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The high computational scaling with basis set size and the number of correlated electrons is a bottleneck limiting ap-
plications of coupled cluster (CC) algorithms, in particular for calculations based on 2- or 4-component relativistic
Hamiltonians, which often employ uncontracted basis sets. This problem may be alleviated by replacing canonical
Hartree-Fock (HF) virtual orbitals by natural orbitals (NOs). In this paper we describe the implementation of a mod-
ule for generating NOs for correlated wavefunctions, and in particular MP2 frozen natural orbitals (MP2FNOs), as a
component of our novel implementation of relativistic coupled cluster theory for massively parallel architectures [J.
Pototschnig et. al. J. Chem. Theory Comput. 17, 5509, 2021]. Our implementation can manipulate complex or quater-
nion density matrices, thus allowing for the generation of both Kramers-restricted and Kramers-unrestricted MP2FNOs.
Furthermore, NOs are re-expressed in the parent atomic orbital (AO) basis, allowing for generating CCSD NOs in AO
basis for further analysis. By investigating the truncation errors of MP2FNOs for both the correlation energy and molec-
ular properties-electric field gradients at the nuclei, electric dipole and quadrupole moments for hydrogen halides HX
(X=F-Ts), and parity-violating energy differences for H2Z2 (Z=O-Se)-we find MP2FNOs accelerate the convergence of
the correlation energy in a roughly uniform manner across the periodic table. It is possible to obtain reliable estimates
for both energies and the molecular properties considered with VMO spaces truncated to about half the size of the full
spaces.

I. INTRODUCTION

Understanding the electronic structure of large molecules or
complexes containing heavy elements such as lanthanides or
actinides is a problem of relevance for many technological ap-
plications. Examples are the nuclear fuel cycle, such as in the
development of new extractants for separation processes1–6,
and the use of lanthanides as exceptionally strong single
molecule magnets7. To model such materials, Density Func-
tional Theory (DFT) has become the most widely used corre-
lated electronic structure theory approach8, even though it is
difficult to systematically approach exact results with the cur-
rently available density functional approximations8,9. In the
particular case of relativistic electronic structure calculations,
DFT energies may even for closed-shell species strongly de-
viate from experimental or accurate theoretical results10–12.

This also holds for molecular properties, recently Sunaga
and Saue13 reported that the performance of DFT for parity
violation energy shift (PV) calculations – a property requir-
ing a very accurate description of the electronic wave func-
tion near the nuclei – is somewhat disappointing, with devi-
ations to CCSD being as large as 10%. These uncertainties
in the performance of of DFT for heavy elements, especially
for cases in which experimental values are absent or difficult
to generate, calls for the use of state-of-the-art wavefunction
methods to either provide accurate reference data, or be ap-
plied directly if the model sizes are small enough.

Among currently available approaches, coupled cluster

a)Electronic mail: xiang.yuan@univ-lille.fr
b)Electronic mail: l.visscher@vu.nl
c)Electronic mail: andre.gomes@univ-lille.fr

(CC) theory serves as a “gold standard”14,15 for its ability
to give results approaching chemical accuracy for both cor-
relation energies and properties. However, the main dif-
ficulty in employing CC theory in large-scale applications
(such as molecules containing several hundred electrons) is
its high computational scaling with respect to the size of the
system (N). For example, without approximations CCSD
and CCSD(T) approaches scale with O(N6) and O(N7), re-
spectively, and also with approximations such as Laplace
transforms16, distance screening17 and density fitting1819 the
scaling and prefactors are still significantly higher than in a
mean-field approach like DFT.

Another key ingredient in modeling heavy element species
is the treatment of relativistic effects20–22. For cases in which
a given molecular property is not particularly sensitive to ef-
fects such as spin-orbit coupling (SOC) (which is often so
for molecular structural parameters such bond lengths and an-
gles), or to contributions from electrons other than those in
the valence (e.g. dipole moments), approximate treatments
of relativity can be employed, through pseudopotential ap-
proaches23,24, or by including only scalar relativistic effects.
For more challenging applications, or higher precision, a more
general framework can be based on the solution of the 4-
component (4C) molecular Dirac equation25–28. Nowadays
this approach is often made more tractable by solving the ex-
act 2-component (X2C) equation that can be derived from the
Dirac equation after a basis set discretization29–39. Both the
original 4C approach as well as its X2C approximation can
deliver accurate molecular properties across the periodic ta-
ble, also for properties involving core electrons10,13,40–45.

The one-electron functions (molecular spinors, for simplic-
ity also referred to in the following as molecular orbitals) ob-
tained from solving the 4C or X2C matrix equations, serve
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then as a basis for a correlation treatment in the so-called
no-pair approximation in which contributions to the correla-
tion energy due to admixture of states with explicit electron-
positron pairs are neglected46. As the computational cost of
2C approaches is lower than 4C ones, the choice between
which treatment to use prior to the correlated treatment will
depend on a case-by-case analysis of whether the additional
cost of the latter will be offset by improvements in accuracy
over the former.

Recently, Pototschnig et al.47 described a new, efficient rel-
ativistic coupled cluster implementation based on ExaTEN-
SOR48, a distributed numerical tensor algebra library for
GPU-accelerated HPC platforms. This code enabled the cal-
culation of molecular properties with CCSD wave functions
for systems such as [(UO2)(NO3)3]−, for which 200 electrons
and around 1000 virtual molecular orbitals were included in
the correlated treatment. Compared to nonrelativistic imple-
mentations, it is in particular the introduction of SOC which
increases the computational cost (though not altering the over-
all scaling)49. Not only does this necessitate the use of com-
plex algebra, it also makes use of contracted basis sets more
difficult as one needs to be able to describe the differences in
radial extent of spin-orbit split orbitals. This effectively dou-
bles the number of functions that is needed to describe the
p-, d- and f -type core orbitals50 in the case of implementa-
tions based on expressing spinors in scalar basis sets26,28,50.
In this framework another complication arises in how to de-
fine contractions for the small component part of the spinors
that would respect the kinetic balance condition. We note that
these problems do not arise in implementations capable of
directly evaluating 2-electron integrals over 2C spinor basis
functions27,51.

