N

N

Involving Stakeholders in the Implementation of
Microservice-Based Systems: A Case Study in an
Ambient-Assisted Living System
Gaston Marquez, Carla Taramasco, Hernan Astudillo, Dan Istrate, Vincent
Zalc

» To cite this version:

Gaston Marquez, Carla Taramasco, Hernan Astudillo, Dan Istrate, Vincent Zalc. Involving Stake-
holders in the Implementation of Microservice-Based Systems: A Case Study in an Ambient-Assisted
Living System. IEEE Access, 2021, 9, pp.9411-9428. 10.1109/ACCESS.2021.3049444 . hal-03553708

HAL Id: hal-03553708
https://hal.science/hal-03553708
Submitted on 22 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03553708
https://hal.archives-ouvertes.fr

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 17, 2020, accepted December 31, 2020, date of publication January 5, 2021, date of current version January 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049444

Involving Stakeholders in the Implementation
of Microservice-Based Systems: A Case Study
in an Ambient-Assisted Living System

GASTON MARQUEZ !, CARLA TARAMASCO “2, HERNAN ASTUDILLO !, (Member, IEEE),
VINCENT ZALC3, AND DAN ISTRATE?

lDepartamento de Informatica, Universidad Técnica Federico Santa Maria, Valparaiso 2390302, Chile
2Escuela de Ingenierfa Civil Informatica, Universidad de Valparaiso, Valparaiso 2362905, Chile
3Laboratoire BMBI UMR 7338, Université de Technologie de Compiggne, 60203 Compégne, France

Corresponding authors: Gaston Mérquez (gaston.marquez@usm.cl) and Carla Taramasco (carla.taramasco @uv.cl)
This work was supported in part by the ECOS Sud grant BV2 (Well Being and Well Ageing), in part by FONDECYT Regular (Multimodal

Machine Learning approach for detecting pathological activity patterns in elderlies) under Grant 1201787, and in part by ANID
PIA/APOYO (CCTVal) under Grant AFB180002.

ABSTRACT Microservice-based systems promote agility and rapid business development. Some features,
such as fast time-to-market, scalability and optimal response times, have encouraged stakeholders to get
more involved in the development and implementation of microservices architectures in order to trans-
late their business vision into the implementation of the architecture. Although some techniques allow
the inclusion of the stakeholders’ perspective in the design of microservice architectures, few proposals
consider such perspectives in the selection and evaluation of technologies that implement microservice
architectures. Indeed, the qualities that characterize microservice-based systems strongly depend on the
suitable selection of technologies, such as application frameworks and platforms. This article proposes a
collaborative technique that includes stakeholders and software architects in the selection and evaluation
of application frameworks and platforms to implement microservice-based systems. We evaluated the
technique in an industrial case of design and implementation of an Ambient-Assisted Living (AAL) system,
which combines microservice architecture and Internet-of-Medical-Things (IoMT) sensors. The case results
indicate that the proposed technique supported stakeholders in the pragmatic evaluation of alternative
technological solutions. Additionally, it allowed the implementation of an AAL system that satisfies the
quality specifications of stakeholders and end-users. This initial study suggests that actively including
stakeholders in the implementation of microservice-based systems allows architects to make design decisions
that better consider stakeholders viewpoints as well as managing their expectations.

INDEX TERMS Software architecture, microservice architecture, ambient-assisted living system, frame-

works.

I. INTRODUCTION

People and organizations interested in a system are com-
monly defined as stakeholders. A stakeholder is anyone who
has an interest in the success of the system, e.g., customers,
end-users, developers, project managers, maintainers, and
even those who market the system [1]. But, although all
stakeholders share the same desire for the project success,
they have different needs and viewpoints that they want the

The associate editor coordinating the review of this manuscript and

approving it for publication was Resul Das

VOLUME 9, 2021

system to guarantee, optimize, or deliver to a target audience.
Depending on the context in which the system is involved,
these needs encompass different types and levels of con-
cerns. In this regard, some studies (such as [2] and [3])
have investigated the role of stakeholders regarding decision
making in software development. These studies conclude that
stakeholders significantly influence decisions in the early
stages of the software life cycle, specifically in the processes
of capturing and eliciting requirements. On the other hand,
they also mention that stakeholders provide essential infor-
mation regarding the constraints and qualities that the system

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9411

https://orcid.org/0000-0003-0167-5969
https://orcid.org/0000-0001-8318-4201
https://orcid.org/0000-0002-6487-5813
https://orcid.org/0000-0002-6113-4649

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

must satisfy. These aforementioned constraints and quali-
ties are often represented by quality attributes requirements
(QARs). QARs describe the properties and characteristics
that the system must satisfy such as usability, security, per-
formance, reliability, performance, among others [1].

Despite the significant influence that stakeholders have
regarding the success in developing and implementing soft-
ware, they reduce their participation as the software life cycle
progresses. Most of the design and implementation decisions
fall on experts’ judgment (such as architects and technical
leaders), which implies that stakeholders’ viewpoints are
barely considered [4]. The reasons why this scenario occurs
can be varied; however, Schulenklopper and Rommes [5]
describe that one of the main causes of the limited partici-
pation of stakeholders is related to the lack of adequate tools
the architects have to communicate with them.

Concerning the development and implementation of
microservice architectures, the aforementioned scenario is
not different. The microservices architectural style aims to
develop and deploy software in small and distributed services,
each running autonomously and communicating with each
other, for example, through HTTP requests to their APIs [6].
Microservice architectures promote the creation of more
adaptable and flexible IT infrastructures. Each service can
be deployed and modified without affecting other services or
functional aspects of the system [7].

Several studies have investigated the stakeholders’ pro-
files and roles that participate in the development of
microservice-based systems. In this regard,
Haselbock er al. [8] identify five stakeholders profiles, which
are software architect, developer, application engineering,
quality assurer, and manager. Rademacher er al. [9], on the
other hand, identify three stakeholder roles, which are domain
expert, service developer, and service operator. Descriptions
of current microservice-based projects (such as [10]-[12])
also show that stakeholders participation is high in the
modeling, design and analysis development phases, but low
in the implementation phase, where technical experts and
architects often make decisions. Hence, one of the main
issues we know about this regard is a lack of techniques
to involve stakeholders in decision-making about selecting
technological tools (such as frameworks and platforms) to
develop and implement microservice-based systems. More-
over, the evidence describes that evaluating technologies is
led mainly by technical experts and architects; still, it is
unclear how they map the QARs defined by the stakeholders
into the implementation of microservice-based systems.

