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Abstract

Cellular automata are conceptual discrete dynamical systems useful in the
theory of information. The spatiotemporal patterns that they produce are
intimately related to computational mechanics in distributed complex sys-
tems. Here, we investigate their physical implementation in the framework
of chimera states in which coherent and incoherent behavior coexist. Hence,
chimera states were subject to quantitative and qualitative analyzes borrow-
ing the same tools used to characterize cellular automata. Our results reveal
the existence of cellular automata-type dynamics submerged in the dynam-
ics exhibited by our optical chimera states. Thus, they share a panoply of
attributes in terms of computational abilities.

Keywords: Cellular automata, Chimera states, Coupled oscillators,
spatiotemporal chaos

1. Introduction

Spontaneous self-organization and intricate collective behaviors within
complex extended systems, have been subject to a central focus of physical,
chemical and biological researches [1–3]. An accurate theoretical description
of a spatiotemporal motion may result in the accurate modelling of the key
ingredients: the energy exchanges and the transport mechanisms. When the
system is made of independent subsystems, transports are no more ruled by
flux base processes such Fick or Fourier law. With these later phenomena
the modellings generally lead to partial differential equations (PDE). How-
ever, when the spatial extension results in the juxtaposition of independent
systems, the interaction is governed by a coupling operator determined by
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the topological configuration. The obtained dynamical systems are known as
coupled map lattices (CML) [4] that are, discrete equations. In spite of the
significant difference between continuous (PDE) and discrete (CML) equa-
tions, they exhibit analogue spatiotemporal evolution [5]. The interest in
the coupled discrete systems has been renewed after they were demonstrated
to support coexisting coherent and incoherent domains [6]. The resulting
dynamical objects are known as chimera states [7] and their study is cur-
rently a very hot topic in nonlinear dynamics [8–16]. For a decade after
the first demonstration, chimera states were meant to emerge only in lattice
with non-local and global coupling. However, it is now admitted that local
or the nearest neighbor coupling can also support chimera states in both
1D [16] and 2D [17] lattices. In these cases, chimeras are generally pinned
domain walls separating spatiotemporal chaotic evolution and regular state.
Notice that, now chimera states are not only limited to discrete media since
continuous counterparts were also reported in continuous systems [18, 19].
An outstanding feature of chimera state is the diversity of the patterns pro-
duced by their dynamics. One specific case have kept our attention. Indeed,
chimera observed in locally coupled 1D optical waveguides array, triangular
domains were observed [20]. Such an evolution known as Sierpiński patterns
are universal [5, 21] nonlinear solution and typical of spatiotemporal inter-
mittency. Sarpinsky patterns are also a typical behavior in another class of
discrete systems: the elementary cellular automata.

Cellular automata (CA) are part of the standard models for spatially
extended dynamical systems, which stand out from the other models by
their space-time discreteness. They were introduced by Wolfram who was
interested in the relationship between dynamical systems behavior and their
computational abilities [22]. In particular, the complex class IV CA which
supports emergent localized structures known as blinkers and propagating
structures named gliders (see Fig.1a). Wolfram conjectured that all class
IV rules were capable of universal computation [22, 23]. It is worth mention
that the ability to support computation is conditioned by the reconcilia-
tion between three essential features: information storage, information
transfer and information modification [24].

Despite all these spatiotemporal complexity properties and information
processing abilities, CA mainly remain discrete, abstract computational sys-
tems. Indeed, for now very few implementations of CA have been reported
in physical systems. The aim of this paper is to study the ability of optical
chimera states (OCS) to afford properties of elementary cellular automata
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(ECA). To this end, we have implemented a classification of the ECA which
helped to cluster them according to their dynamical category. The clustering
process is then applied to our OCS, allowing us to identify the ECA property
that can inherit the OCS. The paper is organized as follows. After a brief
state of art on the ECA, we introduce the clustering method implemented
thanks to the approximate entropy, the sample entropy [25] and the Lempel-
Ziv complexity [26]. Then we consider the dynamics of the OCS in the light
of the clustering process before the concluding remarks.