The lack of efficient contraction schemes for scalar basis-
derived implementations, combined with the fact that in many
potential applications it may be required that all, or a signifi-
cant part of core electrons (e.g. in core spectroscopies45) are
treated explicitly, including the deep core orbitals that require
many Gaussian type functions to be described correctly, leads
to calculations having large virtual spaces. This directly af-
fects the performance of CC-based approaches as these scale
with the fourth power of the number of virtuals (O(V 4)). In
practice one therefore often alleviates the computational ef-
fort to some extent by leaving out high energy virtuals that
are mostly localized in the core, but convergence with respect
of such an energy cut-off threshold is slow, especially when
semi-core or core correlation need to be described as well.

In non-relativistic electronic structure theory it has long
been recognized that, in contrast to canonical Hartree-Fock
molecular orbitals (CMO), natural orbitals (NOs)–the eigen-
vectors of the one-body reduced density matrix (1RDM)52,53–
provide a more compact and quickly converging orbital rep-
resentation for describing post Hartree-Fock wavefunctions.
Based on this observation, the idea of replacing the CMOs by
NOs to reduce the size of the virtual space and thereby com-
putational cost was introduced54.

Rather than using an energy threshold as is done by CMOs,
one may instead omit NOs which are likely to not strongly
contribute to the total correlation energy from the virtual

space. This is done by considering the magnitude of natu-
ral occupation numbers of approximate NOs, obtained from
a method that quickly gives access to a reasonable approx-
imation of the 1RDM of the correlated wave function. For
this purpose, second order Møller–Plesset perturbation the-
ory (MP2) is a particularly appealing approach to obtain the
1RDM and the approximate NOs because of its low scaling,
non-iterative O(N5), and the ability to recover most of correla-
tion effects. Within the natural orbital family of methods, the
virtual frozen natural orbitals (FNOs) approach54–56 has there-
fore become popular because of its clear concept and simple
implementation. FNO theory has been thoroughly discussed
for non-relativistic models such as configuration interaction
(CI)54, multi-configuration self-consistent field (MCSCF)57,58

and coupled cluster56,59. Recently, Verma et al.60 furthermore
extended the FNOs algorithm to quantum computers.

The ability of virtual FNOs to reduce computational cost
compared to CMOs is even more appealing in relativistic elec-
tronic structure calculations, in particular in the case of con-
tracted basis sets or when correlating sub-valence electrons.
The main goal of this paper is therefore to describe and show-
case the implementation of MP2-based FNOs (MP2FNOs)
within the framework of the new relativistic coupled cluster
implementation for massively parallel, GPU-accelerated plat-
forms47. While our code primarily aims at describing cases
in which spin-orbit coupling is taken into account, we also
demonstrate its use with a non-relativistic Hamiltonian.

Our second aim is to discuss the performance of MP2FNOs
across the periodic table, by treating model systems contain-
ing elements ranging from first-row such as fluorine, to su-
perheavy elements such as tennessine. Here, we shall focus
in how well truncated FNO spaces describe both correlation
energies as well as first-order properties such as the electric
field gradient at the nuclei (EFGs), parity-violation energy
shifts, and electric multipoles (dipole and quadrupole). The
first two properties are chosen as representatives of properties
for which a good description of wavefunctions in the region
close the nuclei is important (even if only valence electrons
are correlated), while the electric dipole and quadrupole mo-
ments are an example of properties for which the major con-
tributions arise from valence electrons.

Besides being able to improve the efficiency of a calcula-
tion, natural orbitals are also interesting as tools for analysis,
such as in estimating the multi-reference character of a sys-
tem61. Their visualization in real space can furthermore pro-
vide insight into correlation effects, since by their one-particle
nature they are easier to interpret than the wavefunction itself.
Thus, another aim of our implementation was to provide a tool
for obtaining natural orbitals for any correlated wavefunction,
from a 1RDM. In this paper we shall make use of the analysis
of the CCSD natural orbitals, and in subsequent work we plan
to further explore the use of natural orbitals in visualization.

This article is organized as follows. In Sec. II the back-
ground of MP2FNOs theory is summarized. In Sec. III we
described the details of implementation. All the sample cal-
culations are presented and discussed in Sec.IV-V. And finally
a brief summary is given in Sec. VI.

We note that upon completing this manuscript, we have
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become aware of another implementation of the MP2FNOs
approach for relativistic correlated methods, in the BAGH
code62. While the main features of the MP2FNOs method
are the same in both implementations we first note that our
implementation fully exploits ExaTENSOR’s single-node or
distributed memory (multi-node) and GPU acceleration capa-
bilities, and as such can be efficiently employed in systems
ranging from local clusters to latest-generation supercomput-
ers. Second, as it will be outlined below our implementation is
capable of manipulating both complex and quaternion density
matrices, thus allowing for the generation of both Kramers-
restricted and Kramers-unrestricted MP2FNOs. Finally, it al-
lows for re-expressing NOs in atomic orbital (AO) basis for
further analysis.

II. THEORY

As the MP2FNO approach is well-known in a non-relatistic
context and requires essentially no modification for applica-
tion in a no-pair relativistic context, we will only provide a
brief description. We apply the orbital-unrelaxed MP2 ap-
proximation (for working equations for the orbital-relaxed
formalism in a relativistic context see reference 63). The
second-order contribution to the occupied-virtual block of the
density matrix from single excitations is zero for canonical
orbitals53 while the relaxation contributions to this block are
ignored in orbital-unrelaxed MP2. This approximation thus
decouples the occupied and virtual spaces and allows us to fo-
cus only on obtaining the virtual-virtual block of the density
matrix. We want to keep occupied orbitals in their canonical
form and therefore will not determine the occupied-occupied
part of the density matrix, for which we simply retain the di-
agonal Hartree-Fock form D

(0)
oo = 1oo. With these approxi-

mations the second-order FNOs density matrix is given as

D
FNO =

[

1oo 0ov

0ov D
(2)
vv

]

(1)

with the relevant matrix elements given as

D
(2)
AB =

1
2 ∑

C,I,J

〈AC| |IJ〉〈IJ| |BC〉
εAC

IJ εBC
IJ

(2)

Here, following usual conventions I, J denote occupied
spinors and A, B virtual spinors, and εAB

IJ = εI + εJ − εA −
εB, is the energy difference between canonical Hartree-Fock
spinors. In our implementation, these matrices are ob-
tained without imposing any time-reversal symmetry on the
spinor set and are thus valid for both Kramers-restricted
and Kramers-unrestricted Hartree-Fock procedures. If time-
reversal64 and spatial symmetry65 are not present, these ma-
trices are in general to be represented in complex algebra.

