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Introduction: Radiology is one of the domains where artificial intelligence (AI) yields encouraging results,
with diagnostic accuracy that approaches that of experienced radiologists and physicians. Diagnostic
errors in traumatology are rare but can have serious functional consequences. Using AI as a radiological
diagnostic aid may be beneficial in the emergency room. Thus, an effective, low-cost software that helps
with making radiographic diagnoses would be a relevant tool for current clinical practice, although this
concept has rarely been evaluated in orthopedics for proximal femur fractures (PFF). This led us to conduct
a prospective study with the goals of: 1) programming deep learning software to help make the diagnosis
of PFF on radiographs and 2) to evaluate its performance.
Hypothesis: It is possible to program an effective deep learning software to help make the diagnosis of
PFF based on a limited number of radiographs.
Methods: Our database consisted of 1309 radiographs: 963 had a PFF, while 346 did not. The sample
size was increased 8-fold (resulting in 10,472 radiographs) using a validated technique. Each radiograph
was evaluated by an orthopedic surgeon using RectLabelTM software (https://rectlabel.com), by differ-
entiating between healthy and fractured zones. Fractures were classified according to the AO system.
The deep learning algorithm was programmed on TensorflowTM software (Google Brain, Santa Clara, Ca,
USA, tensorflow.org). In all, 9425 annotated radiographs (90%) were used for the training phase and 1074
(10%) for the test phase.
Results: The sensitivity of the algorithm was 61% for femoral neck fractures and 67% for trochanteric
fractures. The specificity was 67% and 69%, the positive predictive value was 55% and 56%, while the
negative predictive value was 74% and 78%, respectively.

Conclusion: Our results are not good enough for our algorithm to be used in current clinical practice.
Programming of deep learning software with sufficient diagnostic accuracy can only be done with several
tens of thousands of radiographs, or by using transfer learning.
Level of evidence: III; Diagnostic studies, Study of nonconsecutive patients, without consistently applied
reference “gold” standard.
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1. Introduction

Artificial intelligence (AI) plays an important role in our day-to-
day lives [1,2]. When compared to human intelligence, it can hold

its own against professional video gamers [3], poker players [4] or
even Go players [5]. Such good performances can be explained by

Abbreviations: AI, Artificial Intelligence; PFF, proximal femur fracture; ED, emer-
gency department.
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he development of “deep learning” [6], a learning method based
n human convolutional neural networks.

The medical world has also been impacted by AI [7], especially
olecular biology [8,9], ophthalmology [10], dermatology [11], and

ven anatomical pathology [12,13]. However, the progress has been
he most striking in radiology [14–17]. Despite inconclusive results
arly on [18], the rapid development of deep learning has allowed
I to approach human performance. Thus it comes close to the per-

ormance of trained radiologists in reading mammograms [19], and

an help to optimize the radiologist’s work by doing triage before
he analysis [20]. However, no program has successfully surpassed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.otsr.2021.102837&domain=pdf
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mailto:sylvain.guy.vidal@gmail.com


S. Guy, C. Jacquet, D. Tsenkoff et al.

depar

2

2

1
f
a
q
b
2
t
w
s
r
t
f
t
t
d

(
e
A

2

m

Fig. 1. Flow chart (AP: anteroposterior, ED: emergency

the performance of a trained radiologist. AI may turn out to be most
beneficial in assisting non-radiologists to make a diagnosis.

In the emergency department (ED), 3.7% to 4.1% of fractures
are missed [21,22], and 70% to 80% of missed diagnoses in the ED
are fractures [23,24]. These errors are more likely at night [21],
because of overwork and because no orthopedic specialists are
available. The consequences for the patient can be serious: loss of
function and autonomy, increased risk of nonunion, post-traumatic
osteoarthritis [25]. The counter this deficit, programs to assist in the
radiographic diagnosis of proximal femur fractures (PFF) [26,27],
distal radius fractures [25] and general trauma [28] have been
developed. In some cases, their accuracy surpasses that of expe-
rienced orthopedic surgeons [27]. The diagnostic error rate of ED
physicians is reduced [25]. Since PFF are a public health problem, a
more accurate and refined diagnosis can optimize the treatment,
reduce post-traumatic morbidity and improve clinical recovery
[29,30]. Thus, an effective, low-cost software that aids radiographic
diagnoses would be a relevant tool for current clinical practice,
although this concept has rarely been evaluated in orthopedics for
the proximal femur. This led us to conduct a prospective study with
the goals of:

• programming deep learning software to help make the diagnosis
of PFF on radiographs;

• to evaluate its performance.
We hypothesized that deep learning software can be pro-
grammed to help make the diagnosis of PFF using a limited number
of radiographs.
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tment, PFF: proximal femoral fracture, w/o: without).

. Materials and methods

.1. Database

After approval from our facility’s Data Protection Committee,
309 radiographs from 623 patients were collected retrospectively
rom an imaging database of patients who had been hospitalized
t our facility. The inclusion criteria were the availability of a high-
uality AP radiograph of the pelvis or AP and lateral views of one or
oth hips, in a patient who presented at the ED between 1 January
015 and 1 July 2018. Both AP and lateral views were used to match
he realities of clinical practice; these views are taken routinely
hen a patient presents with this type of injury. This allows the

oftware to be trained to read different radiographic views, without
educing the database size. Excluded were patients who were less
han 18 years of age, who had a fracture other than in the proximal
emur, who previously had surgery on the femur, who had a fracture
hat did not require hospitalization, or who had a fracture distal to
he trochanteric area. All the radiographs were anonymized. These
ata are summarized in the flow chart in Fig. 1.

All the radiographs were made on the Digital Diagnost FLEXRTM

Philips, Amsterdam, The Netherlands) using the following param-
ters: Study Time 155919.174000, Series Time 155920.000000,
cquisition Time 155921, Content Time 155921.

.2. Annotation of radiographs

All the radiographic images were processed in JPEG for-
at and were annotated using the Rect LabelTM software
https://rectlabel.com) by an experienced orthopedic and trauma
urgeon (MO–MD, PhD). Two groups were made: a healthy group,
orresponding to healthy landmarks and a fracture group, corre-
ponding to fractured areas.

https://rectlabel.com/
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Fig. 2. Landmarks on radiographs of healthy hips.
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3.1. Facture detection

The fracture detection results are provided in Table 2.
First, the healthy landmarks were identified to allow our pro-
gram to differentiate a fracture-free zone from a fractured one.
Nineteen landmarks were chosen: 13 bone landmarks and 6 metal
landmarks. Certain patients had metal implants in their contralat-
eral femur or lumbar spine. The latter were identified to allow the
software to recognized them as “healthy”. However, if the frac-
ture affected the side that had previously been operated on, these
patients were excluded from the analysis.

Among the bone landmarks, 12 were lateralized as “right” or
“left”, with the pubic symphysis acting as the central landmark.
The metal landmarks were not lateralized to simplify the learning
phase. These healthy landmarks are shown in Fig. 2.

The 963 fractures were annotated this way. The fractures were
classified based on the AO classification for PFF [31]. Despite debat-
able intra- and inter-rater reliability [32], the association of a
treatment decision tree to each subgroup makes this classification
relevant for use by a non-specialized physician. However, given
the small number of radiographs annotated in each AO subgroup,
a satisfactory success rate could not be achieved for classifying
the fractures. Only our algorithm’s ability to distinguish between
femoral neck fractures and trochanteric fractures was evaluated
during the test phase.

To simplify our program’s learning, the fracture annotation did
not specify which side it was on. The 31A1.1 subgroup represents
isolated greater trochanter or lesser trochanter fractures. Since
these fractures do not require hospitalization, none were found in
our study. All the data are given in Table 1.
Table 1
AO classification of annotated fractures [31].