This article introduces a technique to include stake-
holders in decision-making for the implementation of
microservice-based systems. The technique extends
nAzimut, a technique that uses architectural knowledge to
support architects in the analysis, evaluation, and comparison
of technologies (represented by framework and platforms) to
satisfy QARs in microservice-based systems [13]. Our pro-
posal aims to change the procedure of wAzimut input selec-
tion. pAzimut inputs are properties that characterize quality

9412

attributes. Therefore, instead of an architect selecting these
properties, we propose to extend the selection of properties
through a collaborative process that includes stakeholders.
Likewise, the inputs selected in this collaborative instance are
used as evaluation criteria to analyze solutions to implement
microservice-based systems. We evaluated our proposal in
an Ambient Assisted Living system that uses Internet-of-
Medical-Things (IoMT) and microservice architecture. The
contributions of our study are as follows:

o A collaborative technique that allows stakeholders to
participate in architecture decisions by prioritizing qual-
ity attribute-based properties representing QARs.

« A mechanism that enables stakeholders and architects
to evaluate frameworks, platforms and tools in order to
satisfy QARSs in microservice-based systems.

This article is organized as follows: Section II contex-
tualizes the problem addressed in our research; Section III
describes the related work; Section IV introduces pAzimut;
Section V describes our technique; Section VI details the
case study; Section VII discusses the threats to validity; and
Section VIII concludes the article and describes future work.

Il. PROBLEM STATEMENT

Stakeholder participation in software development is a crit-
ical factor in achieving the expectations that software must
satisfy [1]. In this regard, Hujainah er al. [14] argue that
stakeholders play an important role in prioritizing soft-
ware requirements during the requirement elicitation process.
Although the prioritization is often influenced by project
costs, deadlines, and government policies, usually stake-
holders prioritize requirements based on their own techni-
cal knowledge. This experience that each stakeholder has
positively influences the prioritization of requirements, but
prioritization affects not only requirements but also other
software development disciplines. Ernst et al. [15] mention
that stakeholders participation is not only essential to develop
software, but also to design its architecture, define the archi-
tecture roadmap, and execute the roadmap. Indeed, stakehold-
ers participation in the prioritization of software requirements
not only supports software architects but also affects the
characteristics of the software product [1].

Although there are several techniques to involve
stakeholders in prioritizing software requirements (such
as [16] and [17]), it is still hard to involve them in the
decision-making of software architectures. Schulenklopper
and Rommes [5] attribute this gap to the communication
problems between architects and stakeholders. More pre-
cisely, the authors state that ‘“‘the architect’s tools for commu-
nicating with stakeholders are blunt and often unsuitable”.

Regarding service-oriented systems, Shekhovtsov et al.
[18] describe two observations about stakeholders and the
implementation of service-oriented architectures:

« It is difficult for stakeholders without IT experience to
express their expectations on the quality of a system
under development if they cannot experience it in the
appropriate context; without such experience, they are

VOLUME 9, 2021

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

forced to be rough in their opinions (e.g., “‘the service
must be reliable™).

o There are not established processes and tools for
quality-related interaction between business stakehold-
ers and IT people.

If we extrapolate these observations to microservice-based
systems, there is not much difference. As the market of
tools, platforms and frameworks grows, new technical knowl-
edge makes it challenging to include stakeholders in the
decision-making of microservice architectures, as well as in
the prioritization of requirements. Stakeholders, therefore,
reduce their participation in the decision-making concerning
the implementation of microservice-based systems. This lack
of participation implies that the stakeholders’ viewpoints
have no influence on the implementation of critical business
microservice components (such as APIs and business ser-
vices) compromising not only the stakeholders’ expectations
about the system but also the functionalities that the system
offers to clients and end-users [19].

Ill. RELATED WORK

This section introduces the studies that have addressed the
evaluation and selection of software components (including
technologies such as frameworks and platforms) in software
architecture and microservices. Additionally, we describe
studies that have examined the role of stakeholders in the
evaluation of software components.

A. SOFTWARE COMPONENTS SELECTION AND
EVALUATION

Astudillo et al. [20] propose an approach to systematic
generation, evaluation, and comparison of component assem-
blies, using potentially incomplete, imprecise, and chang-
ing descriptions of requirements and components. The
authors propose using architectural policies and mechanisms
obtained from distributed systems to propose a technique
that generates alternatives based on software components
to implement architectures. Like pAzimut, the authors’
approach focuses on generating systematic solutions. Never-
theless, this technique does not consider stakeholders and is
not focused on microservice architectures.

Lenarduzzi and Sievi-Korte [21] present an approach based
on three steps to support the developers in selecting alter-
native components in case the component is not working
anymore, or future updates bring mismatches in version-
ing, which forces to select others alternative. The approach
considers the following steps to select component alterna-
tives: (i) identification of components; (ii) exploration survey;
and (iii) the use of a component adoption model. However,
this approach it does not focus on the design of microservices
architecture. The approach supports developers in evaluating
and selecting components, but does not address stakeholders’
needs in such components selection.

Ernst et al. [22] describe emerging research related
to component selection using high-level quality attribute
indicators, project health measures, and a context-specific

VOLUME 9, 2021

aggregation function for producing a single yes/no
decision for integrators. The authors’ proposal involves sev-
eral aspects to evaluate components according to the context.
Nevertheless, the authors briefly discuss the importance of
design decisions in selection. In addition, although they
include stakeholders in their proposal, they do not discuss
explicit mechanisms to include them in the component
selection.

Cervantes et al. [23] investigate the criteria used by prac-
ticing software architects in selecting security frameworks.
They also propose how information associated with some of
the important criteria to architects can be obtained manually
or in an automated way from online sources, such as GitHub.
More precisely, the authors performed a study of which cri-
teria are useful to architects in selecting application frame-
works. The study also allows understanding which criteria are
critical to practitioners and how data associated with some
of these criteria can be gathered from online sources. The
technique described by the authors does not explicitly dis-
cuss how to incorporate stakeholders’ viewpoints in selecting
frameworks and technology.

B. STAKEHOLDERS AND DECISION MAKING

Aurum and Wohlin [2] introduce the decision making roles
that stakeholder should play in Requirements Engineer-
ing, and argued that they must be involved in strategic
decisions. Although the authors mention the importance
and relevance of stakeholders in the whole process of
Requirement Engineering with respect to decision making,
the authors do not address the importance of stakeholders
in the design and implementation of QARs. On the other
hand, the authors mention that a key factor for software devel-
opment success is to track the decisions made in the Require-
ment Engineering process. Still, they do not discuss how
these decisions influence the design and implementation of
software.