The simplest procedure to obtain natural spinors is to ap-
ply a diagonalization in complex algebra after D(2)

vv is formed.
However, for closed shell systems in which time-reversal sym-
metry is enforced for the orbitals at the mean-field level, as
is the case in the DIRAC code, one would like to retain

such Kramers pairing also for the natural spinors. This re-
quires careful attention when degeneracies beyond the two-
fold Kramers degeneracy are present, as complex diagonal-
ization will arbitrarily mix the degenerate solutions such that
Kramers pairing is not guaranteed.

In such cases, Kramers pairing of the natural spinors can be
enforced by first transforming D

(2)
vv from complex to quater-

nion algebra D
(Q)
vv ,

D
(Q)
vv =U

†
D

(2)
vv U (3)

where the tranformation matrix U is given by66

U =

(

I ǰI

ǰI I

)

(4)

and I is a unit matrix of dimension n×n,n being the number
of Kramers pairs. This transformation will block diagonalize
D

(2)
vv , leading to two decoupled matrix problems of half the

original dimension in quaternion algebra.

D
(Q)
vv V =OV (5)

Diagonalization of one of the two blocks provides a unique
set (V) of quaternion FNOs in MO basis and their respective
occupation numbers (O) from which the solutions for the other
block can be generated via Kramers symmetry.

At this stage, we can employ the information from the oc-
cupation numbers to reduce the original virtual space V to V̄

by removing from V orbitals with occupation numbers lower
than a user-defined threshold. The larger such threshold is, the
smaller the remaining set will be. In the numerical examples
presented in the following we will try to find the optimal bal-
ance between efficiency (smaller sets) and accuracy (recover-
ing more of the correlation energy and better reproducing first
order properties).

After the basis is truncated, it is convenient to recanonize
the remaining orbitals. To this end, we perform two opera-
tions: first we transform the virtual-virtual block of the Fock
matrix (Fvv) into the truncated FNOs basis (F̄vv) and then do a
(quaternion re)diagonalisation to obtain a new set of canonical
orbitals W̄ and orbital energies ǭ.

F̄ = V̄
†
F V̄ (6)

F̄ W̄ = W̄ ǭ (7)

The product V̄ W̄ of these two transformation matrices
gives the transformation that expresses the recanonized trun-
cated natural orbital set in the atomic orbital(AO) basis. These
orbitals can then be used in any subsequent correlated calcu-
lation as replacement to the original Hartree-Fock orbitals. In
summary the transformation of the original Hartree-Fock or-
bitals U to the new set Ū is thus given by

Unew = [Uocc,Ūvir] (8)

where

Ūvir =Uvir(V̄ W̄ ) (9)

Ūocc =Uocc (10)

and the dimension of the rectangular matrix V̄ and that of the
square matrix Ū depends on the truncation threshold.
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III. IMPLEMENTATION

The aforementioned algorithm has been implemented in the
relativistic quantum chemistry package DIRAC26, as part of
the ExaCorr code47. Our implementation allows for calcula-
tions to be carried out either using a single-node configuration
(for which ExaTENSOR provides OpenMP parallelization, on
top of GPU offloading) or employing distributed memory in
the case of multi-node runs.

Our implementation is structured following its three main
tasks: one module deals with the construction of density ma-
trices in the MO basis, another carries out the complex or
quaternion diagonalization of density matrices, and the fi-
nal module takes care of the construction of the recanonized
MP2FNOs. The final step should be repeated if the trunca-
tion treshold is changed, the first two are independent of this
threshold.

A. Density matrix construction

In Exacorr all computationally expensive operations such
as the tensor contractions used in the determination of ampli-
tudes or the construction of density matrices are offloaded to
ExaTENSOR library.

In the case of MP2FNOs, we have created a dedicated
driver for MP2 calculations, in which we (i) calculate and
store in memory two electron repulsion integrals (ERIs) in
AO basis with the aid of the InteRest library67; (ii) employ
the standard Yoshimine scheme68 (which scales as (O(N5))
to transform the AO integrals to the MO basis. Only the di-
rect and exchange contributions to the 〈i j| |ab〉 (OOVV-type)
integrals are calculated, which makes the integral transforma-
tion step much faster than the generation of a complete set of
MO integrals as is normally done in ExaCorr. After antisym-
metrization the 〈i j| |ab〉 integrals are stored (in memory) as
ExaTENSOR tensors, which may reside on a single node or
be distributed over several nodes. Finally, (iii) the MP2 am-
plitudes tensor and the MP2 energy are determined and the
density matrix D

(2)
vv is constructed according to equation 2.

B. Complex-quaternion transformation and diagonalization

The density matrix computed in Exacorr is generated in
complex algebra. The complex-quaternion transformation is
carried out following Eqn. 27 in ref. 69

Qγpq = Re(γpq)+ ǐIm(γpq)+ ǰRe(γpq̄)+ ǩIm(γpq̄), (11)

in which lowercase symbols with (without) bars indicate the
Kamers pairing of the original MO basis and the one-particle
reduced density matrix (1RDM) is now indicated by γ for con-
sistency of notation with that of ref. 69. This quaternion form
can be diagonalized using the quaternion diagonalization rou-
tine provided by DIRAC and be back-transformed to complex
representation by the routines provided in this module. If the

original basis did not possess Kramers symmetry, the diag-
onalization is directly carried out in complex algebra. The
resulting full set of FNOs is then stored on file for analysis
and processing by module (C) described below. The module
responsible for the quaternion transformation and diagonal-
ization is constructed in such a way that it can also be used
with wave function models other than MP2.