2. Elementary cellular automata (ECA)

In general, a CA comprise a lattice of N identical cells or sites. The state
of each cell i at the step time t is denoted Xt

i. To define properly a CA,
one must precise: the dimension d of the arrangement of cells, the number
of possible states per cell k from the alphabet S, the number of neighbors
connected to the central cell i in each direction, called the radius r and a
local transition rule ϕ playing the role of an equation of motion. According
to this latter ϕ, each cell i is updated to the next state Xt+1

i as a function
of its current state Xt

i and those of its neighbors taken into consideration
r. In this paper, we will deal with the elementary cellular automata ECA,
proposed by Wolfram [22, 27] which are defined as one dimensional d = 1
array of cells, subject to periodic boundaries conditions Xt

i = Xt
i+N , with

two possible binary states per site (k = 2, S = {0, 1}), and where the size
m of the spatially neighborhood of a cell i is related to the radius r = 1,
(one cell per each side) with the relation m = 2r + 1 = 3. In this case of
binary state-CA, the local update function ϕ(m) is known as the rule table
(See Table 1 and 2). It enumerates the km = 23 = 8 possible configurations
(Xt

i−r Xt
i Xt

i+r), that the neighborhood can be in. Then, the next generation
is given by:

Xt+1
i = ϕ(Xt

i−1,X
t
i,X

t
i+1). (1)

For a given rule and an initial condition, successive updates may produce
some particular patterns. Illustrations of this behavior for the example of rule
110 and 18 (arbitrary chosen) are shown in Figs. 1a) and b), respectively. In
these space-time diagrams, black cells stand for the state 0, and white cells
for 1. These two examples are also the proof that despite their apparent
simplicity, ECA show a large variety of dynamic behaviors.

In general, in extended dynamical systems the evolution is ruled by a set
of order parameters. Hence, their asymptotic behavior is independent of the
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Table 1. Rule table of ECA 110, enumerating the evolution of the 8 possible situations.

Neighborhood 111 110 101 100 011 010 001 000

Next
generation for

central cell
0 1 1 0 1 1 1 0

Table 2. Rule table of ECA 18, enumerating the evolution of the 8 possible situations.

Neighborhood 111 110 101 100 011 010 001 000

Next
generation for

central cell
0 0 0 1 0 0 1 0

initial stage. However, for CA the asymptotic state was shown to be related
to the initial condition [28], making difficult their classification.

Therefore a great part of the state of art in the study of CA is related to
their classification and two main schools of thought of classification emerge.
The phenotypic classification based on the quantification of observed space-
time dynamic [24, 29, 30] and the genotypic classification founded on the
parametrization of rule tables [24, 31].

The pioneer attempt was proposed by Wolfram to classify the ECA [22].
His heuristic classification is based on investigating the “average” spatio-
temporal behavior observed over a sample of random initial configurations.

Wolfram’s phenotypic classification remains qualitative. To quantify the
behavior of CA, several studies based on statistic properties were reached,
either on the space-time diagram [24, 29, 30], or on the rule table [24, 31].

3. Optical chimera states (OCS)

The optical chimera states we consider here were reported in ref. [20]. We
considered a one dimensional array of nonlinear wave-guide resonators (WGs)
locally coupled, subject to coherent optical injection E0, whose spatiotempo-
ral dynamic is described theoretically by the discrete Lugiato-Lefever model [32,
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a b
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Fig. 1. (Color Online) Illustration of the phenotypic analogy between the emergent
patterns showed by OCS and ECA. (a) and (b) space-time diagrams illustrating the
typical behavior of complex ECA 110 and chaotic ECA 18, respectively, started from
random initial conditions on a 300 cell lattice. (c) and (d) display the filtered
spatiotemporal evolutions of the binarized intensity ||ψn(t)||2 within the desynchronized
region of two OCS, obtained from numerical simulations of model Eq. (2) for C = 1.9,
∆ = 7, E0 = 6.2 (c) and E0 = 6.10 (d).

