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Cellular automata are conceptual discrete dynamical systems useful in the theory of information. The spatiotemporal patterns that they produce are intimately related to computational mechanics in distributed complex systems. Here, we investigate their physical implementation in the framework of chimera states in which coherent and incoherent behavior coexist. Hence, chimera states were subject to quantitative and qualitative analyzes borrowing the same tools used to characterize cellular automata. Our results reveal the existence of cellular automata-type dynamics submerged in the dynamics exhibited by our optical chimera states. Thus, they share a panoply of attributes in terms of computational abilities.

Introduction

Spontaneous self-organization and intricate collective behaviors within complex extended systems, have been subject to a central focus of physical, chemical and biological researches [START_REF] Nicolis | Physics of far-from-equilibrium systems and selforganization[END_REF][START_REF] Neumann | Theory of self-reproducing automata[END_REF][START_REF] Langton | Artificial life: An overview[END_REF]. An accurate theoretical description of a spatiotemporal motion may result in the accurate modelling of the key ingredients: the energy exchanges and the transport mechanisms. When the system is made of independent subsystems, transports are no more ruled by flux base processes such Fick or Fourier law. With these later phenomena the modellings generally lead to partial differential equations (PDE). However, when the spatial extension results in the juxtaposition of independent systems, the interaction is governed by a coupling operator determined by the topological configuration. The obtained dynamical systems are known as coupled map lattices (CML) [START_REF] Bunimovich | Coupled Map Lattices: at the Age of Maturity[END_REF] that are, discrete equations. In spite of the significant difference between continuous (PDE) and discrete (CML) equations, they exhibit analogue spatiotemporal evolution [START_REF] Kaneko | Spatiotemporal intermittency in coupled map lattices[END_REF]. The interest in the coupled discrete systems has been renewed after they were demonstrated to support coexisting coherent and incoherent domains [START_REF] Kuramoto | Coexistence of coherence and incoherence in nonlocally coupled phase oscillators[END_REF]. The resulting dynamical objects are known as chimera states [START_REF] Abrams | Chimera states for coupled oscillators[END_REF] and their study is currently a very hot topic in nonlinear dynamics [START_REF] Sethia | Clustered chimera states in delay-coupled oscillator systems[END_REF][START_REF] Omel'chenko | Chimera states: The natural link between coherence and incoherence[END_REF][START_REF] Abrams | Solvable model for chimera states of coupled oscillators[END_REF][START_REF] Omelchenko | When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states[END_REF][START_REF] Omel | chenko, Coherence-incoherence patterns in a ring of nonlocally coupled phase oscillators[END_REF][START_REF] Hagerstrom | Experimental observation of chimeras in coupled-map lattices[END_REF][START_REF] Nkomo | Chimera states in populations of nonlocally coupled chemical oscillators[END_REF][15][START_REF] Clerc | Chimera-type states induced by local coupling[END_REF]. For a decade after the first demonstration, chimera states were meant to emerge only in lattice with non-local and global coupling. However, it is now admitted that local or the nearest neighbor coupling can also support chimera states in both 1D [START_REF] Clerc | Chimera-type states induced by local coupling[END_REF] and 2D [START_REF] Clerc | Two-dimensional optical chimera states in an array of coupled waveguide resonators[END_REF] lattices. In these cases, chimeras are generally pinned domain walls separating spatiotemporal chaotic evolution and regular state. Notice that, now chimera states are not only limited to discrete media since continuous counterparts were also reported in continuous systems [START_REF] Nicolaou | Chimera states in continuous media: Existence and distinctness[END_REF][START_REF] Alvarez-Socorro | Wandering walk of chimera states in a continuous medium[END_REF]. An outstanding feature of chimera state is the diversity of the patterns produced by their dynamics. One specific case have kept our attention. Indeed, chimera observed in locally coupled 1D optical waveguides array, triangular domains were observed [START_REF] Clerc | Chimera-like states in an array of coupled-waveguide resonators[END_REF]. Such an evolution known as Sierpiński patterns are universal [START_REF] Kaneko | Spatiotemporal intermittency in coupled map lattices[END_REF][START_REF] Chaté | Collective behaviors in spatially extended systems with local interactions and synchronous updating[END_REF] nonlinear solution and typical of spatiotemporal intermittency. Sarpinsky patterns are also a typical behavior in another class of discrete systems: the elementary cellular automata.