C. Selection and recanonization

The third module retrieves FNOs that have occupation
numbers above treshold and transforms the original Fock
matrix to the truncated virtual space. After recanonization
(Eqn. 7) and transformation to AO-basis (Eqn. 10) the final
reduced set of FNOs is stored on file. As this step takes vir-
tually no time compared to the other steps in the procedure,
this may be easily repeated to test out the effect of varying the
treshold value on the generated recanonized orbitals and their
energies.

D. Summary of the MP2FNO Algorithm

Figure 1. Work flow of a MP2 Frozen natural orbitals calculation.

The MP2FNO workflow is schematically represented in
Figure 1, and consists of the following steps:

1. A calculation in the full basis set is performed to get a
set of occupied and virtual molecular orbitals.

2. The virtual-virtual block of MP2 density matrix is gen-
erated. We note that in this step is possible to either
consider the full virtual set, or already employ a prelim-
inary screening in which for instance very high-energy
virtuals are neglected.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
87

24
3



Accepted to J. Chem. Phys. 10.1063/5.0087243

5

3. Optional, only for restricted starting orbitals: Trans-
form the complex D

(2)
vv into the quaternion represen-

tation, D(Q)
vv .

4. Diagonalize Dvv or D(Q)
vv to determine FNOs and occu-

pation numbers.

5. For a given threshold: truncate the FNO space and
transform the Fock matrix to recanonize and write the
orbitals out in the AO basis.

6. Use the recanonized FNOs in higher level wave-
function models such as coupled cluster.

IV. COMPUTATIONAL DETAILS

All MP2 and CC calculations are carried out with develop-
ment versions (revisions 2e659d7, 0f8e9f2, 9e10bc667,

8b81f8a, e7d2d4d, ec415a5, 0ff0d6f, d70bbe2) of
the DIRAC code26,70,71, and of the ExaTENSOR48,72 library
(revision d304c03b7), employing Dyall basis sets of triple-
zeta quality (dyall.av3z)73–75 for the heavy elements (Br, I,
At, Ts, Se), and Dunning aug-cc-pVTZ sets76–78 for (H, F,
Cl, O, S), all of which are left uncontracted unless otherwise
noted. The aug-cc-pCVTZ basis set was also employed in the
HCl case79,80, for investigating how the additional core corre-
lating functions in aug-cc-pCVTZ affect the results. Finally,
for investigating the convergence of expectation values for HI,
we employed double-zeta quality Dyall73,74 (dyall.av2z) and
Dunning76–78 (aug-cc-pVDZ) basis sets for I and H respec-
tively.

Here we make use in all calculations of the exact two
component Hamiltonian (X2C)32, in which we include two-
electron spin-orbit contributions via to the untransformed
two-electron potential via atomic mean-field contributions
calculated with the AMFI code81–83. In our calculations
we have made use of Kramers symmetry in the generation
of the molecular spinors26. As part of the supplementary
information, we provide in table S2 results with different
Hamiltonians (Dirac-Coulomb, X2C, spinfree X2C and Non-
relativistic) for expectation values for the HTs molecule. We
note the code is equally capable of handling orbitals obtained
with the so-called molecular-mean-field approach, in which
the transformation to 2C is carried out after a 4C mean-field
calculation39. In the case of the HCl molecule, we have also
employed the non-relativistic Hamiltonian (as specified by the
.NONREL keyword), both with contracted and uncontracted
bases sets.

The molecular structures employed in all calculations have
been taken from the literature: In the case of hydrogen halides,
from Huber84 for HF to HI, from Gomes and Visscher41

for HAt and from Thierfelder et al.42 for HTs. The in-
ternuclear distances employed are thus H-F(0.9168 Å); H-
Cl(1.27455 Å); H-Br(1.41443 Å); H-I(1.609 Å); H-At(1.722
Å); H-Ts(1.941 Å). For the chiral molecules H2Z2, the Z-Z
bond length, H-Z bond length and H-Z-Z bond angle are taken
from Table I of Laerdahl and Schwerdtfeger85 and the dihe-
dral angle is fixed at 45 degrees throughout the computation.

All calculations have been carried out with a point charge nu-
cleus model.

Besides calculating MP2, CCSD and CCSD(T) energies,
we have obtained electric dipole moment (EDM), electric
quadrupole moment (EQM) and electric field gradient (EFG)
for the HX systems, and parity violation energy differences
(PV) for H2Z2 systems. These properties have been obtained
analytically for CCSD wavefunctions using the implementa-
tion described in ref. 69.

In the calculations, the size of the complete virtual spinor
spaces is 156 (HF), 182 (HCl), 310 (HBr), 382 (HI), 544
(HAt) and 588 (HTs), 314 (H2O2), 366 (H2S2) and 622
(H2Se2). Unless otherwise noted, all electrons were corre-
lated in the calculations. For the smaller systems HF, HCl,
HBr, H2O2 and H2S2 we were able to perform calculations on
a single node of the laboratory compute cluster in Lille. For
HI, HAt, H2Se2 and HTs we employed, respectively, 32, 32,
49 and 64 nodes of the Summit supercomputer. For HI cal-
culations with double-zeta quality basis sets, we were able to
perform single-node calculations on the Jean Zay supercom-
puter.

The data presented in this manuscript is available at the
Zenodo repository of reference 86.

V. RESULTS AND DISCUSSION

In this section we discuss the performance of the MP2FNOs
approach for the CCSD correlation energy and molecular
properties, and the impact of employing different occupa-
tion number thresholds on the results. In order to mini-
mize computational cost on our systematic studies, we carried
out CCSD(T) calculations only when discussing the effect of
FNO and CMO truncation on HCl bond lengths.