33]. The intracavity field obeys:

(2)∂Tψn = E0 − (1 + i∆)ψn + i|ψn|2ψn + iC(ψn+1 − 2ψn + ψn−1),

where ψn is the slowly varying envelope of the electric field circulating in
the nth micro-resonator, ∆ ≡ ω − ω0 stands for the detuning between the
resonance frequency ω0 of the cavity and the input frequency ω, and C stands
for the coupling parameter. The evolution time t = Tτph is measured in the
photon lifetime unit τph (is normalized to the cavity decay time).

The Eq. (2) is known to support chimera states as reported in [20, 34]. A
typical evolution of such a chimera is displayed in Fig. 2a, obtained following
the results reported in [20]. After a binarization process described in Ap-
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pendix B, we obtain the evolution of Fig. 2b. Figures 1c) and d) were also
obtained by the same method. It should be noted that those OCS demon-
strate robustness, flexibility and scalability of their spatiotemporal patterns.
Indeed, by the simple modification of the input parameters, one can favor the
generation of a wide range of geometrical structures in space-time, leading
to more complexity.

b

2

18aFull 
Dynamic

Filtered
Dynamic

Fig. 2. (Color Online) Optical chimeras states. (a): Spatiotemporal evolution of the
intensity ||ψn(t)||2, obtained from numerical simulations of model Eq. (2) by taking
C = 1.9, ∆ = 7 and E0 = 6.15. (b): the filtered version of (a), displaying the cellular
automata dynamic-type submerged.

Hence, the spatiotemporal dynamics showed by our OCS display many
of the basic ingredients required to perform the information processing, from
the point of view of the computation theory. For instance, the domains,
embedded particles (walls between domains) and particle collisions shown in
Figs. 1c) and d). Given that experimental implementations of CA are rather
few in number, the proposed setup is an opportunity to investigate the CA
in the context of nonlinear optics.

To this end, we will first perform a classification of the ECA according to
the dynamics they can display. Then, the same process will be applied on the
OCS to determine to which class of ECA they belong. CA can be considered
following two approaches: the computational mechanics framework [35–38]
or analysis will be based on the statistical approach [24, 29, 30]. Here, we
will prefer the latter approach.
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4. Quantitative overview of ECA and OCS Dynamics

Ordered and random behaviors are simple to be discerned either visually
or described statistically [39]. Nonetheless, complex behavior and patterns
are easy to identify qualitatively but their quantification remains a nagging
puzzle [40]. As mentioned earlier, recognizing the fundamental role of the
emergent and interacting structures has driven a panoply of statistical sur-
veys to address this quantification issue, attempting to define a relative loca-
tion where physical systems with complex behavior lie [24, 30, 38, 40–42]. It
is in the light of these statistical tools that we will lead a quantitative anal-
ysis of the spatiotemporal dynamics exhibited by ECA and OCS. However,
we will focus our efforts in the finding of quantities that allows to classify
the ECA according to their dynamical evolution.

First, we classify the different types of dynamics in ECA, in particular, to
screen out the complex class. Then, we extend the study to OCS dynamics,
seeking to which ECA class, it could be compared, and finally allowing us
to build the bedrock of the promising analogy proposed throughout this pa-
per. The concept of entropy to quantify the amount of information loss and
to measure the degree of randomness and unpredictability within a dynam-
ical process will be our key tool. Indeed, we adopt Lempel-Ziv complexity
(LZ) [26, 43], Approximate entropy (ApEn) [44], and Sample entropy (Sam-
pEn) [45]. These three quantities, have different theoretical aspects, but all
of them have their roots in information theory and chaos theory. Also, they
present a commonplace in the analysis of the discrete series.