Cellular automata (CA) are part of the standard models for spatially extended dynamical systems, which stand out from the other models by their space-time discreteness. They were introduced by Wolfram who was interested in the relationship between dynamical systems behavior and their computational abilities [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF]. In particular, the complex class IV CA which supports emergent localized structures known as blinkers and propagating structures named gliders (see Fig. 1a). Wolfram conjectured that all class IV rules were capable of universal computation [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF][START_REF] Wolfram | Computation theory of cellular automata[END_REF]. It is worth mention that the ability to support computation is conditioned by the reconciliation between three essential features: information storage, information transfer and information modification [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF].

Despite all these spatiotemporal complexity properties and information processing abilities, CA mainly remain discrete, abstract computational systems. Indeed, for now very few implementations of CA have been reported in physical systems. The aim of this paper is to study the ability of optical chimera states (OCS) to afford properties of elementary cellular automata ii (ECA). To this end, we have implemented a classification of the ECA which helped to cluster them according to their dynamical category. The clustering process is then applied to our OCS, allowing us to identify the ECA property that can inherit the OCS. The paper is organized as follows. After a brief state of art on the ECA, we introduce the clustering method implemented thanks to the approximate entropy, the sample entropy [START_REF] Delgado-Bonal | Approximate entropy and sample entropy: A comprehensive tutorial[END_REF] and the Lempel-Ziv complexity [START_REF] Lempel | On the complexity of finite sequences[END_REF]. Then we consider the dynamics of the OCS in the light of the clustering process before the concluding remarks.

Elementary cellular automata (ECA)

In general, a CA comprise a lattice of N identical cells or sites. The state of each cell i at the step time t is denoted X t i . To define properly a CA, one must precise: the dimension d of the arrangement of cells, the number of possible states per cell k from the alphabet S, the number of neighbors connected to the central cell i in each direction, called the radius r and a local transition rule ϕ playing the role of an equation of motion. According to this latter ϕ, each cell i is updated to the next state X t+1 i as a function of its current state X t i and those of its neighbors taken into consideration r. In this paper, we will deal with the elementary cellular automata ECA, proposed by Wolfram [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF][START_REF] Wolfram | Statistical mechanics of cellular automata[END_REF] which are defined as one dimensional d = 1 array of cells, subject to periodic boundaries conditions X t i = X t i+N , with two possible binary states per site (k = 2, S = {0, 1}), and where the size m of the spatially neighborhood of a cell i is related to the radius r = 1, (one cell per each side) with the relation m = 2r + 1 = 3. In this case of binary state-CA, the local update function ϕ(m) is known as the rule table (See Table 1 and2). It enumerates the k m = 2 3 = 8 possible configurations (X t i-r X t i X t i+r ), that the neighborhood can be in. Then, the next generation is given by:

X t+1 i = ϕ(X t i-1 , X t i , X t i+1 ). (1) 
For a given rule and an initial condition, successive updates may produce some particular patterns. Illustrations of this behavior for the example of rule 110 and 18 (arbitrary chosen) are shown in Figs. 1a) andb), respectively. In these space-time diagrams, black cells stand for the state 0, and white cells for 1. These two examples are also the proof that despite their apparent simplicity, ECA show a large variety of dynamic behaviors.