For minimizing the bias in the CMO and FNO compari-
son, we report results in which we employ the closest pos-
sible number of CMO to that of FNO, such that for CMO
we avoid truncations that would remove close-lying orbitals
such as those belonging to a same atomic shell. In practice,
this means CMO calculations generally contain a few more
orbitals than FNO ones.

In figure S1 in the supplemental information, we present
for the EFG of HI the difference between the approach taken
here for CMO, and that of considering striclty the same num-
ber of CMO and FNO. We can see that arbitrarily truncating
the virtual space for CMO can lead to large oscillations in the
expectation values, a point that will be addressed in detail in
the following. Additionally, from the comparison of Hamil-
tonians for HTs in table S2 in the supplemental information,
we see that our choice of the X2C Hamiltonian is a suitable
one for our purposes; while total energies obviously are very
different between Hamiltonians, we see that for those taking
into account SOC, relative energies (HOMO-LUMO gap) and
expectation values are very close to each other. This is in
stark contrast with scalar relativistic and non-relativistic cal-
culations, which still show fairly good agreement with 2C/4C
approaches for the quadrupole moment and even the HOMO-
LUMO gap, but are completely off the mark for the EFG and
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dipole moment. This is due to the very strong spin-orbit split-
ting in the valence p-shell of the superheavy tenessine.

A. Correlation Energy

CCSD correlation energies obtained with CMO and FNOs
are displayed in Figure 2 for the hydrogen halides. In
these, we show values computed for four values of natural
occupation number threshold (1.0 × 10−3,1.0 × 10−4,1.0 ×
10−5,1.0×10−6), as well as the two extrema: a point without
any virtual orbitals (corresponding to the Hartree-Fock solu-
tion), and another without any truncation of the virtual space.
Since the number of virtuals varies for each system, we pro-
vide relative measures in terms of the percentage of the virtual
space included in the calculations for each point, and likewise
for the amount of correlation energy recovered at each point.

From the plots, it is clearly the case that FNOs show a more
rapid convergence than CMO across the periodic table, as
could be expected from the non-relativistic literature56,59,87.
For example, to recover only 50% correlation energy already
40% to 50% of the virtual CMO space is required, while only
20% of the FNO space suffices. Also for the more realistic
goal of attaining at least 90% of the correlation energy use of
FNOs can reduce the required space by 10s of % thereby in-
troducing significant savings in (memory) storage of tensors
with virtual indexes, as well as in operation counts for con-
tractions involving virtual indexes in the CCSD equations.

An interesting finding is that the area enclosed by two lines
slightly decreases as we go down the periodic table from F to
Ts. This means that the FNOs approach recovers less corre-
lation, for a given truncation, as the number of electrons in-
creases. For example, a threshold of 1.0×10−5 (the 4th point
in Figure 2) means, for HF and HCl, that more than 60% of
the virtual space is included in the calculation, whereas for
HTs the same threshold only includes 43%; this means that
for HTs virtual orbitals with low occupation numbers are still
important for the correlation treatment.

Apart from testing the performance for single point at the
potential energy surface, it is also important to verify the per-
formance of FNOs at different geometric structures. To this
end, in Figure 3 we present the potential energy curves around
equilibrium for HCl at CCSD(T) level, comparing sets of
FNOs and CMO virtuals that are truncated to the same num-
ber of virtuals (corresponding to about 50% of the complete
virtual space). We see that, except for a global energy shift,
the FNOs follow the curvature of full virtual space potential
energy curve more closely than the CMO curve does.

The better agreement of FNOs relative to CMOs can be
quantified by a comparison of spectroscopic constants for the
three curves, shown in Table I. There, we report the equilib-
rium distance (Re) and vibrational constant (ωe), calculated
with the LEVEL program88. Taking the full valence space
result as a reference, the truncated orbitals overestimate the
Re but underestimate the ωe. However, the error of truncated
FNOs is 0.0037Å(Re) and 17 cm−1 (ωe), which is only half
that of truncated CMOs.

As we correlated all electrons, but employed basis sets

Table I. Spectroscopic constants of ground state of HCl

Re(Å) ωe (cm−1)
Exp 1.2746 2991

Untruncated Orbitals 1.2756 2986
Truncated CMO 1.2859 2942
Truncated FNO 1.2793 2969

without specific core correlating functions, one may ask what
would be the effect of including such functions. In table S1
of the supplemental information, we provide a comparison
of correlation energies and expectation vales between the un-
contracted aug-pVTZ and aug-pCVTZ basis sets for the HCl
molecule without using virtual space truncation. These re-
sults clearly indicate that, although the additional high angu-
lar momentum core correlating functions are quite important
for increasing the amount of correlation energy for the core
and core-valence interactions, the two types of uncontracted
basis sets agree well for the computed property values. An-
other interesting point to note is that, as can be seen from
table S3 of the supplemental information, the percentage of
correlation energy recovered at each virtual space truncation
point is nearly the same for MP2 and CCSD. This indicates
that the information obtained from the full virtual space MP2
calculation preceding the truncation can potentially be used to
correct the CCSD correlation energy for the effect of trunca-
tion. While going beyond the scope of this paper, this point
merits further investigation, in which also correction for trun-
cation errors in higher order methods such as CCSD(T) could
be investigated.

B. Molecular properties

1. Electric Dipole and Quadrupole Moments

To asses performance of FNOs for molecular properties we
first considered the molecular EDM and EQM because these
do well characterize the overall electronic charge distribution
within molecules. These properties sample the regions away
from the nuclei, as is clear from their operator forms in Eqs. 12
and 13, respectively:

Dµ = e∑
i

(~ri)µ (12)

Qµν = e∑
i

((~ri)µ(~ri)ν − r2δµν) (13)

Figure 4 shows how the EDM and EQM correlation cor-
rection varies with the truncation of the virtual orbital spaces,
with dotted and solid lines representing EDM and EQM, re-
spectively. As before FNOs results are plotted with square
markers. For these properties, the convergence is non-
monotonic, unlike energy that we considered before. For both
CMO and FNO truncation, the use of a high truncation value
and consequently small virtual space (less than 30% virtual
orbitals) may lead to a strong overestimation or even a wrong
sign of the correlation correction to the molecular property.
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Figure 2. Convergence of the CCSD correlation energy with respect to the size of the virtual orbital space, for the X2C Hamiltonian. The X
axis indicates the fraction of the virtual space retained, while the Y axis gives the fraction of the correlation energy recovered with respect to
the value obtained with the untruncated virtual space.