It must be pointed out that these three deterministic quantities are max-
imized for random process and vanish for perfectly ordered ones. Details
about these concepts and their implementation can be found in [25, 26, 43–
45] and references therein. Inspired by the body of the literature dealing
with the characterization of the complexity within experimental signals, us-
ing a single observable [25, 46, 47], our study will be based on a time series
analysis. The outlines of our method are described in Appendix Appendix
B.

5. Results and discussion

5.1. The clustering classification method

For the classification of the ECA we use the clustering strategy. Hence,
for each ECA we have computed the ApEn, the LZ complexity and the
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SampEn for hundred of different random initial conditions. In Fig. 3a) and
b), we have represented these entropies in the plane (LZ, ApEn) and (LZ,
SampEn), respectively. As can be seen from these figures, we have various
clusters in the entropy planes.

Notice that we recover classifications previously proposed in [22, 31, 48].
Periodic rules class represents the ordered region (orange dots cloud), having
low entropy values, while chaotic rules class with high values of entropy,
represents the disordered region (black dots cloud). As expected, rules class
with complex behavior (gray dots cloud), characterized by an intermediate
entropy, are likely to be found in the critical region, located between the
ordered and disordered regions. We have also represented the three entropies,
for each ECA rule and all the random initial conditions in Figs. 3c), d), and
e). Remarkably, we observe from these figures an interesting correlation
regarding the randomness values calculated from the behavior of a given
ECA rule and its equivalents, over the sample of random initial conditions,
such as complex rules: 54 and 147 or rule 110 and 124, 137, 193.

Next, we have extended our analysis to OCS dynamics. The results are
given by the triangles in Figs. 3a) and b). It can be seen that they belong to
the cloud of complex class (gray dots cloud). This shows that our method-
ology captures and quantifies neatly the complex behavior and also confirms
that this latter lies to the transition from regular towards chaotic phase.

Piecing the above results together, we can conclude that OCS can be
classified in the complex behavior class of ECA. This class plays a central
role in the hypothesis of ”edge of chaos” (EOC) [24, 40, 49, 50], which in turn
is a key concept in the information theory. Indeed, systems in such critical
regime enhance their computational abilities. The statistical rationale behind
this conjecture is that information storage requires low entropy (order),
while information transmission necessitates high entropy (disorder), thus
the EOC regime may afford the optimal trade-off [24].

To test the robustness of our results, calculations were performed for
different network sizes (N) of ECA in Fig. 4 and various time steps (length
of time series L) in Fig. 5, showing no change in our results. Furthermore,
our technique shows the potential to classify spatiotemporal configurations,
for a spectrum of ordered, complex and chaotic dynamics, without splitting
the space and time analysis, thanks to the compression of spatial information
in a time series observable such as the mean value.

Now, let’s consider the capacity of the system to carry out a useful com-
putational task [37]. In this context, the equation of motion which governs
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the system is seen as the program/algorithm, the initial condition as the
input and the desirable configuration as the output. Furthermore, the abil-
ity of a system to perform universal computation, implies that it should be
capable to bear information by reflecting perturbations made to the input
and to transmit it to the output [51, 52]. In other words, a universal sys-
tem must show its sensitivity to external stimulus. For instance, Wolfram
speculated that complex ECA class is capable of universal computation, due
to the undecidability concerning its behavior [22, 23]. In our survey, this
undecidability is mirrored by the large interval values of statistical measures
taken by the complex ECA (See e.g. Fig. 3). Notice that, the unpredictabil-
ity of our OCS dynamics regarding the initial conditions, was demonstrated
by computing the Lyapunov exponents [20]. Therefore, the OCS can be seen
as a complex dynamical system with properties of the ECA.