In general, in extended dynamical systems the evolution is ruled by a set of order parameters. Hence, their asymptotic behavior is independent of the iii Neighborhood 111 110 101 100 011 010 001 000
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However, for CA the asymptotic state was shown to be related to the initial condition [START_REF] Culik | Undecidability of ca classification schemes[END_REF], making difficult their classification. Therefore a great part of the state of art in the study of CA is related to their classification and two main schools of thought of classification emerge. The phenotypic classification based on the quantification of observed spacetime dynamic [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Li | Transition phenomena in cellular automata rule space[END_REF][START_REF] Wuensche | Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and thez parameter[END_REF] and the genotypic classification founded on the parametrization of rule tables [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Oliveira | Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space[END_REF].

The pioneer attempt was proposed by Wolfram to classify the ECA [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF]. His heuristic classification is based on investigating the "average" spatiotemporal behavior observed over a sample of random initial configurations.

Wolfram's phenotypic classification remains qualitative. To quantify the behavior of CA, several studies based on statistic properties were reached, either on the space-time diagram [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Li | Transition phenomena in cellular automata rule space[END_REF][START_REF] Wuensche | Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and thez parameter[END_REF], or on the rule table [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Oliveira | Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space[END_REF].

Optical chimera states (OCS)

The optical chimera states we consider here were reported in ref. [START_REF] Clerc | Chimera-like states in an array of coupled-waveguide resonators[END_REF]. We considered a one dimensional array of nonlinear wave-guide resonators (WGs) locally coupled, subject to coherent optical injection E 0 , whose spatiotemporal dynamic is described theoretically by the discrete Lugiato-Lefever model [ 33]. The intracavity field obeys:

(2)

∂ T ψ n = E 0 -(1 + i∆)ψ n + i|ψ n | 2 ψ n + iC(ψ n+1 -2ψ n + ψ n-1 ),
where ψ n is the slowly varying envelope of the electric field circulating in the nth micro-resonator, ∆ ≡ ω -ω 0 stands for the detuning between the resonance frequency ω 0 of the cavity and the input frequency ω, and C stands for the coupling parameter. The evolution time t = T τ ph is measured in the photon lifetime unit τ ph (is normalized to the cavity decay time).

The Eq. ( 2) is known to support chimera states as reported in [START_REF] Clerc | Chimera-like states in an array of coupled-waveguide resonators[END_REF][START_REF] Clerc | Two-dimensional optical chimera states in an array of coupled waveguide resonators¡? a3b2 show [editpick]?¿[END_REF]. A typical evolution of such a chimera is displayed in Fig. 2a, obtained following the results reported in [START_REF] Clerc | Chimera-like states in an array of coupled-waveguide resonators[END_REF]. After a binarization process described in Apv pendix B, we obtain the evolution of Fig. 2b. Figures 1c) andd) were also obtained by the same method. It should be noted that those OCS demonstrate robustness, flexibility and scalability of their spatiotemporal patterns. Indeed, by the simple modification of the input parameters, one can favor the generation of a wide range of geometrical structures in space-time, leading to more complexity. Hence, the spatiotemporal dynamics showed by our OCS display many of the basic ingredients required to perform the information processing, from the point of view of the computation theory. For instance, the domains, embedded particles (walls between domains) and particle collisions shown in Figs. 1c) andd). Given that experimental implementations of CA are rather few in number, the proposed setup is an opportunity to investigate the CA in the context of nonlinear optics.

