The kth row of B gives
the decomposition of the kth row of A3 in the basis
given by the rows of A1. Thus, any row operation
Row(k1, �n/2� + k2) on A will flip the entry (k2, k1)
of B.

With these three types of operations available on B, the
invertibility of A1 is preserved. Thus, when B is zero neces-
sarily A3 is also zero. �

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

Obviously flipping all the 1-entries of B is enough to re-
duce A3 to the null matrix, but we are concerned with the
shallowest way of doing this. In the following, we show how
to compute the optimal depth of the circuit zeroing B using
only the flipping operation.
Theorem 3.2: With the same notations, let k be the max-

imum number of 1-entries in one row or one column of B.
Then, if we use only the flipping operation we need a circuit
of depth k to zero B.
Proof: Weexploit a theoretical result about bipartite graph

already used in [15]. Consider the bipartite graph G =
(V1,V2,E) where each vertex ofV1 is a row ofA1, each vertex
of V2 is a row of A3, and B is the adjacency matrix of G.
Any matching in G represents a series of row operations that
can be executed in parallel and that will zero some entries
in B. If there is at most k nonzero entries in each row and
column of B this means that the degree ofG is k as well. Any
bipartite graph of degree d can be decomposed into exactly
d matchings [18]. Hence, a circuit of depth k is needed to
transform B into the null matrix. �
We are now able to give a strict upper bound on the worst

case result of the algorithm DaCSynth.
Corollary 3.2.1: The depth of the circuits given by the

algorithm DaCSynth is upper bounded by 2n+ 2�log2(n)�
with n the number of qubits.
Proof: A first straightforward formula for the depth of the

circuit output by the algorithm DaCSynth is

d(n) = d(�n/2�)+ 2× d∗(�n/2�)
where d∗ is the depth of the circuits computing parts 2 and

3. Using the result of the previous theorem, we have

d∗(n) ≤ n.
So overall the depth of our circuit is upper bounded by

d(n) ≤ d(�n/2�)+ 2�n/2�.
As d(1) = 0 and by exploiting the fact that ��n/2�/2� =
�n/4�, we have

d(n) ≤ 2×
⎛
⎝�log2(n)�∑

k=1
�n/2k�

⎞
⎠ ≤ 2×

⎛
⎝�log2(n)�∑

k=1
n/2k + 1

⎞
⎠ .

After simplification, we have

d(n) ≤ 2n+ 2�log2(n)�.
�

A. BLOCK ALGORITHM FOR STEPS 2 AND 3
In order to improve the upper bound of our framework, we
propose a block method for performing steps 2 and 3. Given
an n× n matrix B to zero and an integer k < n such that
n = bk + r, we divide B into a matrix of � nk � × � nk � blocks
as follows:

1) � nk �2 are of size k;
2) � nk � are of size k × r;

3) � nk � are of size r × k;
4) the lower right one is of size r × r.
If B is of size n× (n+ 1) or (n+ 1)× n (which can hap-

pen if A is of odd size) then some blocks on the edge will be
of size k × (r + 1) or (r + 1)× k. In any case as r < k then
r + 1 ≤ k and the critical point is that all of these rectangular
blocks are smaller than the k × k blocks.

Now we consider each nonzero block as a 1-entry in a
� nk � × � nk � binary matrix that can be mapped to a bipartite
graph G as above. Then, it is clear that a matching in G
corresponds to a subset of blocks on which we can apply row
and column operations in parallel.
Considering one such matching, we assume that we can

reduce the maximum number of one-entries in each row and
column of one block to an integer p in depth at mostD. Then,
all the blocks are matrices with at most p nonzero entries
per row and column and we can flip all of these nonzero
entries in p sequences of row operations as they belong to
different rows and columns in B. After that all the blocks of
the matching are zero and we can repeat the process with
another matching without modifying the nullified blocks. G
can be decomposed into at most � nk �matchings, each of them
requires a depth of at mostD+ p to zero all the blocks so the
total depth for performing step 2 (or step 3) is (D+ p)× � nk �.
Again using the formula � �n/m�k � = � nmk� an upper bound for
the total depth is given by

d(n) ≤ 2(D+ p)×
⎛
⎝�log2(n)�∑

j=1
�n/(k2 j)�

⎞
⎠ .

After calculation, we get

d(n) ≤ 2(D+ p)

k
n+ 2(D+ p)�log2(n)�. (1)

Note that with k = 1 then D = 0, p = 1 and we recover
the result of Theorem 3.2. We are now ready to prove our
main result.
Corollary 3.2.2: The depth of the circuits given by the

algorithm DaCSynth is upper bounded by 4
3n+ 8�log2(n)�

with n the number of qubits.
Proof: To improve our first result, we need to find more

efficient syntheses of our blocks.We performed a brute-force
search for square matrices of size k = 1, 2, 3, 4, 5, 6. The
search consisted in a breadth-first search: starting from the
partial permutations, row/columns operations were applied
in a growing depth manner. We explore the set of binary
matrices and compute the minimum depth required to reduce
them to a partial permutation. In order to reduce the size of
the search, we only considered matrices up to row and col-
umn permutations. For this purpose, we used standard tech-
niques involving graph isomorphism to compute a canonical
representative for each class [19]. The results are given in
Table II. We recall that row and column operations can be
performed in parallel. It is clear that for smaller rectangular

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

TABLE II Number of Binary Matrices Reachable for Different Number of
Qubits and Circuit Depth (Up to Row/Column Permutations)

cases theworst case depth cannot be larger. So by considering
blocks of size 6 the depth in the worst case is D = 3 and
p = 1. Replacing in (1) gives the result. �
We want to insist on the fact that the current upper bound

is to be improved. In fact any improvements in the zeroing of
larger blocks can significantly improve the theoretical upper
bound and its range validity given in Table I. For instance
computing the worst case depth for k = 7, 8, 9, if possible,
may lead to a better upper bound. Moreover, what happens if
we stop the row and column operations once the maximum
number of one-entries in each row and column is below an
integer p > 1? If D decreases faster than p increases this
would represent another improvement.
As we already mentioned, the synthesis algorithm pro-

posed in [15] can in fact be seen as a special case where A1 =
I and their strategy is also a block algorithm with blocks
of size log2(n)/2× log2(n)/2 and n/ log2(n)× log2(n)/2.
Yet, translated in our framework, they only use operations
on columns and the flipping entries operation.

B. GREEDY ALGORITHM FOR STEPS 2 AND 3
In practice, we use a greedy algorithm to perform steps 2
and 3. We recall that we work on a matrix B that we want
to zero with the following three available operations: 1) row
operations; 2) column operations; and 3) flipping one entry.
Note that row and column operations can be performed in
parallel as this corresponds to CNOT circuits on two disjoint
subsets of qubits.
At each step, we compute a sequence of row and column

operations on B that minimizes the number of ones in B
and that can be done in parallel. If we only consider row or
column operations then the optimal sequence can be com-
puted in a polynomial time. To do so, we create a directed
graph Grow/Gcol whose nodes are the rows/columns of B and
the edges (i→ j) are weighted by the gain in the number
of ones if we apply the row operation i→ j. The optimal
sequence of row/column operations is given by themaximum
weight matching in such graph, which can be computed in
polynomial time using the Blossom algorithm [20].
However, when considering both row and column opera-

tions, things are not that simple. A row operation on Bmodi-
fies Gcol and a column operation modifies Grow so we cannot
solve independently (or one after the other) the two problems
in order to have an optimal sequence. The maximum weight
matching problem on G = (V,E) can be reformulated as a

linear programming

maximize
∑
e∈E

xew(e)

such that
∑

e∈{(u,v),(v,u)|v∈δ(u)}
xe ≤ 1for all vertices u ∈ V

xe ∈ {0, 1}for all edges e ∈ E (2)

where δ(u) stands for the set of nodes adjacent to u. Taking
into account both row and column operations adds quadratic
terms in the cost function and that complicates the search
for an optimal solution. Namely this new problem on the
two graphs Grow = (Vrow,Erow) and Gcol = (Vcol,Ecol) can
be reformulated as

maximize
∑

erow∈Erow
xeroww(erow)+

∑
ecol∈Ecol

xecolw(ecol)