An interesting feature of the OCS is that their properties can be controlled
by the set of pertinent parameters of the system. An illustration of this
feature can be observed in Fig. 6. In this figure, we show in the plane (LZ,
ApEn) the entropies of the complex class ECA and the OCS for different
values of the pump parameters E0 (colored markers in Fig. 6a)) and different
values of the detuning ∆ (colored markers in Fig. 6b)). The color map in
both figures accounts for the change of the size of the OCS’s incoherent
domain δL. It appears that the properties of the ECA inherited by the OCS
can be continuously tuned by almost all the parameters of the system and
also the profile of the chimera. Therefore, with our clustering method, we
are able to quantify the qualitative change between the different types of
spatiotemporal evolution as the parameters change (see space-time diagrams
in inset of Fig. 6).

To complete our analogy, we have deepen the study to compare the prop-
erties of our OCS and those of ECA complex rules. We consider the long
term dynamics. Various authors [24, 53] have reported that in the vicinity
of the phase transition, ECA can exhibit long transients which are function
of the array size. Consequently, one can expected that the entropies to be
also function of the size. This is what we observed in Fig. 7a), where we
have plotted the average of the entropy value estimated by ApEn over 100
random initial configurations as a function of array size N for ECA complex
rules 110 (blue) and 54 (green). In contrast to the rule 54, which remains
less complex, the rule 110 dynamic shows a sensitivity to size, through the
growth tendency of ApEn with system size. This scaling behavior of rule
110, can be explained as a direct consequence of its transient time, which in-
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creases with system size [53]. Here also, we observe the same behavior with
our OCS as can be seen with Fig. 7b) where we show the ApEn as function
of the chimera size δL.

It must be pointed that this extended tendency of complexity has been
qualified fundamental to support information processing [24, 54].

Another property suggested to have relationship with computational uni-
versality is the 1/fα noise property of the spectrum. Hence, to explore more
horizons concerning the analogy between our OCS and ECA complex rules,
we have performed spectral analysis to investigate the temporal behavior.
Indeed, a classification of ECA based on the shape of their power spectra
were proposed in [54]. Interestingly, the power spectrum S(f) of complex
ECA rules (e.g. 110 and 54), exhibit a power law at low frequencies [54] as
illustrated in Fig. 8a) and b). Calculations were performed from evolutions
starting from a random initial configuration of 3000 cells for 5000 time steps.
This spectral decay, known as 1/fαnoise [55], reflects the strong influence
of past events on the future. Ninagawa founded that only rule 110 exhibits
1/fαnoise during the longest time steps, thanks to its extended transient
behavior [53]. Ninagawa claimed that the transient behavior generates inter-
mittency and causes 1/fαnoise (The bursts and periodic phases, produced
by the collision or not of gliders). Hence, based on the fact that intermit-
tency represents one of the main mechanisms leading to 1/fαnoise, in chaotic
dynamical system [56], our intermittent OCS [20] stem their legitimacy to
show a power spectrum whose shape resembles more to the one exhibited by
the ECA 110 as it can be seen in Fig. 8b) and c), respectively. Most notably,
the presence of 1/fαfluctuation in two computationally universal CA, such
as ECA 110 [57] and the game of Life [58], has led Ninagawa to conjecture a
relationship between computational universality and 1/fαnoise in CA [59].

6. Conclusion

In conclusion, chimera states are dynamical structures with intriguing fea-
ture to support coexistence of coherent and incoherent domains in an array of
identical oscillators. They are universal objects that have been observed in a
large variety of dynamical systems. In this work, we have considered chimera
states exhibited by an array of optical wave-guides locally coupled. We have
studied the ability of the optical chimera states to mimic the dynamics of
cellular automata, which have many application in computational mechanics.
To this end, we have in a first time, classify the cellular automata using a
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clustering method based on three metrics: the Approximate, the Sample and
the Lempel-Ziv entropies. Hence, the optical chimera states can be cast in
this map to identify from which class of cellular automata they inherit their
properties and the kind of computation they can perform. To the best of
our knowledge, this is one of the first study suggesting that chimera state
can afford properties of computational object. This opens the possibility of
physical implementation of cellular automata, with promising applications in
many domains. Indeed, we are currently in the process of investigating those
computational performances in the framework of recurrent neural networks.
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(a)

(b)

(c)

(d)

(e)

.