Petersen et al. [3] report a survey that classified stake-
holders as 1) decision initiators, 2) decision “‘preparators”,
or 3) decision makers. The authors also mention that often,
decisions on software implementation are made by technical
experts. More precisely, the authors mention that decisions
made by expert stakeholders (such as software managers
and software developers) are more suitable for evaluating
CSOs (Component Sourcing Option). Although this study
does analyze the importance of stakeholders in component
evaluation, the authors do not use collaborative techniques to
evaluate CSOs.

Badampudi et al. [24] discuss the decisions of software
components selection from several origins, such as in-house
development vs COTS (Components off-the-shelf), OSS
(Open Source Software), and outsourcing; and proposed a
decision-making process-line to select software asset origins.
The authors emphasize the importance of stakeholders in
their proposal, but they do not use collaborative techniques
to select and evaluate COTS.

9413

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

Non-functional . Microservices Microservices Frameworks
. <-->» Properties —> . .. < Frameworks
requirement tactics patterns l characterization
"Assemblies \
y generation
selects g
Legend
Architect ,I, = input
L evaluates Assemblies
I e = WAzimut components
Solution l:l = output
FIGURE 1. The yAzimut approach.
C. SUMMARY ene

Several studies have investigated how to select software
components, frameworks and platforms to design software
architectures. Similarly, other studies have investigated the
role and importance of stakeholders in several phases of
software development. Despite this interest, to the best of our
knowledge, few studies have discussed the role of stakehold-
ers in decision-making on systems implementation. On the
other hand, except for [21], few studies have discussed how
to include stakeholders’ expectations and viewpoints in the
implementation of microservice-based systems. Therefore,
our research attempts to complement the existing body of
knowledge about the stakeholders and the implementation
of microservice-based systems by introducing a collabora-
tive technique that involves stakeholders in selecting prop-
erties (emerged from the description of quality attributes) to
evaluate implementation solutions created from frameworks
assemblies generated by puAzimut.

IV. pAzimut AT A GLANCE

pAzimut [13] (see Figure 1) is a technique that uses archi-
tectural knowledge (represented in multi-dimensional cata-
logs of properties, architectural tactics, architectural pat-
terns, and frameworks characterizations) to support architects
in the analysis, evaluation, and comparison of framework
assemblies to satisfy QARs in microservice-based systems.
We define a framework assembly as a finite set of frameworks
and platforms that satisfy one or more QARs. pAzimut deals
with information imperfection using imprecise ‘“‘characteri-
zation” of architectural tactics, architectural patterns, frame-
works, and platforms. In the following sections, we describe
each component of pAzimut.

A. INPUT

MuAzimut uses properties which characterize quality
attributes of microservice architectures (See Figure 2).
The primary purpose of properties is to encapsulate spe-
cific characteristics that represent quality attributes in
microservice-based systems. Furthermore, properties allow
the architect to focus on particular perspectives of an

9414

High detection of falled hast
Intermittently asynchronous data transmission

Quick broken state recovery
High contral of failure propagation
Availability

Regular snapshots High service monitaring wisibility

Efficient duration of timeouts periods Periodic heartbeat signal
High isolation

Effective load balancing

Low application restarting
Efficient resources consumption

Sealability Effective tachnical duplieation
High functicnal decamposition
Effective data partitianing

Interoperability High cooperation among components

High coardinated srchestration ameng

Security High level of individuals, groups, or systems authorization
High-security authentication
Effective credentials management

Effective access contal

Alpha

Caleulate framewarks assemblies

FIGURE 2. pAzimut input. Each property is represented as an option.
“Alpha” and “Beta” are parameters which establish the level of credibility
required by each QAR for the tactics/patterns () and
patterns/frameworks () relationship.

QAR rather than analyzing it as a whole (we describe the
properties in Appendix I). For this first version of nAzimut,
we have defined properties for four quality attributes, which
are availability, scalability, interoperability and security.
However, we plan to include more quality attributes in future
versions of the technique.

B. PROCESSING
The key pAzimut elements are as follows:

o Architectural tactics for microservices (‘“‘microservices
tactics” in Figure 1) that address the properties that
architects select for each QAR. Architectural tactics are
design decisions that influence the achievement of a
quality attribute response [1].

o Architectural patterns for microservices (““microservice
patterns” in Figure 1) [25], [26] related to microservice
tactics. Architectural patterns represent systematic solu-
tions to recurring architectural problems [1]. A given
architectural pattern may be related to architectural tac-
tics for the same quality concern or architectural tac-
tics across several quality concerns; similarly, a given

VOLUME 9, 2021

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

architectural tactic may be related by several architec-
tural patterns.

o Frameworks and platforms that translate functionalities
to satisfy quality attributes. Frameworks are reusable
elements of software that provide generic functionalities
focused on solving recurrent issues [27]. On the other
hand, platforms' are frameworks that provide a com-
plete set of functionalities to implement an application
in a particular domain [1]

To obtain frameworks assemblies, ;Azimut uses catalogs”
that store architects’ knowledge about microservices patterns,
microservices tactics, frameworks, as well as rules of satis-
faction among them. Catalogs are key to reusing information
about improving the quality of knowledge concerning design
spaces and frameworks and to support the architect in the
process of exploring these design spaces.

In practical deployment contexts, the catalog preparators
might not know or not be certain whether a microservice
pattern supports a certain microservice tactic. Therefore,
the catalogs use credibility degrees to represent the imprecise
information between microservices tactics, microservices
patterns, frameworks. The values corresponding to crediblity
degrees are as follow 1 (supports), 0.6 (probably supports),
0.3 (possibly does not support), and 0 (does not support).

The number of frameworks in the assemblies depends on
the level of credibility considered by the architect for an QAR.
Two variables, « and g represent these levels. o represents the
credibility level for the microservices tactics/microservices
patterns catalog and B represents the credibility level for the
microservices patterns/frameworks catalog. These variables
are represented by values ranging from O to 1. For some
critical QARs, o and B will have a value of 1. However,
for others (non-critical QARs), they may have values lower
than 1.

C. ourPut

nAzimut uses credibility degrees to intersect the dimensions
of microservices tactics/microservices patterns and microser-
vices patterns/frameworks catalogs in order to compute a
support score that ranks framework assemblies based on
the importance that the architect determines for each QAR
(see Figure 3). The support score counts dimensions in favor
of the statement ‘“‘the framework assembly f,, satisfies the
tactic t”.

V. STAKEHOLDERS AND pAzimut
To incorporate stakeholders in the evaluation of implemen-
tation solutions, we modify pAzimut making the properties
selection as collaborative, i.e., different perspectives of stake-
holders are considered to select properties through consensus
(see Figure 4).