To this end, we will first perform a classification of the ECA according to the dynamics they can display. Then, the same process will be applied on the OCS to determine to which class of ECA they belong. CA can be considered following two approaches: the computational mechanics framework [START_REF] Crutchfield | Turbulent pattern bases for cellular automata[END_REF][START_REF] Hanson | The attractor-basin portrait of a cellular automaton[END_REF][START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF][START_REF] Lizier | A framework for the local information dynamics of distributed computation in complex systems[END_REF] or analysis will be based on the statistical approach [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Li | Transition phenomena in cellular automata rule space[END_REF][START_REF] Wuensche | Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and thez parameter[END_REF]. Here, we will prefer the latter approach. vi 4. Quantitative overview of ECA and OCS Dynamics Ordered and random behaviors are simple to be discerned either visually or described statistically [START_REF] Crutchfield | Inferring statistical complexity[END_REF]. Nonetheless, complex behavior and patterns are easy to identify qualitatively but their quantification remains a nagging puzzle [START_REF] Crutchfield | Between order and chaos[END_REF]. As mentioned earlier, recognizing the fundamental role of the emergent and interacting structures has driven a panoply of statistical surveys to address this quantification issue, attempting to define a relative location where physical systems with complex behavior lie [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Wuensche | Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and thez parameter[END_REF][START_REF] Lizier | A framework for the local information dynamics of distributed computation in complex systems[END_REF][START_REF] Crutchfield | Between order and chaos[END_REF][START_REF] Martin | Generalized statistical complexity measures: Geometrical and analytical properties[END_REF][START_REF] Rosso | Distinguishing noise from chaos[END_REF]. It is in the light of these statistical tools that we will lead a quantitative analysis of the spatiotemporal dynamics exhibited by ECA and OCS. However, we will focus our efforts in the finding of quantities that allows to classify the ECA according to their dynamical evolution.

First, we classify the different types of dynamics in ECA, in particular, to screen out the complex class. Then, we extend the study to OCS dynamics, seeking to which ECA class, it could be compared, and finally allowing us to build the bedrock of the promising analogy proposed throughout this paper. The concept of entropy to quantify the amount of information loss and to measure the degree of randomness and unpredictability within a dynamical process will be our key tool. Indeed, we adopt Lempel-Ziv complexity (LZ) [START_REF] Lempel | On the complexity of finite sequences[END_REF][START_REF] Kaspar | Easily calculable measure for the complexity of spatiotemporal patterns[END_REF], Approximate entropy (ApEn) [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF], and Sample entropy (Sam-pEn) [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. These three quantities, have different theoretical aspects, but all of them have their roots in information theory and chaos theory. Also, they present a commonplace in the analysis of the discrete series.

It must be pointed out that these three deterministic quantities are maximized for random process and vanish for perfectly ordered ones. Details about these concepts and their implementation can be found in [START_REF] Delgado-Bonal | Approximate entropy and sample entropy: A comprehensive tutorial[END_REF][START_REF] Lempel | On the complexity of finite sequences[END_REF][START_REF] Kaspar | Easily calculable measure for the complexity of spatiotemporal patterns[END_REF][START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] and references therein. Inspired by the body of the literature dealing with the characterization of the complexity within experimental signals, using a single observable [START_REF] Delgado-Bonal | Approximate entropy and sample entropy: A comprehensive tutorial[END_REF][START_REF] Grassberger | Characterization of strange attractors[END_REF][START_REF] Bauer | Characterization of spatiotemporal chaos from time series[END_REF], our study will be based on a time series analysis. The outlines of our method are described in Appendix Appendix B.

Results and discussion

The clustering classification method

For the classification of the ECA we use the clustering strategy. Hence, for each ECA we have computed the ApEn, the LZ complexity and the vii SampEn for hundred of different random initial conditions. In Fig. 3a) and b), we have represented these entropies in the plane (LZ, ApEn) and (LZ, SampEn), respectively. As can be seen from these figures, we have various clusters in the entropy planes.

Notice that we recover classifications previously proposed in [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF][START_REF] Oliveira | Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space[END_REF][START_REF] Li | The structure of the elementary cellular automata rule space[END_REF]. Periodic rules class represents the ordered region (orange dots cloud), having low entropy values, while chaotic rules class with high values of entropy, represents the disordered region (black dots cloud). As expected, rules class with complex behavior (gray dots cloud), characterized by an intermediate entropy, are likely to be found in the critical region, located between the ordered and disordered regions. We have also represented the three entropies, for each ECA rule and all the random initial conditions in Figs. 3c), d), ande). Remarkably, we observe from these figures an interesting correlation regarding the randomness values calculated from the behavior of a given ECA rule and its equivalents, over the sample of random initial conditions, such as complex rules: 54 and 147 or rule 110 and 124, 137, 193.