Trochanteric fractures n = 479 Femoral neck frac

31A1.1 n = 0 31B1.1
31A1.2 n = 40 31B1.2
31A1.3 n = 105 31B1.3
31A2.1 n = 244 31B2.1
31A2.3 n = 42 31B2.2
31A3.1 n = 10 31B2.3
31A3.2 n = 7 31B3
31A3.3 n = 31

3

.3. Increasing the database size

All the images were turned 180◦, inverting left and right, to
ouble the sample size. Next, the images were rotated, and their
idth, height and magnification modified randomly by 0 to 15% of

heir original value. These manipulations increased 8-fold the total
umber of radiographs, resulting in 10,472 analyzable images. This
echnique has previously been described and validated [33].

.4. Programming

The deep learning algorithm was programmed on TensorflowTM

oftware (Google Brain, Santa Clara, Ca, USA, tensorflow.org). This
s the automatic learning tool that is currently used the most in
he AI domain. The Lobe neuronal network (Microsoft, Redmond,

ashington, USA, lobe.ai), consisting of multiple convolutional lay-
rs, made up the architecture for our algorithm. This network has
ot previously been trained to read medical images.

.5. Training phase

Among the 10,472 images obtained after the database expan-
ion, 90% (9425 radiographs) were used for the training phase. The
emaining 1074 radiographs were reserved for the test phase. The
raining phase was divided into two parts: a learning phase with
351 radiographs (80% of the total) and a validation phase with
074 (10% of the total). A statistically similar proportion of patho-

ogical radiographs were found in each phase, corresponding to the
atio in the entire sample: 25% to 30% healthy radiographs versus
0% to 75% pathological radiographs. Our algorithm’s performance
as evaluated by analyzing its success rate for detecting fractures
uring the test phase.

.6. Statistical analysis

The primary aim of this study was to evaluate diagnostic perfor-
ance. The data were described using the senior author’s analysis

or each radiograph (reference). From this comparison, the true and
alse positive/true and false negatives were calculated along with
he positive predictive value (PPV), negative predictive value (NPV),
ensitivity and specificity of the tests.

. Results

One thousand seventy-four radiographs were submitted to our
rained algorithm. Its ability to recognize healthy landmarks and
etect fractures was evaluated.
tures n = 484

n = 26
n = 12
n = 20
n = 204
n = 195
n = 8
n = 19
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Table 2
Fracture detection results.

n Augmented n Tested n Identified n % Identified

Left femoral neck fracture 256 2048 198 122 61.61%
Left trochanteric fracture 254 2032 208 141 67.79%
Right femoral neck fracture 228 1824 193 116 60.10%
Right trochanteric fracture 225 1800 175 115 65.71%

Femoral neck fractures

Patients with fracture Patients without fracture

Positive test 238 213
Negative test 153 443

Se 60.87% VPP 55.22%
Sp 67.53% VPN 74.33%

TrochTrochanteric fractures

Patients with fracture Patients without fracture

Positive test 256 202
Negative test 127 462

Se 66.84% VPP 55.89%
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Sp 69.58%

Se: Sensitivity/Sp: Specificity/PPV: Positive predictive value, NPV: Negative predicti

3.2. Femoral neck fractures

In all, 391 radiographs with femoral neck fractures were tested.
The algorithm identified 238 fractures–122 left (62%, 122/198) and
116 right (60%, 116/193)–thus a success rate of 61% (238/391)
(Table 2). With 213 false positives versus 238 true fractures iden-
tified, our diagnostic tool had a PPV of 55%. There were fewer false
negatives (n = 153) relative to the number of radiographs correctly
identified as not having a femoral neck fracture (n = 443), which
means our diagnostic tool had a NPV of 74% (Table 2). The sensitiv-
ity was 61% and the specificity was 67% for detecting femoral neck
fractures (Table 2).