+
∑

ecol,erow

xerowxecolq(erow, ecol)

such that
∑

erow∈{(u,v),(v,u)|v∈δ(u)}
xerow ≤ 1 for all vertices

u ∈ Vrow∑
ecol∈{(u,v),(v,u)|v∈δ(u)}

xecol ≤ 1 for all vertices

u ∈ Vcol
xe ∈ {0, 1} for all edges e ∈ Erow ∪ Ecol (3)

where the q’s are the quadratic terms. Each quadratic
term corresponds to a specific entry in B, so we have
q(erow, ecol) ∈ {−1, 0, 1}. Problem 3 is a particular instance
of the quadratic matching problem where, given a graph G,
onemust find amatching that optimizes an objective function
containing linear terms on the edges and quadratic terms on
the pairs of edges. In Problem 3, the graph G is given by
the disjoint union of the two graphs Grow and Gcol, and the
quadratic terms between two edges of Grow or two edges
of Gcol are 0. The quadratic matching problem is known to
be NP-hard [21], is Problem 3 also NP-hard? We leave this
question as a future work.
We still tried to solve exactly Problem 3 with an inte-

ger programming solver. Yet, given the quadratic terms the
number of variables and constraints evolves as n4 where n is
the number of qubits and the method cannot find a solution
even for n = 10. To get a nonoptimal solution in a reasonable
amount of time, we compute a sequence of row and column
operations greedily. We first choose the best row or column
operation that minimizes the number of ones in B and we
keep in memory the operation applied. Then, we determine
the next best row or column operation among the operations
that can be performed in parallel with the previously stored
operation andwe repeat the process. Finally if some rows and
columns are left untouched we may complete the sequence

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

of operations by flipping some entries. The best sequence
of flipping operations is computed as described in the proof
of Theorem 3.2 using the Blossom algorithm. If no row or
column operation can reduce the number of 1 in B then only
the flipping operation is used.

IV. PURELY GREEDY ALGORITHMS
During steps 2 and 3 of the DaCSynth algorithm in Sec-
tion III-B, we used a greedy process to zero a boolean matrix
with as few operations as possible. We now explore the use
of similar techniques directly on the linear boolean reversible
operator to synthesize. It has been proven to be efficient for
size optimization [22]. The method consists in a cost mini-
mization technique. We need the following:

1) a cost function to minimize;
2) a strategy to explore the set of linear reversible

operators.

Similarly to [22], we consider the following four cost func-
tions to guide our search:

1) hsum(A) =
∑

i, j Ai, j;
2) Hsum(A) = hsum(A)+ hsum(A−1);
3) hprod(A) =

∑
i log2(

∑
j Ai, j);

4) Hprod(A) = hprod(A)+ hprod(A−1).
These four cost functions reach their minimum when A

is a permutation matrix, motivating their use in a cost min-
imization process. If the cost function hsum seems the first
natural choice, the cost function hprod has interesting features
because it gives priority to “almost done” rows. Namely, if
one row has only a few nonzero entries, the minimization
process with hprod will treat this row in priority and then it
will not modify it anymore. This enables to avoid a problem,
which one meets with the cost function hsum where one ends
up with a very sparse matrix but where the rows and columns
have few nonzero common entries. This type of matrix rep-
resents a local minimum from which it can be difficult to
escape. With this new cost function, as we put an additional
priority on the rows with few remaining nonzero entries, we
avoid this pitfall. Adding the cost of the inverse matrix also
helps to escape from local minima.
In order to choose, which row and column operations to

apply, we proceed similarly to the DaCSynth algorithm: we
keep track of previously applied row and column operations
to determine, which supplementary operations can be done
without increasing the depth. At each iteration, we choose
among the remaining operations that actually decrease the
cost function the one that minimizes the cost function. If
there are several possible operations, a random one is cho-
sen. If no row or column operations can decrease the cost
function, we reset simultaneously the set of row and column
operations available. Every time the set of applied row or
column operations is reset we increase a counter by one. The
algorithm stops whether the current operator is a permutation
matrix or when the counter exceeds a certain threshold.

We know from previous experiments [22] that such purely
greedy algorithms behave extremely well on small opera-
tors (typically n < 40) or operators that need small/shallow
circuits to be implemented. After a certain operator size or
“complexity,” the cost minimization process falls into local
minima from which it is impossible to escape without a pro-
hibitive overhead in the number of CNOTs or in the depth.
One proposal to mitigate this behavior is to rely on an LU
decomposition. It is well known that any operator A can be
written

A = PLU

where P is a permutation matrix and L,U are triangular
operators. We considered the case where we use our greedy
algorithm on those triangular operators (the concatenation of
the circuits obtained give a circuit for A up to the permutation
P) with the hope that the expected bad scalability is mitigated
at the price of worse results when the purely greedy methods
perform well. Several triplets (P,L,U) are possible for one
operator A. It was shown in [22] that it is possible to adopt
specific strategies to compute (P,L,U). One of them consists
in choosing iteratively the columns of L and rows ofU to be
the sparsest possible, this will be our approach and we will
refer to this strategy as “LU sparse” in the benchmarks.

V. EXTENSION WITH ANCILLARY QUBITS
The quantum compiler Tpar efficiently reduces the T-depth
by computing subsets of T gates that can be applied in paral-
lel [10]. Each T gate is associated to a parity, i.e., a linear
combination of the input qubits. With a subset of parities
that are linearly independent, they can be computed at the
same time and the T gates are applied in parallel to each qubit
carrying one of these parities.
With ancillary qubits the parallelization can be even more

efficient because the ancillary qubits can carry any parity,
i.e., it can be a linear combination of the parities carried by
nonancillary qubits. In terms of CNOT circuits synthesis, we
need to synthesize a larger linear reversible operator. Namely
we have to synthesize Boolean matrices of size p× n where
p− n is the number of additional qubits that will carry a
parity. We extend our framework to treat this particular case.
Our goal is, given an input operatorAin ∈ Fp×n

2 and an output
operator Aout ∈ Fp×n

2 , to synthesize an operator B ∈ Fp×p
2

such that BAin = Aout. The main difference with standard
linear reversible circuit synthesis is that B is not unique so
we need to find a suitable B and to synthesize it.
We propose a simple block algorithm and we prove that

the total depth for the synthesis is equal, up to additive log-
arithmic terms, to the depth of the synthesis on an operator
A ∈ Fp×n

2 , n ≤ p ≤ 2n. This result shows that the total depth
barely increases with the number of ancillas after a certain
threshold.

A BLOCK EXTENSION ALGORITHM
Let A ∈ Fp×n

2 . We assume that the first n rows of A form an
invertible matrix. If not, we can always find a permutation

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

matrix P such that PA is as desired; see Section III. Given
p = kn+ r, we partition the operator A into k blocks of n
rows and one block of r rows. As assumed the first block is
of full rank and we merge it with the block of r rows.
The core of this extension algorithm lies in the idea that

it is cheap to make each block invertible. Actually it can be
done with a circuit of depth �log2(k)� by using the following
lemma.
Lemma 5.1: Given two matrices A,B ∈ Fn×n2 with A of

full rank. There exists a partial permutation P such that B+
PA is of full rank.
Proof: Suppose B is of rank k, k < n. We can write B =

CDwhereC ∈ Fn×k2 ,D ∈ Fk×n2 are of rank k. One can always
add a set of n− k canonical vectors to the columns of C to
create a basis of Fn2 . We can complete as well the rows of
D into a basis of Fn2 by adding row vectors of A. We get
two new extended matricesC,′ D′ such that B′ = C′D′ is now
invertible. We can always add zero columns in C′ and the
remaining rows of A in D′ and reorder the columns ofC′ and
D′ to getC′ = [C|P] and D′ = [D|A] with P a partial permu-
tation matrix. Rewriting B′ = [C|D]× [P|A] = CD+ PA =
B+ PA proves the result. �

To make all blocks invertible, we first make sure that the
second block is of full rank by adding the appropriate rows
of the first block. Using the lemma above this operation can
be done with a circuit of depth 1. Then, we make sure that
the third and fourth block are of full rank by adding the
appropriate rows of the first and second block. Repeating this
procedure, it is clear that we only need �log2(k)� iterations
to treat all the blocks.
What we want is an algorithm that synthesizes a circuit

outputting an operator Aout ∈ Fp×n
2 given an input opera-

tor Ain ∈ Fp×n
2 . Our proposal is to synthesize two operators

B1,B2 such that the block partition of

B1Ain =

⎛
⎜⎜⎜⎜⎝
K1

K2
...

Kk

⎞
⎟⎟⎟⎟⎠

and

B2Aout =

⎛
⎜⎜⎜⎜⎝
H1

H2
...

Hk

⎞
⎟⎟⎟⎟⎠

contains only invertible blocks. Then, we can apply indepen-
dently a linear reversible operator on each block to do the
transition B1Ain→ B2Aout. Namely, for any i > 1, we apply
Di = HiK

−1
i to the ith block. For i = 1, we need an operator

D1 to do the transition K1→ H1 ∈ F (n+r)×(n+r)
2 . We did not

particularly optimize this part, but as we know that the first n
rows ofK1 form an invertible matrix, we consider an operator

D1 of the form

D1 =
(
H1[1 : n, :]K1[1 : n, :]−1 0

G In−r

)

where each row of G contains the decomposition of each
vector K1[i, :]⊕ H1[i, :], i > n in the basis K1[1 : n, :].
Overall we apply a block diagonal operator D = ⊕ki=1Di

with D1 ∈ F (n+r)×(n+r)
2 and Di ∈ Fn×n2 for i > 1 such that

DB1Ain = B2Aout

and finally

Aout = B−12 DB1Ain.