Next, we have extended our analysis to OCS dynamics. The results are given by the triangles in Figs. 3a) andb). It can be seen that they belong to the cloud of complex class (gray dots cloud). This shows that our methodology captures and quantifies neatly the complex behavior and also confirms that this latter lies to the transition from regular towards chaotic phase.

Piecing the above results together, we can conclude that OCS can be classified in the complex behavior class of ECA. This class plays a central role in the hypothesis of "edge of chaos" (EOC) [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Crutchfield | Between order and chaos[END_REF][START_REF] Crutchfield | Computation at the onset of chaos[END_REF][START_REF] Packard | Adaptation toward the edge of chaos, Dynamic patterns in complex systems[END_REF], which in turn is a key concept in the information theory. Indeed, systems in such critical regime enhance their computational abilities. The statistical rationale behind this conjecture is that information storage requires low entropy (order), while information transmission necessitates high entropy (disorder), thus the EOC regime may afford the optimal trade-off [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF].

To test the robustness of our results, calculations were performed for different network sizes (N ) of ECA in Fig. 4 and various time steps (length of time series L) in Fig. 5, showing no change in our results. Furthermore, our technique shows the potential to classify spatiotemporal configurations, for a spectrum of ordered, complex and chaotic dynamics, without splitting the space and time analysis, thanks to the compression of spatial information in a time series observable such as the mean value. Now, let's consider the capacity of the system to carry out a useful computational task [START_REF] Mitchell | Revisiting the edge of chaos: Evolving cellular automata to perform computations[END_REF]. In this context, the equation of motion which governs viii the system is seen as the program/algorithm, the initial condition as the input and the desirable configuration as the output. Furthermore, the ability of a system to perform universal computation, implies that it should be capable to bear information by reflecting perturbations made to the input and to transmit it to the output [START_REF] Zenil | Compression-based investigation of the dynamical properties of cellular automata and other systems[END_REF][START_REF] Zenil | On the dynamic qualitative behavior of universal computation[END_REF]. In other words, a universal system must show its sensitivity to external stimulus. For instance, Wolfram speculated that complex ECA class is capable of universal computation, due to the undecidability concerning its behavior [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF][START_REF] Wolfram | Computation theory of cellular automata[END_REF]. In our survey, this undecidability is mirrored by the large interval values of statistical measures taken by the complex ECA (See e.g. Fig. 3). Notice that, the unpredictability of our OCS dynamics regarding the initial conditions, was demonstrated by computing the Lyapunov exponents [START_REF] Clerc | Chimera-like states in an array of coupled-waveguide resonators[END_REF]. Therefore, the OCS can be seen as a complex dynamical system with properties of the ECA.

An interesting feature of the OCS is that their properties can be controlled by the set of pertinent parameters of the system. An illustration of this feature can be observed in Fig. 6. In this figure, we show in the plane (LZ, ApEn) the entropies of the complex class ECA and the OCS for different values of the pump parameters E 0 (colored markers in Fig. 6a)) and different values of the detuning ∆ (colored markers in Fig. 6b)). The color map in both figures accounts for the change of the size of the OCS's incoherent domain δ L . It appears that the properties of the ECA inherited by the OCS can be continuously tuned by almost all the parameters of the system and also the profile of the chimera. Therefore, with our clustering method, we are able to quantify the qualitative change between the different types of spatiotemporal evolution as the parameters change (see space-time diagrams in inset of Fig. 6).

To complete our analogy, we have deepen the study to compare the properties of our OCS and those of ECA complex rules. We consider the long term dynamics. Various authors [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Li | Transient behavior of cellular automaton rule 110[END_REF] have reported that in the vicinity of the phase transition, ECA can exhibit long transients which are function of the array size. Consequently, one can expected that the entropies to be also function of the size. This is what we observed in Fig. 7a), where we have plotted the average of the entropy value estimated by ApEn over 100 random initial configurations as a function of array size N for ECA complex rules 110 (blue) and 54 (green). In contrast to the rule 54, which remains less complex, the rule 110 dynamic shows a sensitivity to size, through the growth tendency of ApEn with system size. This scaling behavior of rule 110, can be explained as a direct consequence of its transient time, which inix creases with system size [START_REF] Li | Transient behavior of cellular automaton rule 110[END_REF]. Here also, we observe the same behavior with our OCS as can be seen with Fig. 7b) where we show the ApEn as function of the chimera size δ L .