Consensual selection is supported by TaSPeR [28],
a consensus-building technique that allows practitioners to

IFrom now, when we refer to frameworks, we also consider platforms.

2Further detail of the catalogs can be found in https://github.com/
gmarquez87/microAzimut

VOLUME 9, 2021

eoe microAzimut

Support Score
0.6499999999999999
0.7291666666666665
0.8791666666666665
0.6458333333333333
0.8791666666666665
0.6458333333333333
0.7958333333333332
0.8791666666666665
0.6458333333333333
0.7958333333333332
0.7958333333333332
0.7333333333333332
0.49999999999999994

ched, Ehcached, Papertrail]

Assemblies generator

FIGURE 3. pAzimut output.

identify, argue for, and choose among architectural design
decisions according to objectives and priorities. TaSPer
extends the Planning Poker technique [29] to allow a group to
agree on what design decisions should be used to develop a
software architecture. The technique adapts and combines the
concepts related to architectural tactics and consensus-based
techniques to include stakeholders in the software design’s
decision-making processes. We replaced architectural tactics
with properties, i.e., instead of stakeholders discussing archi-
tectural tactics, they discuss properties.

The academic literature describes several techniques and
methods for prioritizing QARs. Dabbagh and Lee [30] pro-
pose an approach to prioritize quality attributes under two
approaches: (1) based on the importance of customers, and
(2) applying an eliminatory approach to ensure consistency
in the list of prioritized quality attributes. Additionally,
Dabbagh et al. [31] conduct an empirical study to
evaluate functional and non-functional requirements
(including QARs). The empirical study results show that an
integrated prioritization approach technique obtains better
results than the other techniques used. On the other hand,
Thakurta [32] proposes a negotiation algorithm in order
to facilitate the selection of quality attributes through the
satisfaction of business objectives. Gupta and Gupta [33] also
describe a prioritization technique based on the collaborative
dependence of requirements, which takes into consideration
multiple criteria to obtain individual preferences.

Considering the techniques and methods proposed to pri-
oritize quality attributes, we followed the steps suggested by
McGee et al. [34]. The authors consider software architec-
ture aspects as prioritization variables for prioritizing quality
attributes in order to create a properties prioritization process
(see Figure 5).

A. STAKEHOLDERS IDENTIFICATION

This step aims to identify the main stakeholders in the
system. Since different stakeholders profiles surround the
software life cycle, this guideline recommends identifying
only those stakeholders that significantly impact the software
architecture decisions. The study conducted by Pacheco and
Garcia [35] describe that there is a reduced set of tech-
niques for identifying stakeholders and these are not struc-
tured. Therefore, the authors propose the following prac-
tices to identify the most relevant stakeholders in software
projects:

9415

l E E E ACCGSS G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

EEEEETT PR e D
& ! Input ! Processing !
' | :

' ! '

evaluates . ! Prioritized Microservices Microservices Frameworks '
Lvaluates Properties —> TaSPeR — . —— . .. <« Frameworks '

H properties tactics patterns I characterization H

: v H

............... 4 1

& Assemblies '
'

'

'

'

'

'

'

'

'

'

'

'

'

. generation
Stakeholders

Assemblies
scores

evaluates

'
'
'
'
: !
'
Architect '
'
'
)
'
'
'
!

1- |

T T
1 ,—lﬁ '
! '
evaluate and select E Solution E
: ,
! '
! '

FIGURE 4. The extended pAzimut approach.

‘ This type of stakeholders must have a broad under-

standing of the domain.

2) Identify user classes and their characteristics: This
practice proposes evaluating stakeholders in terms of

‘ Step 1: Stakeholders identification

v

‘ Step 2: Quality attribute list development ‘

v risk and cost, since the project stakeholders have dif-
‘ Step 3: Stakeholders interviews ‘ ferent system privileges.
v 3) Identify and consult with the stakeholders of the system:
Step 4: Interview results processing This practice suggests identifying stakeholders through
v a description of the project requirements. For each
- p proj q
e requirement, the reasons why one or more stakehold-
(—> .
- prioritization of ers are relevant to address that requirement should be
g T > properties @ described.
Q !
o : For our proposal, we use all three practices to identify
2 Discussion and new Decision
g4 . ‘ stakeholders.
N hy 5
g " choice @ analysis @
£ B. QUALITY ATTRIBUTE LIST DEVELOPMENT
"""""" ety <_J Once the stakeholders have been identified, it is recom-
- determination @ . . .
C mended to create a list of those quality attributes that
- directly affect the architecture. For this, taxonomies repre-
v senting software quality, such as ISO/IEC 25010,% can be
(pAzimut used. Additionally, we use Utility Trees to organize quality

attributes. The Utility Tree is a technique that allows for
prioritizing the quality attributes to evaluate the suitability
Py | Py | P3| eee| P, of a candidate architecture against the requirements [36].
The advantage of using Utility Trees in pnAzimut points to
the quick identification of the critical quality attributes for

B
—
—
4

~——>] Solution;

___,] Solution, stakeholders.
~———>] Solutions
5 C. STAKEHOLDERS INTERVIEWS
: The objective of this step is to interview stakeholders in order
] Solution, to identify the corresponding QARs which are relevant to
@ the project. The purpose of the interview is to obtain (i) the
stakeholders’ interests in the system, (ii) which activities are
FIGURE 5. Steps to prioritize properties. the most important in the organization and (iii) which roles

the stakeholders will have in the system.

1) Identify and consult all likely sources of
requirements: This practice suggests selecting stake-
holders based on their experience and knowledge. 3 https://is025000.com/index.php/en/iso-25000-standards/iso-25010

9416 VOLUME 9, 2021

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

D. INTERVIEW RESULTS PROCESSING

This step aims to create a quantitative method for prioritizing
information and data obtained from interviews. We defined
that each stakeholder must prioritize properties using the
letters H (high), M (medium), and L (low). The prioritiza-
tion is based on two criteria (i) business goals and (ii) the
maintainability and performance of the system. The business
goals define the actions to be taken to fulfill the organiza-
tion mission and vision. According to Bass et al. [1], some
business goals may lead to quality attributes (which lead
to architectures), or lead directly to architectural decisions,
or lead to non-architectural solutions (see Figure 6).

Business Quality
goals attributes
v
Non- .
architectural Architecture
solutions

FIGURE 6. Relationship between business goals and architecture.

On the other hand, maintainability and performance belong
to the set of the most relevant systemic properties in
microservice-based systems [7]. Maintainability is the prob-
ability of performing a successful repair action within a given
time, and performance measures how effective is a soft-
ware system with respect to time constraints and resources
allocation.