The total depth of our circuit is the sum of the depth
of the circuits implementing B1,B2, and D. We know
that the depth for implementing B1,B2 does not exceed
�log2(�p/n�)� and most of the total depth lies in the syn-
thesis of D. The synthesis of D requires a call to our frame-
work for the square blocks of size n and one call for the
first block of size n+ r. All syntheses are performed si-
multaneously so the total depth for step 2 is given by the
maximum depth required for the synthesis of one of the
blocks.
The total depth d(n, p) is given by

d(n, p) = 2 log2(�p/n�)+ d∗(n+ r) ≤ 4n+ 2 log2(�p/n�)
where d∗(n+ r) is the depth required to synthesize the
block of size (n+ r)× (n+ r), which represents infor-
mally the maximum depth required when synthesizing all
the blocks in parallel. The upper bound is not the tight-
est possible. The result we want to emphasize is that
the depth only depends logarithmically on the number of
ancillas.

VI. BENCHMARKS
This section presents our experimental results. We have the
following algorithms to benchmark:

1) DaCSynth from Section III;
2) cost minimization techniques from Section IV;
3) the extension of DaCSynth for the use of ancillary

qubits described in Section V.

The state-of-the-art algorithms are the following:

1) the Gaussian elimination algorithm;
2) the algorithm from [14] adapted to a full qubit connec-

tivity, as described in Appendix A.

Two kinds of datasets are used to benchmark our
algorithms.

1) First, a set of random operators. The test on random op-
erators gives an overview of the average performance
of the algorithms. We generate random operators by
creating random CNOT circuits. Our routine takes two
inputs: the number of qubit n and the depth d desired

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

for the random circuit. Each CNOT is randomly placed
by selecting a random control and a random target and
the simulation of the circuit gives a random opera-
tor. Empirically we noticed that when d is sufficiently
large—d = 2n is enough—then the operators gener-
ated have strong probability to represent the worst case
scenarii. Alternatively, when only worst-case operators
are of interest, it is faster to generate random circuits
with a sufficiently large number of CNOT gates (n2

gates is enough) instead of creating a circuit with a
large depth.

2) Second, a set of reversible functions, given as circuits,
taken from Matthew Amy’s github repository [23].
This experiment shows how our algorithms (DaCSynth
and the greedy procedures) can optimize useful quan-
tum algorithms in the literature like the Galois Field
multipliers, integer addition, Hamming coding func-
tions, the hidden weighted bit functions, etc.

To evaluate the performance of our algorithms for the ran-
dom set, two types of experiments are conducted as follows.

1) A worst-case asymptotic experiment, namely for in-
creasing problem sizes n we generate circuits of depth
2n and we compute the average depth for each problem
size. This experiment reveals the asymptotic behavior
of the algorithms and gives insights about strict upper
bounds on their performance.

2) A close-to-optimal experiment, namely for one spe-
cific problem size we generate operators with different
circuit depth to show how close to optimal our algo-
rithms are if the optimal circuits are expected to be
shallower than the worst case.

To produce the benchmarks we need an explicit way to
compute the depth. This task is less trivial than computing
the number of gates in the circuits. The most common way to
perform this computation is to create a directed acyclic graph
representation of the circuit: the vertices of the graph are the
gates and the edges represent their inputs/outputs. The depth
of the circuit is then given by the longest path in the graph,
which can be computed by doing a topological sorting of
the vertices for example. Another way is to divide the circuit
into slices of parallel gates. When a new gate is added to the
circuit one has to pull it to its maximum to the left of the
circuit by commuting it with the existing slices. If the gate
cannot commute with the first slice it encounters, a new slice
is created. The number of slices is then equal to the depth
of the circuit. An interesting feature of this procedure is that
we recover the skeleton circuit outlined in [17] by comput-
ing the depth on a circuit returned by a standard Gaussian
elimination algorithm.
All our algorithms are implemented in Julia [24] and exe-

cuted on the ATOS Quantum Learning Machine whose pro-
cessor is an Intel Xeon E7-8890 v4 at 2.4 GHz.

FIG. 1. Average performance of DaCSynth versus Gaussian elimination
algorithm and [14].

A. BENCHMARKS ON RANDOM CIRCUITS
We did the following experiments:

1) We evaluated the worst case performance of the dif-
ferent algorithms for a range of qubits. For n =
1, . . ., 100, we tested the algorithm on 20 random cir-
cuits with high depth = 2n to reach with high proba-
bility the worst cases.

2) We also evaluated the capacity of the different algo-
rithms to find shallow circuits for a specific problem
size. For n = 60, we tested our algorithms on random
circuits of various depth from 1 to≈ 80with 20 circuits
for each depth.

1) EVALUATION OF DACSYNTH
For clarity we do not show all the methods at once. We first
show the worst case performance of DaCSynth against the
Gaussian elimination algorithm and Kutin et al.’s algorithm
in Fig. 1. In this case, the three algorithms have a linear
complexity, and we almost recover the theoretical worst case
complexities: ≈ 4n for the Gaussian elimination algorithm,
≈ 2n for Kutin et al’s algorithm. The depth complexity of
DaCSynth is close to n when n < 50 but tends to 0.85n
when n > 50. For larger values of n not shown in this graph
(100 < n < 1000) the depth complexity seems to remain
around 0.85n, so we cannot really say if this complexity
actually hides a complexity in n/ log2(n) or not. Our current
implementation cannot deal with larger number of qubits; it
would be interesting to implement a more efficient version
of DaCSynth to see how DaCSynth behaves and also to do a
proper comparison with the algorithm from [15].
DaCSynth outperforms the state of the art by at least a

factor of two, and this outperformance is also visible in the
close-to-optimal experiment given in Fig. 2. DaCSynth still
is able to resynthesize a circuit with small depth, although
it cannot give optimal results. Overall, the behavior of those
three algorithms (DaCSynth, the Gaussian Elimination, and
the extension of Kutin et al.’s algorithm) is similar for any

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

FIG. 2. Performance of DaCSynth versus Gaussian elimination algorithm
and [14] on 60 qubits for different input circuits depths.

FIG. 3. Average performance of cost minimization techniques versus
DaCSynth.

problem size. Consequently for the rest of the benchmarks,
we now consider DaCSynth as the state-of-the-art method.

2) EVALUATION OF THE PURELY GREEDY ALGORITHMS
We now evaluate the performance of our greedy algorithms
against DaCSynth. The results of the worst-case experiment
are given in Figs. 3 and 4. For clarity we plot the ratio be-
tween the depth of the circuits returned by the greedy algo-
rithms and the depth of the circuits returned by DaCSynth.
So when the ratio is smaller than one this means that the
greedy method outperforms DaCSynth. The results with the
four cost functions are given in Fig. 3. For small n the greedy
methods always outperform DaCSynth; but inevitably as n
grows the performance of the greedy methods deteriorates,
and this occurs exponentially fast. In fact, when n is suf-
ficiently large the cost minimization process can no longer
converge to a solution, and we stop the experiments when
it is clear that the cost minimization process cannot outper-
form DaCSynth. The bad scalability of the greedy methods
is particularly visible with the cost function hsum. Clearly
this cost function is always outperformed by the three others,

FIG. 4. Average performance of cost minimization techniques
({hprod, Hsum, Hprod}) versus DaCSynth. (a) Average performance of cost
minimization techniques({hprod, Hsum, Hprod}) vs DaCSynth (without
standard deviation). (b) Average performance of cost minimization
techniques ({hprod, Hsum, Hprod}) versus DaCSynth (with standard
deviation).

but the scale of the figure prevents proper discernment of
the performance of the other three cost functions. A zoom
in the range n = 0.50 without the cost function hsum is pro-
posed in Fig. 4. In a way, we get results similar to those
obtained for a size optimization approach in [22]. The Hsum

cost function provides the best results for n < 25 but its
performances deteriorate faster than with the log based cost
functions. However, contrary to the size optimization case
where we highlighted a slight range of qubits where the cost
function hprod could perform better thanHsum, here this is the
cost function Hprod that seems to give the best results for the
approximate range n = 25.40. However, when we plot the
results with the standard deviation in Fig. 4(b), we see that
this advantage of one cost function over the others is relative
in view of the high variance in the results. We recover similar
results with the close-to-optimal experiment, see Fig. 5. The
two cost functions Hsum and Hprod provides what seems to
be optimal results when the input operator is generated with