3.3. Trochanteric fractures

In all, 383 radiographs with trochanteric fractures were tested.
The algorithm successfully identified 256 fractures–141 on the left
side (68%, 141/208) and 115 on the right side (66%, 115/175)–thus

an overall success rate of 67% (256/383) (Table 2). There were 202
false positives. Given that 256 trochanteric fractures were correctly
identified, the PPV was 56%. There were 443 false negatives. Since
153 fractures were missed, the PPV of our tool was 78% (Table 2).

s
s
r

Table 3
Landmarks on radiographs of healthy hips: results.

n Augmented n

Right femoral shaft 726 5808
Right lesser trochanter 660 5280
Right greater trochanter 575 4600
Right femoral neck 276 2208
Right femoral head 603 4824
Right ischium 895 7160
Left femoral shaft 741 5928
Left lesser trochanter 676 5408
Left greater trochanter 534 4272
Left femoral neck 267 2136
Left femoral head 573 4584
Left ischium 906 7248
Pubic symphysis 924 7392
Gamma nail 29 232
Total hip arthroplasty 32 256
Hemiarthroplasty 26 208
Dynamic Hip Screw 4 32
Lumbar instrumentation 9 72
Screw fixation of femoral neck 6 48

4

VPN 78.44%

ue.

he sensitivity was 67% and the specificity was 70% for detecting
rochanteric fractures (Table 2).

.4. Healthy radiographic markers

On average, 60% of the healthy radiographic markers were cor-
ectly identified by our algorithm. All the results are given in Table 3.
he highest success rate was found for the pubic symphysis (100%),
emoral diaphysis (84% on the right, 478/572, and 82% on the left,
92/603) and greater trochanters (75% on the right, 352/472, and
6% on the left, 372/431). The other landmarks were identified in
nly about half the cases. While many ischiums were used dur-
ng the training phase, they were located successfully in only 60%
423/709) and 62% (442/715) of cases for the right and left sides,
espectively. The most common error was incorrect identification
f the side.
The metal landmarks were the most difficult to identify, with a
uccess rate of only 47%. While there were few lumbar fusion con-
tructs in the database, their central and easily identifiable nature
esulted in good performance of our algorithm.

Tested n Identified n % Identified

572 478 83.57%
513 234 45.61%
472 352 74.58%
213 108 50.70%
493 254 51.52%
709 423 59.66%
603 492 81.59%
532 274 51.50%
431 372 86.31%
216 102 47.22%
449 273 60.80%
715 442 61.81%
742 742 100%
24 10 41.67%
22 7 31.82%
23 12 52.17%
2 1 50%
8 6 75%
3 1 33.33%
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4. Discussion

To be relevant in clinical practice, our algorithm needs to have
equal or better diagnostic accuracy than an experienced ED physi-
cian. In the literature, it is said that an ED physician without specific
trauma surgery training has a minimum sensitivity of about 80%
[25] for detecting fractures, versus nearly 90% for an experienced
orthopedic surgeon [27], with a specificity in both cases greater
than 10 points. With a maximum sensitivity of 67% and specificity
of 70%, our algorithm was not good enough, thus our hypothesis is
rejected.

These results can be explained by the small number of images
used to train our program, despite the 8-fold increase of our 1309
radiographs. Programs described in the literature that achieve diag-
nostic accuracy of 90% were developed with a much larger database
of images. Lindsey et al. [25] trained their deep learning program to
detect wrist fractures using more than 135,000 radiographs anno-
tated by eight experienced orthopedic surgeons. This explains the
excellent results with that program, allowing ED physicians to
increase their diagnostic sensitivity and specificity by 10 points to
above 90%, with mean reduction of 47% in the error rate.

When Olczak et al. [28] published the first article on a deep
learning program for fracture detection in 2017, they used a
database of 256,000 wrist, hand and ankle radiographs. Despite this,
the diagnostic accuracy for detecting a fracture was only 83%. Deep
learning had only been used very recently in the medical field when
this program was developed; the lack of experience may explain
these disappointing results.

In April 2019, Cheng et al. [26] published the results of an
algorithm trained for diagnosing proximal femur fractures. This
program, which resembles ours the most, was trained using nearly
30,000 AP radiographs of the pelvis. This large number of images
and use of a single view increased the reproducibility and explains
the high diagnostic accuracy of this tool: 98% sensitivity with only
2% false negatives.

