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An adaptive mesh refinement procedure is presented in order to address efficiently low frequencies electromagnetic problems with
the unstructured inductive PEEC method. An a posteriori error estimator based on an equilibrated energy criterion and on a method
of calculating a second admissible solution are proposed. TEAM Workshop problem no◦7 has been treated in order to show the good
efficiency of the procedure.

Index Terms—Unstructured Partial Element Equivalent Circuit (PEEC) method, Error Estimator, Adaptive mesh refinement.

I. INTRODUCTION

IN the process of designing power electronics devices, the
correct representation of physical phenomena is crucial to

ensure, for example, the electromagnetic compatibility. The
sub-discretization of the studied domain can be a major cause
of numerical error in electromagnetic simulations, and a good
discretization requires having a good knowledge of the stud-
ied phenomena, which is generally not the case. The main
motivation of this work is to develop an efficient error esti-
mator for the unstructured Partial Element Equivalent Circuit
(PEEC) method [1], and to couple it with an adaptive mesh
refinement procedure. These developments will improve the
accuracy without excessively increasing the number of degrees
of freedom (DOF). This will make in fine the method much
more functional and attractive to model complex devices.

The approach consists in using an a posteriori equilibrated
error estimator [2]. It is based on the non-verification of the ma-
terial constitutive relationship (e.g. Ohm’s law) discretization
in the active domain using two complementary solutions, the
initial unstructured PEEC solution J and an another admissible
solution E′. The admissible solution is obtained by projecting J
interpolated in the facet function space and reconstructing it in
the edge function space using the appropriate tools as shown
in [2].This approach has been well validated on the TEAM
workshop problem 7 [3] using a refinement mesh algorithm of
the Altair Flux™ software [4].

II. UNSTRUCTURED INDUCTIVE PEEC FORMULATION

Considering the integral representation of the electric field
E and the linear constitutive law J = σ · E in the conductive
domain Ω, we can write

J(P )

σ(P )
= −jω µ0

4π

∫
Ω

J(Q)

r
dΩ−∇V(P ) (1)

where r is the distance between P and the integration point Q.
As proposed in [5], J is interpolated with first-order face shape

functions wf and with applying a standard Galerkin projection
procedure to (1), a matrix system is obtained.
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It is seen as a circuit matrix system ZI = U, where each face
of the mesh element represents one resistance and one self
inductance and is completed by all mutual inductances, and Ii
is the current flowing through the face i. This equivalent circuit
is solved using a classical circuit analysis approach i.e. an
independent loop solver or an independent node solver. In this
work, the solution J obtained by the system (2) is considered
as a primal solution. As the facet functional space is used, the
continuity of the normal component of J is naturally ensured,
while the continuity of the tangential component of E would
not be without the use of the edge functional space.

III. COMPUTING THE ADMISSIBLE SOLUTION E′

In order to calculate the admissible solution E′ which
ensures the continuity of its tangential component, a projection
and reconstruction method of E is used, as proposed for the
magnetic field H in [2]. J can be scaled and projected from
the facet to the edge functional space, so this procedure is done
by solving a finite element problem, according to:∑

j

∫
Ωe

wei · wej ·E′
jdΩe =

∫
Ωe

wei ·
J

σ
dΩe (3)

where we are the edge shape functions used for the interpola-
tion, and J

σ represents values of the electric field E at Gauss
points of each mesh element. The field E′ is obtained and the
continuity of its tangential component on the mesh edges is
ensured. This method is very efficient because a complete dual
problem does not need to be solved, but only a FEM limited to
the active material, i.e. very few DOF and a low memory are
needed compared to PEEC approach to get the initial solution.

IV. ERROR ESTIMATION CRITERION

The error in the discretization of the constitutive relation can
be estimated using the energy-based estimator [6]. The local



error estimator is written in a normalized way according to a
global quantity in the domain Ω. This normalization helps to
highlight the contribution of the local error of a mesh element
to the global error.

ηelem = N × |
∫ΩE

J2dΩE − ∫ΩE
(σ ·E′)

2
dΩE∫

Ω
J2dΩ

| (4)

And the global error estimator is written as follows

ηglobal = | ∫ΩJ2dΩ− ∫Ω(σ ·E′)
2
dΩ∫

Ω
J2dΩ

| (5)

N is the number of mesh elements, and ΩE a volume element.

V. APPLICATION EXAMPLE

The TEAM Workshop problem 7 device is presented in
Fig. 1. The plate is meshed with a initial tetrahedral conform
mesh composed of 380 elements and solved at 50 Hz. The
Joule losses are compared with the references obtained in
[5] with a dense FEM mesh of 2,000,000 elements. Fig. 1
shows the Joule losses in the plate versus the iterations of the
adaptive and the uniform refinement (each element is divided
into four sub-elements). Table I presents a summary of the
comparison between the results obtained over the adaptive
refinement iterations with the FEM reference.

Fig. 1. (Left) TEAM problem 7 geometry (mm) (Right) Joule losses evolution

TABLE I
RELATIVE ERROR OF THE ADAPTIVE REMESHING COMPARED WITH FEM

Elements Joule losses (W) Diff
FEM 2.000.000 4,70 Ref

PEEC 2nd mesh iteration 6.868 4,63 1,48%
PEEC 3rd mesh iteration 33.977 4,70 0,08%

It is noticed that a solution close to the reference is quickly
obtained, even if the starting mesh is coarse as in this case. At
the 3rd iteration, the same value of Joule loss is obtained for
uniform and adaptive refinement, but with a large difference in
terms of number of elements, as shown in Fig. 2, and also in
terms of computation time: the refinement procedure takes 12
min and 103 min for the adaptive and the uniform strategies,
respectively. If we have a look at the uniform refinement pro-
cedure, the 4th iteration could not be solved with our computer
due to the large number of elements (around 800,000), unlike

adaptive refinement where the number is around 165,000. If
the frequency is increased i.e skin depth highly reduced or if
we need to deal with a more complex geometry, basic uniform
mesh refinement becomes unsustainable for the PEEC method
making the adaptive mesh technique very interesting.

Fig. 2. The mesh obtained for the 3rd iteration of refinement at 50 Hz:
(left) uniform (112.000 elements), (right) adaptive (34.000 elements)

In Fig. 3, a comparison is done between the estimated global
errors and real error, i.e. the Joule losses by taking the final
mesh as a reference. The global estimated error has globally
the same behavior compared to the real, which proves that the
calculating method of the second admissible solution and the
error estimator proposed are very efficient for dealing with this
type of Eddy current problem.

Fig. 3. Global errors on the plate at 50 Hz
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