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

FIG. 5. Performance of cost minimization techniques
({hprod, Hsum, Hprod}) and DaCSynth on 60 qubits. (a) Performance of cost
minimization techniques ({hprod, Hsum, Hprod}) and DaCSynth on 60 qubits
for different input circuits depths (without standard deviation). (b)
Performance of cost minimization techniques ({hprod, Hsum, Hprod}) versus
DaCSynth on 60 qubits for different input circuits depths (with standard
deviation).

a shallow circuit. In fact both cost functions consistently
enable to resynthesize the operator with a shallower circuit
than the one given as input. There is a threshold when the
input circuits are of depth 30 or larger and it becomes harder
for the cost minimization technique to converge promptly to a
solution. The performance of our greedy methods deteriorate
with a high variance in the results, especially with the Hsum

cost function; see Fig. 5(b). Finally, when we get closer and
closer to a worst case DaCSynth eventually provides the best
results, in accordance with the worst case experiment done
previously.
We also did some experiments with the greedy algorithms

combined with the LU decomposition. We only show the
worst-case experiment results in Fig. 6. The ratio between the
method benchmarked and the best result among the purely
greedy methods and DaCSynth is plotted. So if the value of

FIG. 6. Average performance of { LU decomposition + greedy methods }
versus { DaCSynth and purely greedy methods }. (a) Average performance
of { LU decomposition + greedy methods } versus { DaCSynth and purely
greedy methods } (without standard deviation). (b) Average performance
of { LU decomposition + greedy methods } versus { DaCSynth and purely
greedy methods } (with standard deviation).

the curve is below one this means that the algorithm out-
performs all the other ones we have studied so far. Overall
there is a range of qubits (between 30 and 45) where the
association of the LU decomposition and the greedy methods
slightly provides the best results. Again this advantage must
be nuanced because the variance of the results is quite high
[see Fig. 6(b)]. Less significant results were obtained in the
close-to-optimal experiment so we do not report them.
Overall, for practical synthesis problems, e.g., for the li-

brary of reversible functions we consider in Section VI-B, it
is preferable to try all three cost functions, with and without
the LU decomposition, and keep the best result. Globally all
the execution times required for the greedy methods are in
the same range of magnitude, so we only increase the total
execution time by a factor given by the number of methods
wewant to try. Further analysis needs to be done to determine
when each method should be used.

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

B. BENCHMARKS ON REVERSIBLE FUNCTIONS
We apply our method to the synthesis of well-known re-
versible functions. Our goal is to show that we can mitigate
the CNOT cost of the circuits while keeping the T-cost as
low as possible. Our strategy is simple: we scan a circuit
where the T-cost has been optimized and we resynthesize
each CNOT subcircuit appearing. This way we keep the T-
count and the T-depth as low as possible. We already showed
in [22] that the CNOT count can be significantly reduced,
but also the depth to our surprise. Here, we focus primarily
on depth optimization.
We choose the Tpar algorithm [10] for the preprocess-

ing part: this is the best algorithm to our knowledge for
the T-depth optimization. The Tpar algorithm also works
with ancillary qubits and requires the synthesis of linear
reversible circuits with encoded ancillas, where we can use
the extension of our framework. Since Tpar, other algo-
rithms optimizing the T-count have been proposed [6]–[9]
and can be plugged before the Tpar algorithm in the pre-
processing part. Even though such algorithms provide bet-
ter T-counts, the T-par algorithm alone remains competitive
for the T-count and we believe using only Tpar does not
alter the global message of this section, which is that the
depth of reversible circuits can be significantly reduced with-
out increasing other metrics of importance like the T-depth.
So, for simplicity, we do not consider those newer T-count
optimizers.
The library of reversible functions we used is taken from

Matthew Amy’s github repository [23]. Still from Matthew
Amy’s github repository we used his C++ implementation of
the Tpar algorithm. Although a more recent implementation
in Haskell exists, by the time we write this article it does not
take into account ancillary qubits.

1) ANCILLA-FREE RESULTS
Without ancillary qubits, the results are given in Table III. For
each reversible function, we provide the statistics (T-count,
T-depth, CNOT count, Total depth) of the original circuit and
the circuit optimized solely with the Tpar algorithm. As the
T-count and T-depth remain unchanged after our postopti-
mization process, we only show the new CNOT count and
total depth after running our framework for size optimiza-
tion from [22] and our framework for depth optimization
described in this article. For those two metrics (CNOT count
and total depth) the savings compared to the Tpar algorithm
are also given.
We also compare ourselves against a heuristic optimiza-

tion from Nam, Ross, Su, Childs, and Maslov [25], which is
now one of the state-of-the-art methods for quantum circuits
optimization. Although its primary objective is gate count
optimization, the heuristic also improves the total depth of
the circuits. Two versions of their algorithm are proposed,
corresponding to “light” and “heavy” optimization proce-
dures. The code is not open source, but the circuits are
available in Neil Ross’s github repository [26]. So, when

available, we chose the results of the heavy optimization and
reported them in Table III.
Compared to Tpar, for almost every functionwemanage to

reduce significantly the total depth:−47% in average, with a
maximum of−92%. The Galois field multipliers are notably
the functions that benefit themost from our optimizationwith
at least 65% of reduction. As a bonus, we also have better
CNOT counts with 40% of gain in average.
The heuristic from [25] gives the best CNOT counts of the

four methods by far. This significant decrease in the CNOT
count has also a beneficial impact on the total depth but these
gains come at the expense of another metric of importance:
the T-depth. More exactly, the heuristic does not benefit from
the optimizations done by Tpar, which results in a difference
in the T-depth of more than 100% in almost every circuit,
with up to 760% for the GF(232) multiplier. Still, we man-
age to produce circuits with equivalent or even better depths
than [25] for 70% of the circuits. Again, our best gains are
for the Galois field multipliers with 35%–40% in average
except for GF(232) with a gain of 12%. There are five circuits
for which our method gives significant worse results with an
increase of more than 10% in the depth.
Compared to the size optimization framework proposed

in [22], we manage to produce better results for almost every
function—the only exception being the Barenco version of
the Toffoli gate on 3 qubits. Again the Galois fieldmultipliers
are significantly optimized: for the multiplier in GF(232), we
reduced the depth from 2130 to 888, representing a relative
gain of 58%. Yet this comes at the price of an increased
CNOT count.
Overall, these results show that it is possible to signif-

icantly optimize the depths of useful circuits while keep-
ing other metrics of importance like the T-depth optimized.
We improve a precedent framework that achieves a similar
goal but with a focus on size optimization. Compared to a
state-of-the-art method that does not optimize the T-depth,
we also manage to provide circuits of similar or even better
depths, proving that the optimization of the T-depth and the
total depth are not incompatible. As future work, it would
be interesting to design an algorithm that solely focuses
on total depth optimization (without particular considera-
tion on the T-depth) and see how our framework compares
against.
To evaluate which algorithm was actually useful for pro-

viding the best results, we also give in Table IV the frequency
of best performance for each algorithm. More precisely for
each method, we give the number of times it returned the
best result and the number of times it was the only method
to return the best result. In [22], we observed that the greedy
methods for optimizing the size gave most of the times the
best results, emphasizing the idea that overall most of the
subcircuits to resynthesize correspond to simple operators.
We observe a similar pattern here: we could have done the
same experiment with solely the greedy algorithms with the
three cost functionsHsum, hprod, andHprod. Even thoughmost
of the time they all provide the best results, for some specific

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

TA
B

LE
II

I
CN

O
T

O
pt

im
iz

at
io

n
of

a
Li

br
ar

y
of

R
ev

er
si

bl
e

Fu
nc

ti
on

s
W

it
h

Se
ve

ra
lC

N
O

T
Ci

rc
ui

ts
Sy

nt
he

si
s

M
et

ho
ds

.F
or

Ea
ch

R
ev

er
si

bl
e

Fu
nc

ti
on

,“
or

ig
in

al
”

R
ep

or
ts

So
m

e
St

at
is

ti
cs

(T
-C

ou
nt

,T
-D

ep
th

,C
N

O
T

Co
un

t,
To

ta
lD

ep
th

)
of

th
e

O
ri

gi
na

lC
ir

cu
it

,“
tp

ar
”

R
ep

or
ts

th
e

R
es

ul
ts

of
th

e
Ci

rc
ui

t
O

pt
im

iz
ed

So
le

ly
by

th
e

Tp
ar

A
lg

or
it

hm
,“

tp
ar

+
CN

O
T

Si
ze

O
pt

.”
R

ep
or

ts
th

e
R

es
ul

ts
of

th
e

Ci
rc

ui
t

O
pt

im
iz

ed
W

it
h

th
e

Tp
ar

A
lg

or
it

hm
an

d
Po

st
pr

oc
es

se
d

by
a

Si
ze

O
pt

im
iz

at
io

n
Pr

oc
ed

ur
e

fr
om

[2
2]

an
d

Fi
na

lly
“t

pa
r

+
CN

O
T

D
ep

th
O

pt
.”