E. PRIORITIZATION METHOD
Once the properties are prioritized, the following steps should
be executed in order to achieve stakeholders’ consensus:

o Selection and prioritization of properties (I): In this
step, the properties and the mechanisms to prioritize
them are presented (see Appendix I).

o Decision analysis (Q: Each stakeholder argues their
choice and prioritization. A moderator* records the
rationale manifested by stakeholders.

e Property determination (3): If one or more properties
are selected by all stakeholders, it becomes a selected
property (o properties).

o Discussion and new choice @ (optional): If there is no
consensus on a property or a tie, stakeholders can argue
their rationale and try to make a new common choice.
If they still do not reach an agreement, the property is
rejected.

« Repeat (D,), 3 and (@ until no QAR remains to be
analyzed.

Finally, the architect should create a comparison matrix
using the assemblies generated by pAzimut () and the pri-
orities selected by the stakeholders (@). This matrix aims to
enable architects to show the satisfaction level of the priorities

4The moderator is the lead architect, project manager, or anyone capable
of making architectural decisions on a project.

VOLUME 9, 2021

in each solution. The satisfaction level is classified using the
following labels: Yes (Y), Partially (P), and No (N). Using
this matrix, stakeholders can quickly decide which solution
is best.

F. LIMITATIONS

The current version of pwAzimut uses two catalogs with
26 microservices tactics, 18 microservices patterns and
36 frameworks. Although the market for microservices
frameworks is wide, w Azimut only uses frameworks in whose
documentation it is possible to identify both microservices
patterns and microservices tactics. This constraint eventually
limits the analysis capacity of architects and stakeholders
to satisfy only certain QARs. With the intention of further
increasing the capacity of uAzimut, we are extending the
scope of frameworks through a collaborative platform that
allows gathering and describing frameworks that practitioners
actually use to develop microservice-based systems.

On the other hand, pAzimut uses four quality attributes
(availability, scalability, interoperability, and security).
Therefore, we are currently defining inclusion criteria to
extend the range of quality attributes in the technique.

G. ILLUSTRATIVE EXAMPLE

Let us consider an architect evaluating the design and imple-
mentation of an IoT microservice architecture, with four
QARs corresponding to availability, scalability, interoper-
ability, and security. We also assume that stakeholders have
already been identified.

The first procedure is the prioritization of the properties
that the microservice-based system should satisfy. Therefore,
the architect uses TaSPeR to involve the stakeholders in eval-
uating all properties and prioritizing them. Table 1 describes
the selected properties.

TABLE 1. Properties for the illustrative example.

QA ID Property
Al High detection of failed host
A2 High isolati
Availability Jlensolauon
A3 Effective load balancing
A4 Periodic heartbeat signal
Scalability S1 E'ffeclive téchnical duplica'ti'on
S2 High functional decomposition
Interoperability Il High coordinated orchestration among components
. SCl1 Strong level of individuals authorization
Security - -
SC2 Effective credentials management

Since the properties described in Table 1 are critical for
stakeholders, then @ = 1 and § = 1. Once the properties are
selected, nAzimut proceeds to calculate the support scores
in order to obtain a list of framework assemblies that satisfy
the properties selected by the stakeholders. For simplicity
of this example, Table 2 describes the first three framework
assemblies generated by pAzimut.

Once the assemblies for each QAR are generated, the archi-
tects proceed to join them and obtain a final list of solutions.

9417

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

TABLE 2. Ranked framework assemblies.

Ranking Availability Scalability Interoperability Security
1 A »=[Netflix Eureka, Netflix Zuul, Netflix Ribbon] A .=[Kubernetes, Docker] Ajinter=[Mosquitto] Agee=[OAuth, Netflix Zuul]
2 A »=[Netflix Eureka, Netflix Zuul] A .=[Kubernetes] Ajnter=[Mosquitto] Agee=[Netflix Zuul]
3 A4 =[Netflix Eureka, Netflix Ribbon] Ag.=[Docker] Ajinter=[RabbitMQ] Agec=[OAuth]
TABLE 3. Comparison matrix.
Solutions Al A2 | A3 | A4 | SI S2 | 11 SC1 SC2
S1 =[Netflix Eureka, Netflix Zuul, Netflix Ribbon, Kubernetes, Docker, Mosquitto, OAuth, Netflix Zuul] Y Y Y Y P Y Y Y P
S2 =[Netflix Eureka, Netflix Zuul, Kubernetes, Mosquitto, Netflix Zuul] Y N Y Y P Y Y P P
S3 =[Netflix Eureka, Netflix Ribbon, Docker, RabbitMQ, OAuth] Y P Y Y P Y P Y P

For each solution, the architect must evaluate the level of
satisfaction of the properties defined by the stakeholders (see
Table 3). With this in mind, the architect argues the pros
and cons of each solution and thus selects, together with the
stakeholders, the most appropriate solution.

VI. CASE STUDY: AMBIENT ASSISTED LIVING SYSTEM
FOR MONITORING ELDERLY PATIENTS

This section reports a case study where we used pAzimut
and stakeholders to evaluate implementation solutions of
an Ambient Assisted Living (AAL) system, which includes
an IoMT environment and a microservice-based architec-
ture. This case study is exploratory, i.e., we will evaluate
a technique (wAzimut) in a real context in order to seek
new insights about stakeholders and microservice architec-
tures. For this purpose, we used the guidelines described by
Runeson and Host [37] to conduct case studies in Software
Engineering research.

A. CONTEXT

In the last few years, the population of adults over 60 years
has presented a global expansion. A significant group of older
adults is forced to live alone in their homes, implying an
increased likelihood of suffering distress situations related to
home accidents. In this regard, falls are especially relevant to
patients and health systems because approximately one-third
of adults older than 65 that live in a community suffer a fall
each year [38].

To improve patients’ quality of life, sensor-based technolo-
gies are an alternative to address elderly patient care chal-
lenges. Modern technologies, such as smart devices, allow
collecting health-related sensor data (such as physiological,
actimetric and others) to investigate the permanent wak-
ing states of elderly patients in order to generate conscious
support ecosystems for patients and analyze the variables
captured by devices to alert the fall of patients [39].

In this case study, we addressed the design and implemen-
tation of a system that allows the use of several technolo-
gies to study and estimate falls of elderly patients in their
houses. The project stakeholders requested the design of an
AAL system using an IoMT environment to visualize a tech-
nological solution for monitoring elderly patients with several

9418

types of devices (not only sensors). Additionally, to facilitate
the integration of devices and other systems, stakeholders
required a microservice-based system.