Fig. 3. (Color Online) ”Edge of chaos”: Statistical overview of the spatiotemporal
dynamics of OCS and ECA. (a) and (b) correspond to the maps of ApEn vs LZ and
SampEn vs LZ, respectively. Dots correspond to ECA and triangles to OCS. Triangles
are obtained for different sizes δL of OCS, with C = 1.9, ∆ = 7 and E0 = 6.05. The left
panels show on the three statistical quantities with their frequency histograms (PDF):
ApEn (c), SampEn (d) and LZ complexity (e), for all the ECA rules. The minimum
(blue) and the maximum (red) values of OCS are illustrated as dashed lines.
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(a)

(b)

(c)

(d)

SF. 4. (Color Online) Robustness of results: different network sizes of ECA. (a):
N = 200, (b): N = 400, (c): N = 600, (d): N = 800. The minimum (blue) and the
maximum (red) values of OCS are illustrated as dashed lines (data from Fig. 3).
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(a)

(b)

SF. 5. (Color Online) Robustness of results: different lengths of time series(L) for
N = 300 ECA network size. (a): L = 3500, (b): L = 4500. The minimum (blue) and the
maximum (red) values of OCS are illustrated as dashed lines (data from Fig. 3).
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(a) (b)

Γ4

Γ3Γ1

Γ2

Fig. 6. (Color Online) Sensitivity of ECA and OCS to the driving. Two maps: ApEn
against LZ complexity(data from Fig. 3) displaying only the cloud of ECA complex class
(gray) and the different OCS sizes δL generated with different input parameters (triangle,
square and circle markers). (a): C = 1.9, ∆ = 7 and different E0 = 6, 6.1 ; (b): C = 1.9,
E0 = 6.05 and different ∆ = 6.95, 7.05. Γ1 (δL = 20), Γ2 (δL = 22), Γ3 (δL = 17) and Γ4

(δL = 15) are selected dynamical evolution to illustrate the configurablity of OCS.

 

(a) (b)

Fig. 7. (Color Online) Scaling behavior of complex ECA rules and OCS: (a) and (b)
represent the size effect on ApEn of complex ECA and OCS, respectively.
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(a) (b)

(c)

Fig. 8. (Color Online) Power spectral analysis of complex ECA rules and OCS. (a), (b)
and (c): the left panels display the power spectrum S(f) of the temporal behavior
exhibited by complex ECA rules (54, 110) and OCS, respectively. The dashed lines
represent the log-log fit of the power spectrum in the range of low frequencies
f = 2− 102 showing a power law with different slopes. the right panels display the
typical space-time behaviors of complex ECA rules and OCS’s incoherent domain.
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Appendix A. Statistical measures

Here, we introduce briefly the statistical measures used in our investiga-
tion:

Appendix A.1. ApEn : Approximate Entropy

ApEn was proposed, to discern levels of regularity within real data with-
out any knowledge about the source system [44]. It is robust to noise, which
was a central limitation of the previous tools developed by the information
theory [25]. Since then, ApEn was used to examine short experimental sig-
nals, especially, physiological and biological data sets [25].

In order to find the approximate entropy of a given time series of data
u = {u(1), u(2), ..., u(N)} of length N .
Firstly, we fix m (embedding dimension), a non-negative integer, so that

blocks of (N−m+1) vectors are formed x(i) = {u(i), u(i+1), ..., u(i+m−1)}
and x(j) = {u(j), u(j + 1), ..., u(j + m − 1)}, and we calculate the distance
between them, given by :

d[x(i), x(j)] = maxk=1,2,...,m(|u(i+ k − 1)− u(j + k − 1)|).
Secondly, we calculate the value Cm

i (r) = (number of j <= N −m + 1
such that d[x(i), x(j)] <= r)/(N−m+1) where r specifies the filtering level.
Then, we compute Φm(r) = (N −m+ 1)−1

∑N−m+1
i=1 log(Cm

i (r)).
Finally, this statistic is defined as ApEn(m, r,N) = Φm(r)− Φm+1(r).