R
ep

or
ts

th
e

R
es

ul
ts

of
th

e
Ci

rc
ui

t
O

pt
im

iz
ed

W
it

h
th

e
Tp

ar
A

lg
or

it
hm

an
d

Po
st

-P
ro

ce
ss

ed
by

O
ur

Pr
op

os
ed

D
ep

th
O

pt
im

iz
at

io
n

Pr
oc

ed
ur

e.
Th

e
T-

Co
un

t
an

d
T-

D
ep

th
fo

r
th

e
La

st
Tw

o
A

lg
or

it
hm

s
ar

e
O

m
it

te
d

B
ec

au
se

Id
en

ti
ca

lt
o

th
e

Tp
ar

A
lg

or
it

hm

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

TA
B

LE
IV

Fr
eq

ue
nc

y
of

B
es

t
Pe

rf
or

m
an

ce
of

Ea
ch

A
lg

or
it

hm
D

ur
in

g
th

e
O

pt
im

iz
at

io
n

of
R

ev
er

si
bl

e
Ci

rc
ui

ts
.F

or
Ea

ch
A

lg
or

it
hm

,t
he

Fi
rs

t
Co

lu
m

n
G

iv
es

th
e

N
um

be
r

of
Ti

m
es

It
H

as
R

et
ur

ne
d

th
e

B
es

t
R

es
ul

t
(P

os
si

bl
y

O
th

er
A

lg
or

it
hm

s
R

et
ur

ne
d

Ci
rc

ui
ts

of
Sa

m
e

Si
ze

).
Th

e
Se

co
nd

Co
lu

m
n

R
ep

or
ts

th
e

N
um

be
r

of
Ti

m
es

It
W

as
th

e
O

nl
y

O
ne

to
Pr

ov
id

e
th

e
B

es
t

Po
ss

ib
le

Ci
rc

ui
t

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

TABLE V CNOT Optimization of a Library of Reversible Functions With Several CNOT Circuits Synthesis Methods With the Use of Ancillary Qubits. For
Each Reversible Function, “original” Reports Some Statistics (T-Count, T-Depth, CNOT Count, Total Depth) of the Original Circuit, “tpar” Reports the
Results of the Circuit Optimized Solely by the Tpar Algorithm, “tpar + CNOT Depth Opt.” Reports the Results of the Circuit Optimized With the Tpar
Algorithm and Postprocessed by Our Proposed Depth Optimization Procedure

operators each of these three cost functions were able to
uniquely return the shallowest circuits. So we cannot remove
one of them. Furthermore, the fact that DaCSynth almost
never returned the best result is a sign that we never had to
synthesize worst case operators. Even for circuits acting on
a large number of qubits (the Galois field multiplier GF(232)
on 96 qubits for instance) the DaCSynth algorithm was not
able to back off.

2) RESULTS WITH ANCILLARY QUBITS
We now repeat the experiment with the use of ancillary
qubits. For each function, we let Tpar compute the number
of ancillary qubits necessary to reduce the T-depth to its
minimum. Then again we resynthesize each chunk of purely
CNOT circuits. This time due to the use of ancillary qubits we
need to synthesize some operators A ∈ Fp×n

2 , where n is the
number of qubits and p = n+ #ancillas. To do the synthesis
of one CNOT circuit, we have two options as follows.

1) Either computing the actual CNOT operator imple-
mented by the CNOT circuit given by the Tpar
algorithm, this is the “direct” method.

2) Or we can use our block algorithm described in Sec-
tion V; this is the “block” method.

Note that even if p < 2n the two methods are not equiv-
alent because in the “block” method we compute the global
operator differently (see our explanation in Section V).
So for each CNOT subcircuit, we did the synthesis twice,

one with each method, and we kept the best result. We had to
be careful about the size of the operators to synthesize. For
some reversible functions the total number of qubits exceeds
several hundreds and some of our methods cannot compute
a solution in a reasonable amount of time. So for those ex-
treme cases, we had to remove the greedy methods and even
the DaCSynth algorithm for the Galois field multiplier in
GF(232) for which the total number of qubits reaches more
than 2500. Note that these restrictions only concern the “di-
rect” method as the “block” method manages to synthesize
only operators on at most 2n qubits. We consider it to be an
asset of the “block” method over the “direct” synthesis.
The results are given in Table V. The statistics of the cir-

cuit output by the Tpar algorithm are shown, and we give
the CNOT count and total depth after applying our opti-
mizations. Again the savings compared to the Tpar circuits

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

are given. Overall we have even better savings than in the
ancilla-free case. In average, we reduce the depth by al-
most 60%. The Galois field multipliers again give the best
savings with up to 99% for the multiplier GF(232). As a
bonus the total number of CNOT gates has also significantly
decreased.
The performance frequency of each algorithm is given

in Table VI. Again only the greedy methods with the cost
functionsHsum, hprod, andHprod were useful. We also add the
number of times the “block” and “direct” methods were the
only method to return the best result. When the number of
ancillary qubits is small, the direct method has to be priv-
ileged. This is probably due to our process to compute the
global operator in the “block” method that is not efficient,
this should be the subject of a future work. When the number
of ancillas increase then the block method is more efficient,
notably because the greedy methods do not scale well (both
in terms of computational time and circuit size) when the
problem size is too large.

VII. DISCUSSION AND FUTURE WORK
We see two main areas for improvements as follows.

1) First, from a practical point of view, it seems possible
to improve the synthesis algorithm when the number
of encoded ancillas is not more than n. The number of
ancillas is not large enough to deploy a block strategy
and we proposed a naive way to compute one operator
that can “do the job” and that we can directly synthe-
size. However, the benchmarks have revealed that the
operator already given by the Tpar algorithm is most
of the time a better one.

2) Second, it seems clear when looking at the benchmarks
that the upper bound of DaCSynth is to be improved.
It is easy to have some results when we only consider
the maximum number of ones in each row of B =
A3A
−1
1 ∈ Fn×n2 , but combining this with a restriction

on the columns makes the proofs harder. For instance,
it is easy to prove that one can flip no more than n/2
entries on each row ofB to get amatrixB⊕Cwith only
two different row vectors. Such matrix can be zeroed
in a logarithmic number of steps and this would give an
upper bound of approximately n+ logarithmic terms,
which is closer to our benchmarks. Yet we are unable
to get any property on the maximum number of 1 in the
columns of C to conclude.

We now sketch some ideas of optimizations that could
be candidates for improving our framework. In Section V,
we showed that the implementation of an operator A ∈
Fp×n
2 , p > n, is in fact as costly as the synthesis of a square

operator of size k ≤ 2n up to logarithmic terms. We want
to highlight that this result can lead to new strategies for
our initial divide-and-conquer framework and improve the
theoretical upper bounds on the depth. Consider the matrix
B = A3A

−1
1 ∈ Fn×n2 to zero during step 2 of the framework.

If B is of rank k < n then we write

B = DF

where D ∈ Fn×k2 ,F ∈ Fk×n2 are both of rank k. By using the
block extension algorithm, we know that there is a sequence
(EiD jD)iD jD , respectively, (EiF jF)iF jF), of row, respectively,
column, operations of depth O(k) such that

∏
iD, jD

EiD, jDD =
(
Ik
0

)
F
∏
iF , jF

EiF , jF =
(
Ik 0

)
.

Equivalently

∏
iD, jD

EiD, jDB
∏
iF , jF

EiF , jF =
(
Ik 0

0 0

)

and B can be zeroed with a sequence of operations of depth
O(k). So instead of trying to minimize the number of ones in
B, as we do, one might be interested in diminishing the rank.
The problem can be formulated as: given an integer r < n and
B ∈ Fn×n2 of rank k > r, what is the sequence of operations
(row operations, column operations, entry flips) of minimum
depth that transform B into a matrix of rank r?
This problem is related to other problems in the literature.