Although AAL systems must satisfy several quality
attributes (such as usability, privacy, reliability, performance,
among others) and, at the same time, each of these quality
attributes has different levels of complexity [40], in this case
study we focused on addressing QARs related to quality
attributes of pAzimut (availability, scalability, interoperabil-
ity and security).

B. OBJECTIVES AND RESEARCH QUESTIONS

This case study aims to evaluate the solutions generated by
nAzimut based on the properties selected by the project’s
stakeholders. Consequently, the main research question of the
case study is:

Can upAzimut help stakeholders to evaluate and select
frameworks to implement microservice-based systems?

This research question aims to evaluate the support of
nAzimut for stakeholders in evaluating solutions to imple-
ment the AAL system.

C. DATA COLLECTION

Although pAzimut has an initial core of multidimensional
catalogs created from previous experiences, for this case
study, we investigated other studies (such as [41]-[44])
to gather frameworks that have been used in AAL and
IoMT/IoT-based systems. Using inclusion and exclusion
criteria defined by pAzimut to include new frameworks,
we updated the catalogs and calibrated the corresponding
credibility degrees.

D. PREPARATION

Before evaluating implementation solutions, we created

the system design using the Attribute-Driven (ADD)

method [45]. ADD is a systematic step-by-step method for

designing the software architecture of a software-intensive

systems.5
The ADD inputs are as follows: functional requirements

(the functionalities that the system must provide); design
SA complete practical example of ADD can be consulted in [46]

VOLUME 9, 2021

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

TABLE 4. Steps of the ADD method and a brief description of the actions that we executed in each step.

Step Description Executed actions
1) Get information about the context We conducted an As-Is/To-Be analysis to obtain an initial diagnosis of the current and desired scenarios of
the AAL system and the main design constraints.
2) Select system elements that will be addressed In brainstorming sessions, we identified potential microservices that could provide the architectural and
monitoring capabilities to elderly patients demanded by stakeholders and patients.
3) Rank stakeholders’ requirements by impact on the archi- We identified the stakeholders’ main concerns regarding the capabilities of the architecture and the

tecture capabilities of the network.

4) Select the most important elements that will appear in
the architecture

We defined and described design decisions related to loMT-based and AAL-based systems. Subsequently,
we analyzed each design decision and defined variables to measure them. Finally, we identified the
architectural drivers that the system should have.

software elements

5) Define software elements responsibilities In this step, we analyze each identified microservice and define each microservice’s responsibilities in the
architecture.
6) Define the services and properties required by the design | We represented the relation among microservices architecture components using the Richardson’s notation

[47] (component name, description, and dependencies). Dependencies can either “invoke” (operations
implemented by other services) or “subscribe” (to messages, including events, produced by other services).

7) Verify that the elements decomposition satisfies the
functional requirements

For each microservice in the architecture, we verified if these satisfy stakeholders concerns, QARs, and
design constraints.

constraints (the decisions that must be incorporated into the
final version of the system design); and QARs. The output
of ADD is a system design in terms of roles, responsibilities,
properties, and relationships among software elements.

Table 4 describes the steps of ADD and the actions we
execute in each step. Additionally, Table 5 details the ratio-
nale of the quality attributes addressed in the system and
Figure 7 illustrates the high-level design of the AAL system.
The AAL system has five microservices that manage the main
activities required for monitoring patients in homes (details of
each microservice can be found in Appendix II). Additionally,
the system considers a middleware layer that connects medi-
cal devices. The microservices also share data between them.
For example, the microservice Historical events invokes
information of the microservice Devices management and
subscribes data to the microservice Patient management.

On the other hand, the Appendix III describes the AAL
system’s microservices main architectural drivers. This infor-
mation is relevant for stakeholders to prioritize properties.

E. EVALUATING IMPLEMENTATION SOLUTIONS

Before executing the steps to prioritize properties, step 3)
of the ADD method (see Table 4) enabled us to select the
stakeholders that will participate in the system’s design. In
this step of ADD, we take advantage of executing the first
4 steps of the nAzimut extension (see Figure 5). As a result,
from 8 project stakeholders, we identified 3 stakeholders who
will prioritize properties. Stakeholder interests in the system
are described as follows:

o Stakeholder I: Main project leader and lead researcher.
His interest aims to expand the system’s capacity to
other medical devices in order to obtain more data to
train fall prevention algorithms. On the other hand, he is
interested in increasing the system’s capacity to expand
the number of houses that will use it.

o Stakeholder 2: Lead researcher. He is in charge of man-
aging medical devices and data processing. This stake-
holder is interested in the integrity and availability of the
project data.

VOLUME 9, 2021

Network

[

Historical
events [,

Tracking
service [7j M

Alert
service [,j

Middleware services

Patient
management [*j

Devices
management [,j

_—
Legend

i—> =suscribe to —> = invokes |

-

FIGURE 7. AAL system design and their corresponding microservices. Red
and blue lines illustrate “subscribe to” and “invoke” messages,
respectively.

o Stakeholder 3: Ph.D. student who will use the system
outputs to conduct quantitative studies of elderly patient
falls.

Once the stakeholders have been identified, we proceed
to execute the prioritization process. In the following points,
we describe the main activities conducted in each step. Addi-
tionally, Table 6 summarizes the selected properties.

o Selection and prioritization of properties: In this step,
we schedule a meeting where we meet the 3 stakeholders
and a architect from our research team. The aforemen-
tioned architect acts as a moderator. Then, we present

9419

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

TABLE 5. Summary of the quality attributes description.

D QA
QA1 Availability

Rationale

One of the essential features of the system is services must have high availability. Specifically, services related to sensor data must have a low
unavailable time rate. This is required because the data sent by sensors are highly sensitive and critical. Therefore, any time interval in which the
data is not captured can compromise the patient’s care and life.

QA2 Scalability As the number of sensors and/or devices increases, the system must continue providing functionality within pre-established parameters. The fact

that the system is scalable means that it must handle the new demand of data every time the number of devices in the house or houses is increased.

QA3 Interoperability Another concern is the ability to interoperate with other systems to exchange information. This attribute will be addressed in a middleware layer,

which allows exchanging information between the different devices that enable taking care of the patient.

QA4 Security The data controlled by the system is sensitive. The system must satisfy confidentiality and privacy policies. Since the system will use different

devices and they will be connected to a network, it is imminent that cyber-security defense mechanisms must be applied.

TABLE 6. Key properties selected by stakeholders.