It must be pointed that this extended tendency of complexity has been qualified fundamental to support information processing [START_REF] Langton | Computation at the edge of chaos: Phase transition and emergent computation[END_REF][START_REF] Ninagawa | Power spectral analysis of elementary cellular automata[END_REF].

Another property suggested to have relationship with computational universality is the 1/f α noise property of the spectrum. Hence, to explore more horizons concerning the analogy between our OCS and ECA complex rules, we have performed spectral analysis to investigate the temporal behavior. Indeed, a classification of ECA based on the shape of their power spectra were proposed in [START_REF] Ninagawa | Power spectral analysis of elementary cellular automata[END_REF]. Interestingly, the power spectrum S(f ) of complex ECA rules (e.g. 110 and 54), exhibit a power law at low frequencies [START_REF] Ninagawa | Power spectral analysis of elementary cellular automata[END_REF] as illustrated in Fig. 8a) and b). Calculations were performed from evolutions starting from a random initial configuration of 3000 cells for 5000 time steps. This spectral decay, known as 1/f α noise [START_REF] Keshner | 1/f noise[END_REF], reflects the strong influence of past events on the future. Ninagawa founded that only rule 110 exhibits 1/f α noise during the longest time steps, thanks to its extended transient behavior [START_REF] Li | Transient behavior of cellular automaton rule 110[END_REF]. Ninagawa claimed that the transient behavior generates intermittency and causes 1/f α noise (The bursts and periodic phases, produced by the collision or not of gliders). Hence, based on the fact that intermittency represents one of the main mechanisms leading to 1/f α noise, in chaotic dynamical system [START_REF] Pomeau | Intermittent transition to turbulence in dissipative dynamical systems[END_REF], our intermittent OCS [START_REF] Clerc | Chimera-like states in an array of coupled-waveguide resonators[END_REF] stem their legitimacy to show a power spectrum whose shape resembles more to the one exhibited by the ECA 110 as it can be seen in Fig. 8b) and c), respectively. Most notably, the presence of 1/f α f luctuation in two computationally universal CA, such as ECA 110 [START_REF] Cook | Universality in elementary cellular automata[END_REF] and the game of Life [START_REF] Ninagawa | 1ƒ fluctuation in the "game of life[END_REF], has led Ninagawa to conjecture a relationship between computational universality and 1/f α noise in CA [START_REF] Ninagawa | Dynamics of universal computation and 1/f noise in elementary cellular automata[END_REF].