Our program, which was designed specifically to detect frac-
tures, was not trained to recognize non-medical images. There are
published examples of deep learning algorithms, trained to rec-
ognized non-medical images, that were effectively converted to
radiographic diagnosis using “transfer learning”. In these cases,
a small number of radiographs were used: slightly more than
1000 for Adams et al. [34] and 11,000 for Kim and MacKinnon
[33]. Despite this, the goal of 90% accuracy was achieved. How-
ever, hundreds of thousands non-medical images were used for the
programming beforehand. These good results need to be put into
perspective when we attempt to determine the true impact of AI
on daily radiology practice. For example, in February 2019, Adams
et al. [34] showed that, with only 1 hour of practice, a person with-
out medical training could rival an AI trained by transfer learning
for the diagnosis of femoral neck fractures.

Thus our program is not competitive, given the performance of
other deep learning algorithms described in the literature. Rela-
tive to all the previously mentioned AI studies, a smaller number
of radiographs were used during its programming. Despite this
fact, its NPV was nearly 80% and a maximum sensitivity and spe-
cific of nearly 70%. These results are encouraging. Since we used
25 times fewer images than Olczak et al. [28], we can presume
that adding new annotated radiographs would greatly improves
its performance.

Also, the AO classification of fractures would allow a decision
tree to be attributed to each subgroup for their treatment. While
the smaller number of available radiographs did not allow us to test

our algorithm on this feature, this is an interesting avenue in the
future when a larger database will be available.

We can now ask questions about the future of AI in the medical
world. The mass of data available online can now be used by deep

R
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earning algorithms. Ausiello and Shaw [35] content that “Quantita-
ive Human Phenotyping” is the next great step in medical research.
hey point to the benefits that we could gain from exploring public
ersonal data available online in multiple domains, such as soci-
logy and medicine. Common use of DNA sequencing databases
n the Internet could help to accelerate genetics research. Esteva
t al. [11] advanced the hypothesis that a database of several mil-
ion photographs of dermatological lesions will be available within

few years thanks to smartphones, and could help to optimize
he diagnostic performance of their algorithms. Use of AI in med-
cal practice, which is still marginal, could very likely become

ore widespread in the coming years given the pace of technical
dvances.

Our study had several limitations: image labelling was done by
nly one orthopedic surgeon, the ROC curve and its area under
he curve were not calculated, and transfer learning was not used
o optimize the performance of our software. While using a sin-
le experienced orthopedic surgeon for annotation is certainly a
ethodological flaw, it does not directly impact our software’s per-

ormance. Furthermore, the sensitivity, specificity, PPV and NPV are
eliable, relevant parameters that could be reinforced by the ROC,
lthough these parameters can be interpreted in their current state.
astly, not having recourse to transfer learning explains the lack of
ower of our software and reinforces our conclusion: effective soft-
are to help with radiographic diagnoses can only be programmed
sing several thousands of radiographs or with the help of transfer

earning.

. Conclusion

The performance of our program was not good enough to be clin-
cally relevant. Its main flaw was the small number of radiographs
vailable to us, which did not provide an optimal training phase.
rogramming of a deep learning software with sufficient diagnos-
ic accuracy can only be done with several tens of thousands of
adiographs, or by using transfer learning.
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12] Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in
breast cancer histology images with deep neural networks. Med Image Com-
put Comput-Assist Interv MICCAI Int Conf Med Image Comput Comput-Assist
Interv 2013;16:411–8.

13] Sirinukunwattana K, Ahmed Raza SE, Yee-Wah Tsang null, Snead DRJ, Cree IA,
Rajpoot NM. Locality Sensitive Deep Learning for Detection and Classification
of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans Med Imaging
2016;35:1196–206, http://dx.doi.org/10.1109/TMI.2016.2525803.

14] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey
on deep learning in medical image analysis. Med Image Anal 2017;42:60–88,
http://dx.doi.org/10.1016/j.media.2017.07.005.

15] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Arti-
ficial intelligence in radiology. Nat Rev Cancer 2018;18:500–10,
http://dx.doi.org/10.1038/s41568-018-0016-5.