The matrix rigidity of a matrix A is defined as the minimum
Hamming distance between A and a matrix of rank r. In other
words, the matrix rigidity of A is the number of entries of
A that must be modified in order for the rank to drop to
r. In the literature, the concept of matrix rigidity was used
to prove lower bounds on the complexity of classical linear
circuits [27], [28]. Most of the work we found on the subject
was thus dedicated to finding explicit rigid matrices, which
is quite the opposite of our approach. Moreover the distance
for the matrix rigidity is defined as the number of flips in
A whereas we are concerned in the depth of a sequence of
operations.
The problem of matrix rigidity can be extended with the

more general problem of low rank approximations, where we
try to find, for given target rank r, the solution to

min
rank(R)=r

‖A− R‖

where ‖ · ‖ is an appropriate norm. Using the L1 norm andwe
have the problem of finding thematrix rigidity ofA. But again
none of the norms usually considered take into account the
depth required to implement R. Finally, such problems only
consider one of the three operations that are available to us,
namely the entry flips. Although row and column operations
alone cannot reduce the rank of a matrix, they can help in
creating a new matrix that needs less entries to flip to have a
reduced rank.
Finally, can we extend DaCSynth to take into account

connectivity constraints? We believe, it will be complicated
because it is not natural in a restricted connectivity to split
the qubits into two sets, especially if there is no particular
symmetry between the two sets. We think, it is preferable to

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

TA
B

LE
V

I
Fr

eq
ue

nc
y

of
B

es
t

Pe
rf

or
m

an
ce

of
Ea

ch
A

lg
or

it
hm

D
ur

in
g

th
e

O
pt

im
iz

at
io

n
of

R
ev

er
si

bl
e

Ci
rc

ui
ts

W
it

h
th

e
U

se
of

A
nc

ill
ar

y
Q

ub
it

s.
Fo

r
Ea

ch
A

lg
or

it
hm

,t
he

Fi
rs

t
Co

lu
m

n
G

iv
es

th
e

N
um

be
r

of
Ti

m
es

It
H

as
R

et
ur

ne
d

th
e

B
es

t
R

es
ul

t
(P

os
si

bl
y

O
th

er
A

lg
or

it
hm

s
R

et
ur

ne
d

Ci
rc

ui
ts

of
Sa

m
e

Si
ze

).
W

he
n

A
va

ila
bl

e,
th

e
Se

co
nd

Co
lu

m
n

R
ep

or
ts

th
e

N
um

be
r

of
Ti

m
es

It
W

as
th

e
O

nl
y

O
ne

to
Pr

ov
id

e
th

e
B

es
t

Po
ss

ib
le

Ci
rc

ui
t.

W
he

n
Th

er
e

is
O

nl
y

O
ne

Co
lu

m
n,

It
W

as
N

ev
er

th
e

O
nl

y
O

ne
to

Pr
ov

id
e

th
e

B
es

t
Po

ss
ib

le
Ci

rc
ui

t

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

improve the results from [14] for the LNN architecture and
extend it to an arbitrary topology.

VIII. CONCLUSION
We have proposed DaCSynth, a scalable algorithm for syn-
thesizing shallow linear reversible quantum circuits and we
have shown that synthesizing an operator with a divide-and-
conquer algorithm is equivalent to zeroing binary matrices
with three elementary operations. This gives a framework
that generalizes other works and widens the perspective of
finding new techniques. We have derived an upper bound
that improves existing bounds for registers of intermediate
sizes and we have used a greedy algorithm to obtain the
shallowest possible circuits. In our benchmarks, the circuits
produced by the algorithm DaCSynth have a depth, which
is twice smaller than state-of-the-art algorithms. We have
also presented purely greedy algorithms providing close to
optimal results for small or simple operators. Applied to the
synthesis of a class of reversible functions, we report some
substantial savings in the total depth of the circuits while
keeping the T-depth as low as possible. This article represents
one step toward the compilation of quantum circuits that can
be executed on a quantum hardware in the future. As future
work, we will study how to adapt this method to take into ac-
count the connectivity constraints between the qubits in real
hardware. Another future work will be to extend DaCSynth
to Clifford circuits. Syntheses of Clifford circuits through
normal forms are possible (see, e.g., [29]–[31]), but it would
also be interesting to see if DaCSynth has an equivalent in the
symplectic group Sp(2n, F2) used to represent Clifford oper-
ators with a different set of elementary operations available.
An interesting result would be to see if a direct synthesis can
produce better depths rather than using normal forms.

APPENDIX A
KUTIN ET AL’S ALGORITHM FOR LNN CONNECTIVITY:
PRESENTATION AND EXTENSION TO FULL QUBIT
CONNECTIVITY
Kutin et al. gave several constructions of specific linear re-
versible operations for the LNN architecture: addition, swap,
permutation, generic linear reversible operator [14]. They
focused on the shallowest way to do it. For a generic linear re-
versible operator, they relied on their construction for revers-
ing the qubits, i.e., the image of an n-qubit state |x1x2. . .xn〉
is |xnxn−1. . .x1〉. This construction is a sorting network and
contains only SWAP gates (see Fig. 7). The network, as a
SWAP circuit, is of depth n. An example with seven qubits
is given in Fig. 8. Then they considered the same sorting
network but with boxes replacing the SWAP gates. Each
box, acting on 2 qubits, can perform one of the following
operations:

1) (u, v)→ (u, v), requiring 0 CNOT;
2) (u, v)→ (u, u⊕ v), requiring 1 CNOT;
3) (u, v)→ (u⊕ v, v), requiring 1 CNOT;
4) (u, v)→ (v, u⊕ v), requiring 2 CNOT;

FIG. 7. Sorting network for 7 qubits. As a SWAP circuit, the depth of the
circuit is n. Replacing each SWAP by a box gives a skeleton circuit for the
synthesis of triangular linear reversible operators.

5) (u, v)→ (u⊕ v, u), requiring 2 CNOT;
6) (u, v)→ (v, u), requiring 3 CNOT.

Kutin et al. [14] proved that a sorting network made of
boxes can transform any operator into a northwest triangular
one. Moreover, for each box, only the state of one of the
two output qubits needs to be fixed after applying the box.
This means that we can always choose a box that needs at
most two CNOTs to be implemented. Consequently, the total
depth of the sorting network is 2n. Finally, they showed how
to synthesize a northwest triangular operator with a similar
sorting network except that in this case for each box the
states of the two output qubits need to be fixed. Therefore,
we may need at most three CNOTs for some boxes (if we
only need to swap the qubits) and the depth of this second
part is upper bounded by 3n. Overall this gives a generic
method for synthesizing any linear reversible operator for the
LNN architecture in depth at most 5n. To our knowledge, this
is the best result in the literature for the case of restricted
connectivity. This result can only be improved by a constant
factor as Kutin et al. also showed that some operators need
at least circuits with depth 2n to be implemented. So the best
possible synthesis method for the LNN architecture should
provide circuits of depth comprised between 2n and 5n. For
other architectures, the bounds are not clear. Obviously, if an
architecture contains a Hamiltonian path in it then one can
apply the algorithm for the LNN case, giving an upper bound
of 5n for the depth. To our knowledge, lower bounds are not
known but Maslov computed lower bounds for two simpli-
fiedmodels in the case where each qubit has k neighbors [17].
The first model is the case where we have to execute every
gate given by the Gaussian elimination algorithm in a given
order; the second model is less restrictive as we have to
execute every gate, but we assume that they all commute.
In both cases, the depth is lower bounded linearly in n.

A. EXTENSION TO FULL QUBIT CONNECTIVITY
Although it was not done in their paper, the algorithm pro-
posed by Kutin et al. [14] can be extended to the full con-
nectivity case: this is what we show in this paragraph. To our

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

FIG. 8. Block structure of the triangular operator L for Jiang et al.’s algorithm.

knowledge, such an extension has never been proposed in the
literature.
In the original Kutin et al.’s algorithm [14], each box

corresponds to an interaction between a pair of qubits and
it can be decomposed into two parts: first, we execute the
interaction strictly speaking between the two qubits with a
CNOT gate, secondly, we move the qubits in the hardware
by swapping them. If we consider that the connectivity is
full then we do not need to move the qubits anymore in the
hardware. This means that we can replace each box by a
CNOT gate and we get rid of the SWAP gates. We end with
a new skeleton circuit that is functionally equivalent to the
one given by Kutin et al. except that each box is now a single
CNOT. The skeleton circuit from Kutin et al., as a box-based
circuit, is of depth 2n. Therefore, our new skeleton, as a
CNOT-based circuit, is also of depth 2n. To our knowledge,
this was the best result until the asymptotically optimal algo-
rithm proposed recently in [15]. The pseudocode of this new
algorithm is given Algorithm 1. For simplicity, we only show
the case for a lower triangular operator, the generalization to
any operator is done via an LU decomposition [32]

A = PLU

where A is the operator to synthesize, P is a permutation
matrix, and L, respectively,U , are lower, respectively, upper,

triangular operators. With full qubit connectivity, a permu-
tation can be implemented with a circuit of constant depth
6 [33]. Each triangular operator can be synthesized with a
circuit of depth n, leading to a total depth of 2n+ 6 for the
synthesis of an arbitrary operator. Given that we do not move
the qubits anymore, most of the algorithm consists in track-
ing what would be the positions of the qubits in the hardware
to determine, which interactions need to be done at a given
time step. Then, it is easy to decide if, for a given pair of
qubits (i, j), a CNOTgate needs to be added. If the operator is
lower triangular, we only have to decide if we add the CNOT
(i→ j), i < j as we must not ruin the triangular structure by
adding a CNOT (j→ i). Then, if the ith component of the
jth row is one then add a CNOT (i→ j). The reason why it
works is not straightforward: we have to note that when we
decide to apply or not a CNOT (i→ j), either the compo-
nents k < i have already been treated for qubit i so it cannot
modify the components of qubit j, or such components have
not been treated on both qubits, so modifying them on qubit j
is not a problem as they will be zeroed later in the algorithm.