Id Property QA
P1 Quick broken state recovery QAl

Summary of stakeholders’ rationale

Since the system depends mainly on the operation of the devices that capture the patient’s information, services related to
obtaining data of the devices must have a fast recovery in case of failures.

P2 | High control of failure propagation QAl The system manages the care of elderly patients. Any scenario where services fail compromises the patient’s life. Therefore,

this property is critical to creating contingency plans to recover from failures in critical services.

P3 High service monitoring visibility QAl This property is essential for stakeholders because they want to know the service’s status at all times. Furthermore, since

the system will use devices and sensors in more homes, stakeholders need to control each service’s status.

P4 | Periodic heartbeat signal QAl
P5 Effective technical duplication QA2

This property supports the previous property (P3). Heartbeat allows checking the status of each service periodically.

Stakeholders are clear in requesting that the system should be scalable in the sense that if the devices increase, the capacity
must be maintained.

P6 High level of individuals, groups, or QA4
systems authorization

It is necessary to control users to grant them limited access to the system resources without exposing their credentials.

P7 High cooperation among compo- QA3 The system demands the capability of exchange information among services and devices (such as sensors) to use data that
nents has been exchanged for research and patient monitoring purposes.

P8 | High coordinated orchestration | QA3
among components

This property points to a control mechanism to coordinate, manage and sequence the invocation of particular components.

and exp]ain to the stakeholders the properﬁes and the TABLE 7. Assemblies generated by pAzimut and their corresponding

. .. frameworks.
mechanism to prioritize them.
o Decision analysis: In a one-hour session, each stake- Aesenlifes Sl A Solution B Sollitien ©
holder argues his or her choice and decision on priorities. o Netflix Bureka Netflix Eureka Netflix Eureka
. 5 Netflix Zuul Netflix Zuul Netflix Hystrix
In this step, stakeholders were also allowed to use any z Netix Hystrix Apache Kafka Apache Kafka
media (blogs, forums, specialized websites, among oth- E Apache Kafka Zipkin Zipkin
. Z Zipkin MongoDB Redis
ers) to argue their decision. Additionally, the moderator MongoDB
captures the most important decisions discussed among Netilix Eureka Netflix Eureka Netflix Eureka
akehold z Netflix Zuul Netflix Zuul Netflix Zuul
stakeholders. :—_Fg Docker Docker Docker
o Property determination: From 12 selected properties, s Kubernetes Kubernetes Kubernetes
8 ioritized with the hich . H) in th 2] MongoDB MongoDB Redis
were prioritized with the high assignment (H) in the Mosquitto RabbiMQ RabbiMQ
two prioritization criteria by all stakeholders; therefore, o Apache Kafka Apache Kafka Apache Kafka
th t ticall idered lected rti % Apache Zookeeper | Apache Zookeeper RabbitMQ
ey are automatically considered as selected properties. = Mosquitto RabbitMQ
On the other hand, 4 properties were prioritized with g OAuth2.0 OAuth2.0 OAuth2.0
! Netflix Eureka Netflix Eureka

different prioritization levels by two stakeholders; one
stakeholder did not consider these properties in their
analysis.

e Discussion and new choice: Since there was contro-
versy on 4 properties, the stakeholders who selected
these properties argued their choice and the rationale for
prioritization in a one-hour session. At the end of the
session, stakeholders chose not to consider these 4 prop-
erties. Despite the fact that these properties addressed
some important business objectives, their implemen-
tation and maintenance were considered very time-
consuming. Therefore, they considered leaving these
properties for the next phase of the project.

With the properties already selected, we proceed to exe-
cute nAzimut. The project architect (the moderator) then

9420

takes the wAzimut assemblies (the architect considered o
and g as 1), define solutions using the assemblies, and makes
high-level diagrams representing implementation solutions.
Table 7 describes the solutions defined by the architect and
their corresponding frameworks. It is important to note that
some frameworks (e.g., Netflix Eureka) satisfy one or more
quality attributes.

Subsequently, the next day, we gathered the stakeholders
to evaluate the solutions. For each solution, stakeholders use
the selected priorities as criteria to evaluate each solution in
the comparison matrix (see Table 8).

The architect described each solution and its frameworks,
focusing on its advantages and disadvantages. For example,

VOLUME 9, 2021

G. Méarquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems I E E E ACC@SS

Legend

o Historical 1
] events
'

Hystrix
MongoDB

Tracking
service

> = microservices communication

Apache Zookeeper

Mosquitto
\
1
2
g >
s a
g2
ystrix
longoDB,

Network

L/IH

b \\
SN
o
() K
é ,
W !
v
Middleware services

)

Hystrix
MongoD!

Devices
management

Socket.IO0
B A

'
'
'
'
v
[.)
\ g R —
v
I p N
v
' L
) . N Zipkin ‘
(r_ '

= query

{ «—>=REST
Patient

‘ OAuth 2.0 ‘
management

Eureka

‘ Kubernetes ‘

Apache Kafka

FIGURE 8. The AAL system architecture. The figure depicts the microservices architecture with its corresponding frameworks and platforms selected by

the stakeholders.

TABLE 8. Comparison matrix of the solutions created by the architect.

Pl P2 P3 P4 P5 P6 P7 P8
Solution A P Y Y P Y P Y Y
Solution B Y Y P P P Y Y P
Solution C' Y Y Y P P Y P P

let us consider the following assembly [Apache Zookeeper,
RabbitMQ]. The (dis)advantages of this assembly are as
follows:

o Apache Zookeeper has good session timeout sup-
port, but deploying it has high resource consumption
(hardware/software).

« RabbitMQ simplifies implementing asynchronous com-
munication among microservices, but if the connection
is lost it can affect the number of long-lived connections.

Comparing advantages and disadvantages of each frame-

work allowed stakeholders to contrasting the properties with
their concerns. The stakeholders’ decisions for each solution
are as follows:

o Solution A: There was unanimous agreement. Although
the solution partially satisfies the properties P1, P4 and
P6 (MongoDB compromises health check status func-
tionalities and specific security mechanisms by using
Netflix Eureka and Netflix Hystrix at the same time6),
stakeholders were satisfied with the architect’s proposal.
Moreover, this option was the preferred one because the
architect argued that these frameworks allow easy and
flexible maintenance of the system. On the other hand,
stakeholders preferred Netflix Zuul as API Gateway and
Netflix Eureka to monitor the services. Additionally,

6https:// github.com/spring-cloud/spring-cloud-netflix/issues/1780

VOLUME 9, 2021

stakeholders appreciated that the first draft had an inter-
operability layer to manage both sensors data.