Appendix A.2. SampEn : Sample Entropy

However, ApEn exhibits a major sensitivity to the input parameters:
m (embedding dimension), r (filtering level) and L (Length of data). To
avoid this chief drawback, the sample entropy SampEn [45] was introduced
to overcome the dependence on the length of the time series and maintains
the relative consistency [25, 45]. Theoretically, the main differences between
ApEn and SampEn concern the calculation of probabilities. In fact, SampEn
avoids the self-counting problem and adopts a different summation method
of matches between template vectors.

To calculate SampEn of a time series data set:
First, we determine the sum number of possible vectors for each template

vector and adding them by calculating the formula: Bm(r) = [(N − m −
1)(N −m)]−1

∑N−m
i=1

∑N−m
j=1,j 6=i[number of times that d[|xm(j) − xm(i)|] < r].

Likewise, we determine the sum number of matches for each template vector

xvii



and adding them by calculating the formula: Am(r) = [(N − m − 1)(N −
m)]−1

∑N−m
i=1

∑N−m
j=1,j 6=i[number of times that d[|xm+1(j)− xm+1(i)|] < r].

Finally, the value of SampEn is estimated by:
SampEn(m, r,N) = −log[Am(r)/Bm(r)].
Typical parameter combination (r = 0.2 ∗ std, m = 2) [44, 45] was

adjusted to perform our analysis either for ApEn or SampEn.

Appendix A.3. LZ : Lempel-Ziv complexity

Another powerful tool that has proven its ability to measure and char-
acterize randomness of dynamical models, is data compression. Roughly
speaking, compression algorithms provide the length of the shortest form
that can re-express the ”essential” informations in a message. The LZ, one
of the optimal compression algorithms, is used to estimate the entropy rate
for an ergodic source, which is related to the asymptotic value of the the
LZ growth rate reached in the limit of large string length (L � 1) [26, 43].
LZ was used for the classification of CA [43, 60], and nonlinear dynamical
systems [61, 62].

Let (s) be a binary sequence of length N . The LZ complexity CLZ(s) of
(s) is defined as the number of factors in its exhaustive history[26, 43]. As
our binary strings have large length, we will consider the normalized measure
of complexity given by: LZcomplexity = CLZ(s)/(N/log(N)).

Appendix B. Data analysis method

Let us describe the outlines of our method. In fact, the spatiotemporal
data of either ECA or OCS are binarized if needed and arranged of the
form {xt}Tt=1 = {x1, x2...., xT} where xt = (xt(1), xt(2)...., xt(N) ) is the
configuration at time t of a system of N sites. Each component xt(i) gives
the state of the i-th site at time t. Next, we will consider only the mean value
xt at each time step. Following this scheme, we can build a time serie {St}Tt=1

= {S1, S1...., ST} where St = xt ∈ [0,1], for every spatiotemporal diagram.
It is on this averaged data that we apply the three statistical algorithms
introduced above to quantify the randomness and to classify the different
types of dynamics in ECA and OCS. It is necessary to emphasize that data
must be of binary type for the estimation of the complexity LZ. Thus, for
this later quantity the {St}Tt=1 will be binarized following a threshold value
given by its mean value.

xviii



Concerning ECA, simulations were performed for each rule, on 300 cell
lattice over 3000 iterations where the first 500 transient states are discarded.
Then the process is repeated for a 100 random initial conditions. Regarding
OCS, the optical system is evolved for T units of time and its binarized
intensity ||ψn(t)||2 is stored in an N × T

dt
array (T=250, dt =0.0833), for

different sizes of desynchronized region (δL). The binarization process was
performed thanks to a cutoff value of intensity, allowing us to filter the OCS’s
spatiotemporal evolution to highlight the domains similar to those that arise
in the ECA.
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