Orientation and end zone of the osteotomy cut for high tibial osteotomy: Influence on the risk of lateral hinge fracture. A finite element analysis.
Résumé
INTRODUCTION: the hinge plays a fundamental role in the support and consolidation of a high tibial osteotomy. The objective of this work was to analyse the influence of the end zone of the osteotomy cut and its orientation in relation to the articular joint line (JL) on the risk of hinge fracture. HYPOTHESIS: a specific orientation and end zone of the osteotomy cut can be utilised to decrease the risk of hinge fracture.
MATERIAL AND METHOD: a finite element (FE) model was used to reproduce the proximal portion of the tibia and the proximal tibiofibular joint with transverse isotropic elastic bone properties. A 1.27mm thick, complete, anteroposterior saw cut was made with a U-shaped saw blade. Five proximal and lateral tibial zones were used according to Nakamura et al corresponding to the end zones of the osteotomy cut. Three angulations of the cut relative to the JL were defined: 10°, 15°, 20°. The tests consisted of simulating 15 possible situations (3 angulations for each of the 5 end zones) on this model. These simulations made it possible to identify the existence of a local stress concentration (von Mises, in MPa) at the level of the hinge, corresponding to the main judgment criterion.
RESULTS: If we consider only the end zones of the osteotomy cut, regardless of its angulation with respect to the JL, the zone which presents, on average, the lowest local stress concentration is the AM zone (40.3MPa). If we consider only the angulation of the osteotomy cut, with respect to the JL, regardless of the end zone of the cut, the angulation that locally concentrates, on average, the least stress is an angulation at 10° (147.7MPa). Finally, it is important to define the best end zone of the osteotomy cut for each angulation value in relation to the JL: for an angulation of 10°, the end zone must be in AM (38MPa), but also for an angulation of 15° (45MPa), and for an angulation of 20° (38MPa). DISCUSSION-CONCLUSION: With the inherent caveats of the experimental conditions, the hypothesis is confirmed. An end zone of the osteotomy cut exists (AM) and an orientation (10°) that induces the lowest local stress concentration and therefore the least likely to induce lateral hinge fracture. However, the orientation of the osteotomy cut is also a matter of surgical habit, especially regarding complementary osteotomy of the tibial tuberosity that some may want to avoid. Thus, it is equally important to know the best end zone associated with a given angulation of the cut in relation to the JL, which according to these results is the AM zone for each angulation. This information helps guide the operator in their surgical practices according to their habits.
LEVEL OF EVIDENCE: V, expert opinion.
Origine | Fichiers produits par l'(les) auteur(s) |
---|