16] Shen D, Wu G, Suk H-I. Deep Learning in Medical
Image Analysis. Annu Rev Biomed Eng 2017;19:221–48,
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442.

17] Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine Learning for Med-
ical Imaging. Radiogr Rev Publ Radiol Soc N Am Inc 2017;37:505–15,
http://dx.doi.org/10.1148/rg.2017160130.

18] Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson ANA, Miglioretti
DL, et al. Diagnostic Accuracy of Digital Screening Mammography With and
Without Computer-Aided Detection. JAMA Intern Med 2015;175:1828–37,

http://dx.doi.org/10.1001/jamainternmed.2015.5231.

19] Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI,
Mann R, et al. Large scale deep learning for computer aided detec-
tion of mammographic lesions. Med Image Anal 2017;35:303–12,
http://dx.doi.org/10.1016/j.media.2016.07.007.

6

20] Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J. High-Throughput Clas-
sification of Radiographs Using Deep Convolutional Neural Networks. J Digit
Imaging 2017;30:95–101, http://dx.doi.org/10.1007/s10278-016-9914-9.

21] Hallas P, Ellingsen T. Errors in fracture diagnoses in the emergency department–
characteristics of patients and diurnal variation. BMC Emerg Med 2006;6:4,
http://dx.doi.org/10.1186/1471-227X-6-4.

22] Wei C-J, Tsai W-C, Tiu C-M, Wu H-T, Chiou H-J, Chang C-Y. Systematic analysis
of missed extremity fractures in emergency radiology. Acta Radiol Stockh Swed
1987;47(2006):710–7, http://dx.doi.org/10.1080/02841850600806340.

23] Guly HR. Diagnostic errors in an accident and emergency department. Emerg
Med J EMJ 2001;18:263–9, http://dx.doi.org/10.1136/emj.18.4.263.

24] Leeper WR, Leeper TJ, Vogt KN, Charyk-Stewart T, Gray DK, Parry NG. The role of
trauma team leaders in missed injuries: does specialty matter? J Trauma Acute
Care Surg 2013;75:387–90, http://dx.doi.org/10.1097/TA.0b013e31829fa32.

25] Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep
neural network improves fracture detection by clinicians. Proc Natl Acad Sci U
S A 2018;115:11591–6, http://dx.doi.org/10.1073/pnas.1806905115.

26] Cheng C-T, Ho T-Y, Lee T-Y, Chang C-C, Chou C-C, Chen C-C, et al.
Application of a deep learning algorithm for detection and visualiza-
tion of hip fractures on plain pelvic radiographs. Eur Radiol 2019,
http://dx.doi.org/10.1007/s00330-019-06167-y.

27] Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detect-
ing intertrochanteric hip fractures with orthopedist-level accuracy using
a deep convolutional neural network. Skeletal Radiol 2019;48:239–44,
http://dx.doi.org/10.1007/s00256-018-3016-3.

28] Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artifi-
cial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop
2017;88:581–6, http://dx.doi.org/10.1080/17453674.2017.1344459.

29] Shin WC, Moon NH, Jang JH, Jeong JY, Suh KT. Three-dimensional analyses to
predict surgical outcomes in non-displaced or valgus impaction fractures of the
femoral neck: A multicenter retrospective study. Orthop Traumatol Surg Res
2019;105:991–8, http://dx.doi.org/10.1016/j.otsr.2019.03.016.

30] Oba T, Makita H, Inaba Y, Yamana H, Saito T. New scoring sys-
tem at admission to predict walking ability at discharge for patients
with hip fracture. Orthop Traumatol Surg Res 2018;104:1189–92,
http://dx.doi.org/10.1016/j.otsr.2018.07.024.

31] Meinberg E, Agel J, Roberts C, Karam M, Kellam J. Fracture and Dislo-
cation Classification Compendium–2018. J Orthop Trauma 2018;32:S1–10,
http://dx.doi.org/10.1097/BOT.0000000000001063.

32] Masionis P, Uvarovas V, Mazarevičius G, Popov K, Venckus Š, Baužys K,
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