Especially for CMO truncation, it is almost impossible to es-
timate the truncation error from a sequence of results for small
virtual spaces. For FNO truncation oscillations are much less
pronounced than for CMO, which indicates that also for these
properties it is advantageous to use FNO truncation rather
than CMO truncation. The similar performance for the cor-
relation energy could thereby be used as a guideline. Taking
the HF molecule as example, we note that with a threshold of
1.0×10−4, the FNOs recover 72% of the correlation contribu-
tion to EDM while recovering 85% of the correlation energy.
This indicates that the simplification of using a common cut-
off for both properties could be a suitable strategy. In addition,
we note that the performance of FNOs in EDM also applies to
the heavier elements in the studied series. Even for HTs, set-
ting the truncation threshold to 1.0× 10−4 (using only 23%
of the orbital space) already recovers 91% of the correlation
contribution to the EDM.

The EQM shows a similar behaviour as the EDM, albeit
with stronger oscillations. The largest oscillations for the

EQM occur at the same position as for the EDM, but the am-
plitude thereof is much larger. This is again most pronounced
in the CMO case. Taking HI as an example, retaining 12% of
the CMO virtual space overestimates the correlation contribu-
tion to EDM by 150%, while the EQM contribution is even
seven times too large. As for the EDMs, the oscillations re-
sulting from FNO truncation are smaller and convergence is
more smooth, which should make it possible to use a more
aggressive cut-off strategy than is possible with CMOs.

2. Electric field gradient

To also consider the effect of truncation on properties that
probe the regions close to atomic nuclei we now turn to the
electric field gradients (EFGs) at the halogen nuclei. EFGs
couple with nuclear quadrupole moments89 for nuclei with
spin greater or equal to one and are important in the analy-
sis of nuclear magnetic resonance (NMR) experiments90. For
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Figure 3. Potential energy curves of HCl at CCSD(T) level using
untruncated orbitals (red) as reference, truncated FNO (black) and
truncated CMO (blue), respectively. The X axis is the internuclear
distance and the Y axis is the total energy in Hartrees.

EFGs both (semicore) correlation and SOC effects are known
to be of importance91 and they form therefore a good sec-
ond test for the applicability of FNO truncation in relativistic
calculations. The EFG is defined as the second derivative of
the electric potential V(R) with respect to the nuclear position
vector, taken at the nuclear position RN

qµν(RN) =− ∂V (R)

∂Rµ ∂Rν
|R=RN

(14)

By introducing the EFG tensor operator92

q̂e
µν =

3(~r−~RN)µ(~r−~RN)ν −|~r−~RN |2δµν

|~r−~RN |5
(15)

the EFG can be expressed as the expectation value of a one-
body operator which makes evaluating its value similar to
computing the EDM and EQM.

For linear molecules it suffices to compute only the zz-
component (with the z-axis chosen along the molecular bond)
as the other non-zero parts of the tensor can then be deter-
mined by symmetry. Figure 5 plots this zz component of the
EFG and shows for both FNO and CMO oscillations upon
truncating the orbital spaces. In the case of correlating all
electrons, we see that FNO truncation leads to worse perfor-
mance than CMO truncation, due to even more rapid oscilla-
tions. Recalling that the only difference between computing
the EFG and EDM properties is in the operators used, it is of
interest to consider their differences. The EFG tensor operator
scales as r−3 in contrast to the r1 and r2 scaling of the EDM
and EQM operators. Density changes in the core region due to
correlation are thus magnified by the EFG operator while they

are hardly of influence for the EDM and EQM. Such changes
may both come from core correlation as well as from corre-
lating the valence electrons (through the tails of the valence
orbitals in the core region). As core correlation may be harder
to converge than valence correlation, we will separate the two
effects by comparing all-electron and valence-only electrons
calculations in the next subsection.

3. Convergence analysis for HCl and HI

The issue of oscillating convergence can be conveniently
analyzed for the HCl molecule as chlorine is large enough to
investigate the effect of core correlation, yet small enough to
allow for quick calculations. Rather than taking only a few
truncation values, we now systematically extend the size of
the virtual space by adding individual FNOs and show the ef-
fect thereof on the EDM, EQM and EFG of HCl in Figure 6
for both all-electron and valence-only correlation calculations.

For the all-electron case, we see in the EDM and EQM plots
for CMO truncation peaks when 13 and 23 orbitals are used.
This is probably due to quasi-degeneracies, as the orbital en-
ergies of the 12th, 13th, 14th orbital are 0.42418, 0.43657 and
0.43673 Hartree, respectively. This set of virtual orbitals is
primarily a diffuse chlorine p-type orbital shell that is split
due to the formation of the hydrogen-chlorine bond as well as
due to spin-orbit coupling. Taking only one of the two almost
degenerate π-type orbitals in the correlation space, gives an
unbalanced description and impacts these valence properties
significantly. For the EFG this particular set of three CMOs
is less important because diffuse orbitals only contribute indi-
rectly to this property. For the EFG one may notice (Figure 6,
lower left panel, blue line) a large oscillation around virtual
orbital number 70 in the all-electron calculation. This is due
to the more core-like p-orbitals 70, 71, and 72 with energies
of respectively 35.63, 35.73 and 36.10 Hartree, that are im-
pacting the correlation of core electrons. Restricting the cor-
relation treatment to valence electrons only strongly reduces
the effect of these virtuals (Figure 6, lower right panel).

The FNO curves for the EDM and EQM show only an ini-
tial oscillation that is followed by rather smooth convergence.
This initial oscillation can also be traced to quasi-degenerate
orbitals (but now in terms of occupation numbers). For the
FNOs, the occupation number of the 2nd, 3rd, 4th, 5th orbital
are 0.008692, 0.008676, 0.008508, 0.008491, respectively,
and like with near-degenerate CMOs it appears recommend-
able to either include all or none of a degenerate set. For the
EFG, the situtation is unfortunately more complicated, also
with FNOs.