APPENDIX B
JIANG ET AL.’S ALGORITHM
The authors propose an algorithm based on the LU decom-
position and a divide-and-conquer approach. The proof of

VOLUME 2, 2021 3102422

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

Algorithm 1 Adaptation of Kutin et al.’s algorithm [14]
on a triangular operator L for a full qubit connectivity.

Require: n ≥ 0, L ∈ Fn×n
2 triangular

Ensure: C is a CNOT-circuit implementing L with depth
at most n

C← []
perm← [[1, n]]
for j = 1 to n do
if j ≡ 1[2] then
start← 1

else
start← 2

end if
while start < n do
if L[perm[start+1], perm[start]] = 1 then
C.append(CNOT(perm[start], perm[start+1]))

end if
perm[start], perm[start+1]← perm[start+1],
perm[start]
start← start + 2

end while
end for
return reverse(C)

the optimal depth complexity is quite hard to summarize but
the principle of the algorithm is simpler so we give a brief
description of it. First, the algorithm starts with an LU
decomposition A = PLU . Again P can be synthesized in
constant depth six, therefore, we only need to treat the trian-
gular case. We illustrate with the lower triangular case. The
synthesis of L consists in a divide-and-conquer algorithm, the
operator L is decomposed as

L =
(
L�n/2�
A L�n/2�

)

where L�n/2� and L�n/2� are triangular operators of size �n/2�
and �n/2�, respectively, and A is any Boolean matrix of size
�n/2� × �n/2�. The algorithm initially synthesizes in paral-
lel both triangular suboperators by applying recursively the
algorithm. Then, we are left with the operator

L′ =
(
I

A′ I

)

to synthesize. This is done by considering the following
blocks in L:

1) the northwest identity operator is seen as a block diag-
onal operator with n/ log2(n) blocks of size log2(n)/2,
noted B1, . . .,Bn/ log2(n);

2) A is divided into log2(n)/2 blocks of n/ log2(n) rows,
noted A1, . . .,Alog2(n)/2. For simplicity, we consider

each Ai as a matrix Ci ∈ (F log2(n)/2
2)

n
log2(n)

× n
log2(n) , i.e.,

we see Ai as a n
log2(n)

× n
log2(n)

matrix with elements

from F log2(n)/2
2 .

The specific structure of L is summarized in Fig. 8. The
synthesis of L consists in successive applications of the fol-
lowing two stages of row operations:

1) row operations on the Bi’s such that specific words of
log2(n)/2 bits appear on each row;

2) row operations between the Bi’s and the Ai’s to zero
words of log2(n)/2 bits of A.

More precisely, the kth row of a Bi has to zero the ith
column ofCk. For that a sequence of operators on log2(n)/2
qubits is computed such that the property “Every word on
log2(n)/2 bits appears on each row of the Bi’s” is veri-
fied. Such sequence of operators is called a row traversal
sequence. The operators of the row traversal sequence are
computed in parallel on each Bi via the row operations during
Stage 1. Once we have the desired operator on each Bi, we
need to compute the appropriate row operations of Stage 2.
Each row of a Bi act on a specific Ck so the corresponding
row operations can be done in parallel. So all we need is to
see how to coordinate the row operations acting on the same
Ck. For simplicity consider the case k = 1, i.e., all the first
rows of each Bi are used to zero C1. Given that all Bi’s are
identical, the choice of applying a row operation from block
Bi to the kth row of C1 is: is C[k, i] equal to B∗[1, :] (where
the index on B has been omitted to emphasize that all Bi’s
are the same)? Therefore the matrix C1 can be seen as the
adjacency matrix P of a bipartite graph G where P[k, i] = 1
if C1[k, i] = B∗[1, :]. A sequence of parallel row operations
between the Bi’s andC1 corresponds to a matching in G and
a “good” sequence of parallel row operations is given by a
matching decomposition ofG. A central theorem that wewill
also use in our own work is the following: if the maximum
number of 1 in a row or a column of P is p then there exists
a decomposition of G into pmatchings, i.e., a sequence of p
parallel row operations is necessary to zero all the entries of
C equal toB∗[1, :]. Given that each word appears on each row
of the Bi’s we are ensured that Awill be zero at the end of the
algorithm. Finally, we need to assume that A is sufficiently
random, if it is not the case one can decompose A = A′ ⊕ A′′
with A,′ A′′ sufficiently random and do the process two times,
the first time for adding A′ and the second time for adding A′′.

The depth d(n) for the synthesis of one triangular operator
is, therefore, given by

d(n) = d(n/2)+ 2× length row traversal sequence

×

⎛
⎜⎝ d(log2(n))︸ ︷︷ ︸

synthesize the operator Bi

+ size matching decomposition

⎞
⎟⎠ .

(4)

Finally the authors have shown that the length of the row
traversal sequence is O(

√
n) and if A is sufficiently ran-

dom at each iteration the matching decomposition is of size

3102422 VOLUME 2, 2021

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

O(
√
n/ log2(n)). Therefore

d(n) = d(n/2)+O(
√
n)× (d(log2(n))+O(

√
n/ log2(n)))

= α(n/ log2(n))+ β(
√
n/ log2(n)))

hence, the result.
Let us now compute an estimation for α, β. As a divide-

and-conquer framework, the authors have derived a recursive
formula in the case of triangular operators. Noting d(n) for
the depth, we have

d(n) ≤ d(n/2)+ 2×O(
√
n)× (O(log2(n))

+O(
√
n/ log2(n))).

Note that we think there is a typo in their formula, the term
O(log2(n)) being O(log32(n)) in their paper. This term cor-
responds to the synthesis of an operator of size log2(n)/2.
Assuming that we use the best algorithm, i.e., the adapta-
tion of Kutin et al.’s algorithm [14] we proposed in Ap-
pendix A, each of these operators can be synthesized with
a circuit of depth at most 2× log2(n)/2 = log2(n). We may
have missed something but this improves the real complex-
ity so we keep our proposed modification. The second term
O(
√
n/ log2(n))) corresponds to the matching decomposi-

tion of a graph and the authors showed that the leading co-
efficient is

√
e. The third term, O(

√
n), corresponds to the

length of the row-traversal sequence on k qubits that gives
a sequence of k-qubit operators such that for any bitstring
of size k and any integer j ∈ �1, k�, there is an operator in
the sequence whose jth row equals the bitstring. The authors
proved that there exists a row-traversal sequence on k qubits
of length 3× 2k−1 − k + 1. Here, we have k = log2(n)/2
and O(

√
n) = 3/2×√n. Therefore, we finally get

d(n) ≤ d(n/2)+ 3×√n× (log2(n)+√ne/ log2(n))
≤ d(n/2)+ 3

√
n log2(n)+ 3

n
√
e

log2(n)

and

d(n) ≤ 3×
⎛
⎝log2(n)−1∑

j=0

√
n

2 j
log2

(n
2 j

)
+
√
e n
2 j

log2
(
n
2 j

)
⎞
⎠ .

After simplification, we have

d(n) ≤ 3×
(
2
√
e

n

log2(n)
+ 3.3

√
n log2(n)

)
and we have to do it for the two triangular operators given by
the LU decomposition. Overall

depth [15] ≤ 20

(
n

log2(n)
+√n log2(n)

)
.

Although it is only an upper bound, in practice there is
little simplification one can make when synthesizing a spe-
cific operator: the row-traversal sequence still needs to be
synthesized entirely and the matching decomposition is done

on random graphs so we cannot expect the exact complexity
to be that lower compared to the upper bound.

REFERENCES
[1] F. Arute et al., “Quantum supremacy using a programmable supercon-

ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019, doi:
10.1038/s41586-019-1666-5

[2] H.-S. Zhong et al., “Quantum computational advantage using photons,”
Science, vol. 370, pp. 1460–1463, 2020, doi: 10.1126/science.abe8770.