Conclusion

In conclusion, chimera states are dynamical structures with intriguing feature to support coexistence of coherent and incoherent domains in an array of identical oscillators. They are universal objects that have been observed in a large variety of dynamical systems. In this work, we have considered chimera states exhibited by an array of optical wave-guides locally coupled. We have studied the ability of the optical chimera states to mimic the dynamics of cellular automata, which have many application in computational mechanics. To this end, we have in a first time, classify the cellular automata using a x clustering method based on three metrics: the Approximate, the Sample and the Lempel-Ziv entropies. Hence, the optical chimera states can be cast in this map to identify from which class of cellular automata they inherit their properties and the kind of computation they can perform. To the best of our knowledge, this is one of the first study suggesting that chimera state can afford properties of computational object. This opens the possibility of physical implementation of cellular automata, with promising applications in many domains. Indeed, we are currently in the process of investigating those computational performances in the framework of recurrent neural networks. xvi
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 1 Fig. 1. (Color Online) Illustration of the phenotypic analogy between the emergent patterns showed by OCS and ECA. (a) and (b) space-time diagrams illustrating the typical behavior of complex ECA 110 and chaotic ECA 18, respectively, started from random initial conditions on a 300 cell lattice. (c) and (d) display the filtered spatiotemporal evolutions of the binarized intensity ||ψ n (t)|| 2 within the desynchronized region of two OCS, obtained from numerical simulations of model Eq. (2) for C = 1.9, ∆ = 7, E 0 = 6.2 (c) and E 0 = 6.10 (d).
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 2 Fig. 2. (Color Online) Optical chimeras states. (a): Spatiotemporal evolution of the intensity ||ψ n (t)|| 2 , obtained from numerical simulations of model Eq. (2) by taking C = 1.9, ∆ = 7 and E 0 = 6.15. (b): the filtered version of (a), displaying the cellular automata dynamic-type submerged.
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 34 Fig. 3. (Color Online) "Edge of chaos": Statistical overview of the spatiotemporal dynamics of OCS and ECA. (a) and (b) correspond to the maps of ApEn vs LZ and SampEn vs LZ, respectively. Dots correspond to ECA and triangles to OCS. Triangles obtained for different sizes δ L of OCS, with C = 1.9, ∆ = 7 and E 0 = 6.05. The left panels show on the three statistical quantities with their frequency histograms (PDF): ApEn (c), SampEn (d) and LZ complexity (e), for all the ECA rules. The minimum (blue) and the maximum (red) values of OCS are illustrated as dashed lines.
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 26 Fig. 6. (Color Online) Sensitivity of ECA and OCS to the driving. Two maps: ApEn against LZ complexity(data from Fig. 3) displaying only the cloud of ECA complex class (gray) and the different OCS sizes δ L generated with different input parameters (triangle, square and circle markers). (a): C = 1.9, ∆ = 7 and different E 0 = 6, 6.1 ; (b): C = 1.9, E 0 = 6.05 and different ∆ = 6.95, 7.05. Γ 1 (δ L = 20), Γ 2 (δ L = 22), Γ 3 (δ L = 17) and Γ 4 (δ L = 15) are selected dynamical evolution to illustrate the configurablity of OCS.

Fig. 7 .Fig. 8 .

 78 Fig. 7. (Color Online) Scaling behavior of complex ECA rules and OCS: (a) and (b) represent the size effect on ApEn of complex ECA and OCS, respectively.
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 1 Rule table of ECA 110, enumerating the evolution of the 8 possible situations.
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 2 Rule table of ECA 18, enumerating the evolution of the 8 possible situations.
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Appendix A. Statistical measures

Here, we introduce briefly the statistical measures used in our investigation:

Appendix A.1. ApEn : Approximate Entropy ApEn was proposed, to discern levels of regularity within real data without any knowledge about the source system [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF]. It is robust to noise, which was a central limitation of the previous tools developed by the information theory [START_REF] Delgado-Bonal | Approximate entropy and sample entropy: A comprehensive tutorial[END_REF]. Since then, ApEn was used to examine short experimental signals, especially, physiological and biological data sets [START_REF] Delgado-Bonal | Approximate entropy and sample entropy: A comprehensive tutorial[END_REF].

In order to find the approximate entropy of a given time series of data u = {u(1), u(2), ..., u(N )} of length N . Firstly, we fix m (embedding dimension), a non-negative integer, so that blocks of (N -m+1) vectors are formed x(i) = {u(i), u(i+1), ..., u(i+m-1)} and x(j) = {u(j), u(j + 1), ..., u(j + m -1)}, and we calculate the distance between them, given by :

Secondly, we calculate the value C m i (r) = (number of j <= N -m + 1 such that d[x(i), x(j)] <= r)/(N -m + 1) where r specifies the filtering level. Then, we compute Φ m (r) = (N -m + 1) -1 N -m+1 i=1 log(C m i (r)). Finally, this statistic is defined as ApEn(m, r, N ) = Φ m (r) -Φ m+1 (r).