In the all-electron calculation values only stabilize after in-
clusion of about 50 orbitals, while in the valence-only calcu-
lation stable convergence is reached after addition of about
20 FNOs. Compared to the CMO truncation scheme, the ad-
vantage of FNO truncation appears to be absence of "late"
oscillations (at low threshold values) that could cause arte-
facts in the CMO truncation schemes. Such oscillations are
typical for EFGs, for which an indivdual orbital may provide
a significant contribution but where the contribution of full,
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Figure 4. Convergence of the CCSD electric dipole and quadrupole moments with respect to the size of the virtual orbital space, for the X2C
Hamiltonian. The X axis indicates the fraction of the virtual space retained, while the Y axis gives the fraction of the expectation values
recovered with respect to the value obtained with the untruncated virtual space.

spherically symmetric shells of orbitals add up to zero due
to symmetry. This is well-known for CMOs, but also holds
for FNOs. An example are the EFG integrals of the 13th,
14th, 15th FNOs which evaluate to -78, 44 and 26 au. These
large values get multiplied by very similar occupation num-
bers (resp. 7.9 10−4, 7.0 10−4, 7.0 10−4) so that their contri-
butions to the total EFG nearly cancel.

A similar argument can be used to rationalize the differ-
ence between the valence and all-electron calculations. In the
correlation of core orbitals one effectively changes the rela-
tive occupation of the three 2p orbitals in the chlorine core by
making their occupations slightly smaller than 2. Imbalances
in the correlation get thereby for the EFG multiplied by large
integral values (about 80 au for the 2p3/2 orbitals) which cre-
ates the large oscillation seen in these calculations. For EDMs
and EQMs the integral values are much more alike and smaller
in magnitude, leading to the observed smoother convergence.

To check if such oscillation problems are particular for the
relativistic domain, or can also be found in the non-relativistic

case, we have carried out the same analysis as above by em-
ploying a non-relativistic Hamiltonian, employing both con-
tracted and uncontracted (valence) basis sets and correlating
both valence and all electrons. The results are shown in Fig. 7.

From these, it can be seen that for the electric dipole and
quadrupole moments, the non-relativistic calculations basi-
cally show the same oscillations as for X2C, and results for
contracted and uncontracted basis sets are nearly indistin-
guishable from each other. For the EFG there is also no no-
ticeable difference for the convergence patterns between X2C
and non-relativistic results for uncontracted basis sets.

On the other hand, we observe significant differences be-
tween EFG calculations employing contracted and uncon-
tracted basis sets. The first one is that, already at the Hartree-
Fock level, there is a significant difference (nearly 10%) on
the absolute value of the EFG, with contracted values under-
estimating uncontracted ones. Second, we note that with con-
tracted basis sets, there are very few oscillations in FNO EFG
values (even when correlating all electrons), and FNO results
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Figure 5. Convergence of the CCSD electric field gradient at the halogen nucleus with respect to the size of the virtual orbital space, for the
X2C Hamiltonian. The X axis indicates the fraction of the virtual space retained, while the Y axis gives the fraction of the expectation value
recovered with respect to the value obtained with the untruncated virtual space.

are already quite stable for a much lower number of virtuals
than CMO results (CMO EFG values are still not completely
converged at nearly full virtual spaces for the contracted sets).

This can be understood as a manifestation of the degree of
atomic symmetry that is imposed by the contraction for the
different orbital shells, particularly for the occupied core or-
bitals. In the contracted sets these are forced to maintain their
atomic-like nature during the molecular calculation because
electron correlation cannot as easily deform the orbitals as is
possible when the basis set is uncontracted. This is under-
scored by the nearly identical behavior of the contracted all
electron and valence calculations, as in the latter core orbitals
are kept frozen.

To check if the convergence behavior mentioned above is
also found for a heavier system, we carried out similar cal-
culations for HI, but using an uncontracted double zeta basis
set. It can be seen from Fig 8 that although HI has many more
electrons, it still shows a very similar convergence as observed
for HCl. For instance, to get a converged EFG value of HI, in

the valence only computation, one just needs to correlate 20
FNOs.

Looking at these tests, we may conclude that for properties
like EDM and EQM, which are dominated by valence electron
contributions, one can safely use FNOs and their occupation
numbers to cut off the orbital space, both in valence-only and
all-electron correlation calculations. For sensitive properties
for which core electrons may give large and nearly cancelling
contributions, it is also with FNOs numerically more stable to
correlate only the valence electrons.

C. Parity violation

Detection of parity violation (PV) effects, associated with
weak force in atoms and molecules is an active field of
research13,93,94. While this property can also be computed
with perturbation theory starting from nonrelativistic theory95,
it is advantageous to use a relativistic quantum chemistry
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Figure 6. Effect of virtual space truncation on the expectation values (top: EDM; middle: EQM; bottom: EFG) of HCl, for the X2C Hamil-
tonian. The X axis gives the number of correlated virtual Kramers pairs, up to and including the full virtual space (the rightmost points in the
graphs correspond to calculations with the full virtual space). Figures to the left correspond to calculations correlating all electrons, and to the
right correlating valence electrons only. T.

framework because the PV energy can then be formulated as
an expectation value of an effective one-body operator85:

EPV = ∑
A

〈Ψ| ĤA
PV |Ψ〉 (16)

with

ĤA
PV =

GF

2
√

2
QA

W ∑
i

γ5
i ρA(ri) (17)

and GF =1.16637×10−11MeV−2 being the Fermi coupling
constant. The A and i label nuclei and electrons, respectively.
The weak charge QA

W = −NA + ZA(1− 4sin2θω), where NA
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Figure 7. Effect of virtual space truncation on the expectation values (top: EDM; middle: EQM; bottom: EFG) of HCl, for the non-relativistic
Hamiltonian and employing contracted and uncontracted Dunning basis sets. The X axis gives the number of correlated virtual Kramers pairs,
up to and including the full virtual space (the rightmost points in the graphs correspond to calculations with the full virtual space). Figures to
the left correspond to calculations correlating all electrons, and to the right correlating valence electrons only.

and ZA is the number of neutrons and protons in each nucleus.
θω is Weinberg mixing angle, that is set to 0.2319 for sin2θω .
ρA and γ5

i are normalized nucleon density and 4-dimensional
chirality operator, respectively.