[3] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta, “On quantum
supremacy.” [Online]. Available: https://www.ibm.com/blogs/research/
2019/10/on-quantum-supremacy/

[4] S. Aaronson, “Chinese bosonsampling experiment: The gloves are off.”
[Online]. Available: https://www.scottaaronson.com/blog/?p=5159

[5] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
clifford gates and noisy ancillas,” Phys. Rev. A, vol. 71, Feb. 2005,
Art. no. 022316, doi: 10.1103/PhysRevA.71.022316

[6] L. E. Heyfron and E. T. Campbell, “An efficient quantum compiler
that reduces t count,” Quantum Sci. Technol., vol. 4, no. 1, Sep. 2018,
Art. no. 015004, doi: 10.1088/2058-9565/aad604

[7] M. Amy and M. Mosca, “T-count optimization and reed-muller codes,”
IEEE Trans. Inf. Theory, vol. 65, no. 8, pp. 4771–4784, Aug. 2019,
doi: 10.1109/TIT.2019.2906374.

[8] A. Kissinger and J. van de Wetering, “Reducing the number of non-
clifford gates in quantum circuits,” Phys. Rev. A, vol. 102, Aug. 2020,
Art. no. 022406, doi: 10.1103/PhysRevA.102.022406

[9] F. Zhang and J. Chen, “Optimizing t gates in clifford t circuit as π/4
rotations around paulis,” 2019, arXiv:1903.12456.

[10] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time t-depth opti-
mization of clifford t circuits via matroid partitioning,” IEEE Trans.
CAD Integr. Circuits Syst., vol. 33, no. 10, pp. 1476–1489, Oct. 2014,
doi: 10.1109/TCAD.2014.2341953.

[11] D. Maslov, “Optimal and asymptotically optimal nct reversible circuits by
the gate types,”Quantum Inf. Comput., vol. 16, no. 13/14, pp. 1096–1112,
2016, doi: 10.26421/QIC16.13-14-2.

[12] M. Amy, P. Azimzadeh, and M. Mosca, “On the controlled-NOT com-
plexity of controlled-NOTphase circuits,” Quantum Sci. Technol., vol. 4,
no. 1, Sep. 2018, Art. no. 015002, doi: 10.1088/2058-9565/aad8ca.

[13] D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D. dis-
sertation, California Inst. Technol., Pasadena, CA, USA, 1997. [Online].
Available: https://arxiv.org/abs/quant-ph/9705052

[14] S. A. Kutin, D. P. Moulton, and L. Smithline, “Computation at a distance,”
Chicago J. Theor. Comput. Sci., vol. 2007, 2007. [Online]. Available: http:
//cjtcs.cs.uchicago.edu/articles/2007/1/contents.html

[15] J. Jiang, X. Sun, S. Teng, B. Wu, K. Wu, and J. Zhang, “Optimal space-
depth trade-off of CNOT circuits in quantum logic synthesis,” in Proc.
ACM-SIAM Symp. Discrete Algo., Salt Lake City, UT, USA, Jan. 5–
8, 2020, pp. 213–229, doi: 10.1137/1.9781611975994.13.

[16] K. N. Patel, I. L. Markov, and J. P. Hayes, “Optimal synthesis of linear
reversible circuits,” Quantum Inf. Comput., vol. 8, no. 3, pp. 282–294,
2008, doi: 10.26421/QIC8.3-4-4.

[17] D. Maslov, “Linear depth stabilizer and quantum fourier transfor-
mation circuits with no auxiliary qubits in finite-neighbor quantum
architectures,” Phys. Rev. A, vol. 76, Nov. 2007, Art. no. 052310,
doi: 10.1103/PhysRevA.76.052310.

[18] A. Kapoor and R. Rizzi, “Edge-coloring bipartite graphs,” J. Algorithms,
vol. 34, no. 2, pp. 390–396, 2000, doi: 10.1006/jagm.1999.1058.

[19] F. Freibert, “The classification of complementary information set codes of
lengths 14 and 16,” Adv. Math. Commun., vol. 7, no. 3, pp. 267–278, 2013,
doi: 10.3934/amc.2013.7.267.

[20] J. Edmonds, “Paths, trees, and flowers,” Can. J. Math., vol. 17,
pp. 449–467, 1965, doi: 10.4153/CJM-1965-045-4.

[21] L. Klein, “Combinatorial optimization with one quadratic term,” Doctoral
dissertation, Tech. Univ. Dortmund, Fakultät für Math., Vienna, Austria,
2014.

[22] T. G. de Brugière, M. Baboulin, B. Valiron, S. Martiel, and C. Allouche,
“Gaussian elimination versus greedy methods for the synthesis of linear
reversible circuits,” ACM Trans. Quantum Comput., to be published, doi:
10.1145/3474226.

VOLUME 2, 2021 3102422

https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1126/science.abe8770
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.scottaaronson.com/blog/{?}p$=$5159
https://dx.doi.org/10.1103/PhysRevA.71.022316
https://dx.doi.org/10.1088/2058-9565/aad604
https://dx.doi.org/10.1109/TIT.2019.2906374
https://dx.doi.org/10.1103/PhysRevA.102.022406
https://dx.doi.org/10.1109/TCAD.2014.2341953
https://dx.doi.org/10.26421/QIC16.13-14-2
https://dx.doi.org/10.1088/2058-9565/aad8ca
https://arxiv.org/abs/quant-ph/9705052
http://cjtcs.cs.uchicago.edu/articles/2007/1/contents.html
https://dx.doi.org/10.1137/1.9781611975994.13
https://dx.doi.org/10.26421/QIC8.3-4-4
https://dx.doi.org/10.1103/PhysRevA.76.052310
https://dx.doi.org/10.1006/jagm.1999.1058
https://dx.doi.org/10.3934/amc.2013.7.267
https://dx.doi.org/10.4153/CJM-1965-045-4
https://dx.doi.org/10.1145/3474226

Engineeringuantum
Transactions onIEEE

Brugière et al.: REDUCING THE DEPTH OF LINEAR REVERSIBLE QUANTUM CIRCUITS

[23] M. Amy, “Matthew Amy’s Github.” [Online]. Available: https://github.
com/meamy

[24] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017, doi: 10.1137/141000671.

[25] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated
optimization of large quantum circuits with continuous parameters,” NPJ
Quantum Inf., vol. 4, no. 1, 2018, Art. no. 23, doi: 10.1038/s41534-018-
0072-4.

[26] N. J. Ross, “J. Neil Ross’s Github.” [Online]. Available: https://github.
com/njross

[27] L. G. Valiant, “Graph-theoretic arguments in low-level complexity,”
in Proc. 6th Symp. Math. Found. Comput. Sci., Tatranska Lomnica,
Czechoslovakia, Sep. 5–9, 1977, pp. 162–176, doi: 10.1007/3-540-08353-
7_135

[28] S. V. Lokam, “Complexity lower bounds using linear algebra,” Found.
Trends Theor. Comput. Sci., vol. 4, no. 1/2, pp. 1–155, 2009, doi:
10.1561/0400000011.

[29] D. Maslov andM. Roetteler, “Shorter stabilizer circuits via bruhat decom-
position and quantum circuit transformations,” IEEE Trans. Inf. Theory,
vol. 64, no. 7, pp. 4729–4738, Jul. 2018, doi: 10.1109/TIT.2018.2825602.

[30] S. Aaronson and D. Gottesman, “Improved simulation of stabi-
lizer circuits,” Phys. Rev. A, vol. 70, Nov. 2004, Art. no. 052328,
doi: 10.1103/PhysRevA.70.052328.

[31] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering, “Graph-
theoretic simplification of quantum circuits with the ZX-calculus,” Quan-
tum, vol. 4, p. 279, 2020, doi: 10.22331/q-2020-06-04-279.

[32] G. H. Golub and C. F. Van Loan,Matrix Computations, 3rd ed. Baltimore,
MD, USA: Johns Hopkins Univ. Press, 1996.

[33] C. Moore and M. Nilsson, “Parallel quantum computation and quan-
tum codes,” SIAM J. Comput., vol. 31, no. 3, pp. 799–815, 2001,
doi: 10.1137/S0097539799355053.

3102422 VOLUME 2, 2021

https://github.com/meamy
https://dx.doi.org/10.1137/141000671
https://dx.doi.org/10.1038/s41534-018-0072-4
https://github.com/njross
https://dx.doi.org/10.1007/3-540-08353-7_135
https://dx.doi.org/10.1561/0400000011
https://dx.doi.org/10.1109/TIT.2018.2825602
https://dx.doi.org/10.1103/PhysRevA.70.052328
https://dx.doi.org/10.22331/q-2020-06-04-279
https://dx.doi.org/10.1137/S0097539799355053

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