Appendix A.2. SampEn : Sample Entropy

However, ApEn exhibits a major sensitivity to the input parameters: m (embedding dimension), r (filtering level) and L (Length of data). To avoid this chief drawback, the sample entropy SampEn [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] was introduced to overcome the dependence on the length of the time series and maintains the relative consistency [START_REF] Delgado-Bonal | Approximate entropy and sample entropy: A comprehensive tutorial[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. Theoretically, the main differences between ApEn and SampEn concern the calculation of probabilities. In fact, SampEn avoids the self-counting problem and adopts a different summation method of matches between template vectors.

To calculate SampEn of a time series data set: First, we determine the sum number of possible vectors for each template vector and adding them by calculating the formula:

Likewise, we determine the sum number of matches for each template vector xvii and adding them by calculating the formula:

Finally, the value of SampEn is estimated by: SampEn(m, r, N ) = -log[A m (r)/B m (r)]. Typical parameter combination (r = 0.2 * std, m = 2) [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] was adjusted to perform our analysis either for ApEn or SampEn.

Appendix A.3. LZ : Lempel-Ziv complexity

Another powerful tool that has proven its ability to measure and characterize randomness of dynamical models, is data compression. Roughly speaking, compression algorithms provide the length of the shortest form that can re-express the "essential" informations in a message. The LZ, one of the optimal compression algorithms, is used to estimate the entropy rate for an ergodic source, which is related to the asymptotic value of the the LZ growth rate reached in the limit of large string length (L 1) [START_REF] Lempel | On the complexity of finite sequences[END_REF][START_REF] Kaspar | Easily calculable measure for the complexity of spatiotemporal patterns[END_REF]. LZ was used for the classification of CA [START_REF] Kaspar | Easily calculable measure for the complexity of spatiotemporal patterns[END_REF][START_REF] Estevez-Rams | Lempel-ziv complexity analysis of one dimensional cellular automata[END_REF], and nonlinear dynamical systems [START_REF] Alonso | Complex behavior in chains of nonlinear oscillators[END_REF][START_REF] Estevez-Rams | Phenomenology of coupled nonlinear oscillators[END_REF].

Let (s) be a binary sequence of length N . The LZ complexity C LZ (s) of (s) is defined as the number of factors in its exhaustive history [START_REF] Lempel | On the complexity of finite sequences[END_REF][START_REF] Kaspar | Easily calculable measure for the complexity of spatiotemporal patterns[END_REF]. As our binary strings have large length, we will consider the normalized measure of complexity given by: LZ complexity = C LZ (s)/(N/log(N )).

Appendix B. Data analysis method

Let us describe the outlines of our method. In fact, the spatiotemporal data of either ECA or OCS are binarized if needed and arranged of the form {x t } T t=1 = {x 1 , x 2 ...., x T } where x t = (x t (1), x t (2)...., x t (N ) ) is the configuration at time t of a system of N sites. Each component x t (i) gives the state of the i-th site at time t. Next, we will consider only the mean value x t at each time step. Following this scheme, we can build a time serie {S t } T t=1 = {S 1 , S 1 ...., S T } where S t = x t ∈ [0,1], for every spatiotemporal diagram. It is on this averaged data that we apply the three statistical algorithms introduced above to quantify the randomness and to classify the different types of dynamics in ECA and OCS. It is necessary to emphasize that data must be of binary type for the estimation of the complexity LZ. Thus, for this later quantity the {S t } T t=1 will be binarized following a threshold value given by its mean value. xviii Concerning ECA, simulations were performed for each rule, on 300 cell lattice over 3000 iterations where the first 500 transient states are discarded. Then the process is repeated for a 100 random initial conditions. Regarding OCS, the optical system is evolved for T units of time and its binarized intensity ||ψ n (t)|| 2 is stored in an N × T dt array (T =250, dt =0.0833), for different sizes of desynchronized region (δ L ). The binarization process was performed thanks to a cutoff value of intensity, allowing us to filter the OCS's spatiotemporal evolution to highlight the domains similar to those that arise in the ECA.
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