γ5 =

(

O I

I O

)

(18)

Sunaga et al.13 already investigated use of CMO trunca-
tion at CCSD level with two different threshold values and
showed that truncation is well possible for this property. In
current work, we also employ FNO truncation and test more
thresholds for CMO truncation and its effect on the PV value.

The results of the two truncation schemes for the H2Z2
(Z=O, S, Se) molecules are displayed in Figure 9. We find
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Figure 8. Effect of virtual space truncation on the expectation values (top: EDM; middle: EQM; bottom: EFG) of HI, for the X2C Hamiltonian.
The X axis gives the number of correlated virtual Kramers pairs, up to and including the full virtual space (the rightmost points in the graphs
correspond to calculations with the full virtual space). Figures to the left correspond to calculations correlating all electrons, and to the right
correlating valence electrons only.

that both FNO and CMO truncation leads to strong oscilla-
tions like observed in the EFG case. Again, these are most
pronounced for aggressive truncation in which more than
50% of the virtual orbital space is removed. Looking more
closely at these systems we find that orbital energies (for
CMO) or occupation numbers (for FNO) show a number of
near-degeneracies. These orbitals give individually large but

partially cancelling contributions. We have not investigated
valence-only correlation explicitly for this property as core
contributions are probably more important than for the EFG
and it is more difficult to define a representative small test
case. For our current tests we note that the convergence be-
haviour is consistent with results of reference 13, in which
rather conservative CMO truncation tresholds of 100 and 500
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Figure 9. Convergence of the CCSD PV energy with respect to the size of the virtual orbital space, for the X2C Hamiltonian. The X axis
indicates the fraction of the virtual space retained, while the Y axis gives the fraction of the expectation value recovered with respect to the
value obtained with the untruncated virtual space.

Hartree were used for H2Se2. With both CMO and FNO trun-
cation a 50 % reduction appears realistic, leading to a signif-
icant reduction of the computational effort. For instance, in
the current test the H2Se2 calculation on 49 nodes of Summit
with the full orbital space took 100 minutes while the 50 %
reduced calculation too only 20 minutes.

Nevertheless, for the particular case of PV energy evalua-
tion, FNO truncation does not appear to give a significant ad-
vantage over the simpler CMO truncation scheme. Apart from
the sensitivity of PV operator on core correlation already ob-
served in the EFG evaluation, another possible reason is our
use of the unrelaxed MP2 density matrix. Shee, Visscher, and
Saue69 found for H2S2 that the contribution of orbital relax-
ation to the density matrix is significant when used to evaluate
this property. It would be interesting to investigate how these
contributions impact the generated FNOs are thereby the con-
vergence of the FNO truncation scheme.

VI. CONCLUSIONS

In this work we describe the formulation and implementa-
tion of the MP2 frozen natural orbitals (MP2FNOs) method
for relativistic electronic structure calculations, which is an
appealing approach for truncating the large virtual orbital
spaces typically associated with relativistic calculations, while
retaining the high accuracy expected of wavefunction-based
approaches such as coupled cluster.

This implementation was carried out in the massively par-
allel coupled cluster module of the DIRAC program, with the
help of a framework to manipulate 1RDMs obtained from cor-
related wavefunction calculations. A particularity of our code
is its ability to generate a set of canonical occupied and trun-
cated virtual orbitals as well as natural orbitals in the atomic
basis, so that these can be conveniently employed in post-
Hartree-Fock calculations, and also used for analysis.

We employed our code to investigate the performance
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of MP2FNOs for the calculation of correlation energies
and ground-state first-order properties such as dipole and
quadrupole moments, electric field gradient at the nuclei, and
parity violation energy shifts. As model systems, we consid-
ered species containing elements from the first row up to and
including the superheavy element tennessine.

We have found that though MP2FNOs are always capa-
ble of recovering more correlation energy than their canonical
counterparts for a given truncation, this advantage is slightly
diminished for the heaviest systems considered, containing
Astatine and Tennessine. In spite of that, it is generally found
that MP2FNOs can reduce virtual spaces to about 50% of their
original size without significant errors in the energy.

Among the properties considered, a truncation of about
50% of the original virtual space has also been shown to pro-
vide values that are nearly converged to the results without
truncation. That said, different properties exhibit very dif-
ferent convergence behavior; for valence properties such as
the electric dipole moment MP2FNOs show a fairly smooth
convergence to the reference values, whereas for the elec-
tric field gradient and in particular the parity violation energy
shifts, for which regions close to the nuclei are important (and
thus higher-lying virtuals are more important in the correla-
tion treatment), significant variations on the calculated values
are found for virtual spaces smaller than 50% of the original
virtual space.

We have found that for EFGs, correlating only valence elec-
trons provides a pragmatic solution that recovers the smooth
convergence seen for valence properties by removing difficult
to converge, individually large but in total nearly cancelling,
contributions from the core electrons. Whether such a strategy
can also work for the PV energy shifts remains to be investi-
gated.

As a final point and perspective we note that improvement
of the efficiency of the current scheme is well possible by
implementing efficient approximate schemes like Cholesky
decomposition and Laplace transforms to generate the MP2
1RDM. Work along these lines is in progress and should en-
able treatment of larger systems in the future.

SUPPLEMENTARY MATERIAL

See supplementary material for further details on the com-
parison of Hamiltonians for the HTs molecule, the influence
of core correlation functions on the correlation energies and
expectation values for the HCl molecule, the convergence of
EFG for iodine in HI, and the fraction of MP2 and CCSD cor-
relation energies recovered with different FNO truncations for
the hydrogen halide series.
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