Solution B: Stakeholders were not in agreement about
the acceptance of the proposed implementation. The
combination of frameworks seemed to satisfy most
concerns, especially regarding availability. The draft
was rejected because they investigated RabbitMQ thor-
oughly and realized that some issues reported by devel-
opers described that this framework has bugs regarding
the integration with particular medical devices. Fur-
thermore, given the importance of patient data, stake-
holders were not satisfied that solution B partially
addresses P3 because this property is very critical to
them.

Solution C: This solution was a candidate as a final
solution. But there was a debate about sacrificing the
P7 property. Although this solution is much more flex-
ible than Solution A, it partially addresses cooperation
between medical devices. On the other hand, stake-
holders accepted Netflix Eureka and Netflix Hystrix as
infrastructure services, but didn’t accept Redis’ as a
database. Despite its potential advantages, stakeholders
decided that this database had too many issues raised in
other open microservice projects, and rejected it.

F. RESULTS

Table 9 and Figure 8 summarize the frameworks selected
(solution A) and the AAL system overview, respectively. The
main features of the system are as follows:

TRedis: in-memory database engine (based on hash tables) that can also
be used as a persistent database.

9421

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

TABLE 9. Frameworks and platforms selected for the case study.

Name URL Description QA Property
Netflix Eureka https://github.com/Netflix/eureka Service registry for resilient mid-tier load balancing and failover. QAl, QA2 P2, P5
Netflix Zuul https://github.com/Netflix/zuul Gateway service that provides dynamic routing, monitoring, resiliency, secu- QAl, QA2 P3,P5
rity, and other features.

Netflix Hystrix https://github.com/Netflix/Hystrix Latency and fault tolerance library designed to isolate points of access to QA1 P2
distributed systems.

Apache Kafka https://kafka.apache.org Open-source stream-processing software platform. QAIl, QA3 P4, P7

Docker https://www.docker.com Automates the deployment of applications within software containers. QA2 P5

Apache Zookeeper https://zookeeper.apache.org Server which enables highly reliable distributed coordination. QA3 P8

Socket.IO https://socket.io Bi-directional communication library between web clients and servers. QA2 P5

OAuth 2.0 https://oauth.net/2/ The industry-standard protocol for authorization. QA4 P6

Zipkin https://zipkin.io Distributed tracing system. It helps gather timing data needed to troubleshoot | QAI P4
latency problems.

Kubernetes https://kubernetes.io System for automating deployment, scaling, and management of container- QA2 P5
ized application.

MongoDB https://www.mongodb.com Database that provides high performance, high availability, and automatic QAl, QA2 P4, P5
scaling.

Mosquitto https://mosquitto.org Message broker that implements the MQTT protocol versions 5.0, 3.1.1 and QA2, QA3 Ps, P7
3.1

o The system uses Netflix Zuul to route user requests.

« Netflix Zuul runs REST calls in all microservices.

« Each microservice has MongoDB as database manager
and Netflix Hystrix as the access point manager for each
microservice.

« Apache Kafka acts as a streaming processor between the
middleware layer and the microservices.

« Netflix Eureka manages the microservices registry and
communicates with Netflix Zuul to manage microser-
vices calls.

o Apache Zookeeper, OAuth 2.0, Zipkin and Kubernetes
services provide other properties desirable by stakehold-
ers, such as security, monitoring and scalability.

o The middleware layer that manages in-home medical
devices is supported by Socket.IO and Mosquitto.

To illustrate how the properties selected by the stakehold-
ers are addressed by solution A, let us consider one of the most
critical functionalities of the AAL system, which is real-time
monitoring elderly patients in their homes (see Figure 9). This
functionality is related to properties P3, P4, P7 and P8.

To provide real-time patient monitoring, the data incoming
from sensors processed by Device management and Histor-
ical events must be kept highly available. Mosquitto and
Socket.IO capture data from 1D and 2D sensors and send
them to the system via Apache Kafka. This system uses
heartbeats to monitor the microservices’ status and also con-
nects them through data pipelines. Concerning the 2D sensor,
data capture is trivial. Nevertheless, regarding the 1D sen-
sor, the data capture requires 4 Omron D6T-8L-06 sensors
per room to enable sensing most of the patient’s bodies.
Then, the captured data is stored in structured files, more
precisely, in 32 x 24 matrices (2D sensor) and 1 x 33 arrays
(4 1D sensors measurement + timestamp).

Since patient monitoring must be done in runtime, the sta-
tus of all microservices must be monitored. Netflix Eureka
checks that both Device management and Historical events
be active and records the data (see Figure 10). On the other

9422

~
g,
:*L
~N
-
N
S
N .
S
d 1 I 3
L N T

FIGURE 9. Real-time patient monitoring. The input for this functionality is
the data captured by the sensors. The output is a real-time graph showing
the peaks of patient movements in time intervals. The bars indicate
patient movement. The absence of these may indicate (i) the patient is
resting, (ii) the patient is sleeping or (iii) the patient has fallen.

hand, Netflix Hystrix can monitor the microservices’ status
and the number of incoming requests in real-time.

Finally, Historical events computes presence scores [48]
on the data to identify behavior patterns of patients in the
room.

G. DISCUSSION

The results obtained in the case study suggest that yAzimut
helps to reduce the difficulty for stakeholders to evaluate
frameworks. Indeed, stakeholders agreed that the technique
not only helps to reduce the space of solutions that must
be analyzed to satisfy QARs but also allows people, who
are not familiar with technologies, frameworks or software

VOLUME 9, 2021

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

DS Replicas

Instances currently registered with Eureka

General Inf

pmemory | somp

Hystrix| Stream: http://localhost:9001/actuator/hystrix.stream

Circuit

9]99.5

GetAllPost GetPost
i | 0.0 % 2 |1 0.0 %

A ofo | ofo
fif ‘ ! 0 f 0
Host: 0.1/ U Host: 0.2/s
ister: 0.10s uster: 0.2/s
Circuit Closed Circuit Closed
Hosts 1 90t 37ms Hosts 1 90th 10ms

Median 2lms 99th 44ms Median 2ms 99th 10ms
Mean 24ms 995th 44ms Mean 3ms 995th 10ms

Thread Pools _ sort

Alphabetical | Volume

PostController

©0.3ls
0.3ls

Active 0 Max Active 1
Queued 0 Executions 3
PoolSize 10 Queue Size 5

FIGURE 10. Microservices status monitoring. The red line corresponds to
the device management microservice and the blue one to the historical
events microsetrvice.

architectures, to infer and visualize potential advantages and
disadvantages of a certain architecture. In critical systems,
like the AAL system under study, the success or failure
of QARs satisfaction can compromise not only the system
itself but also people’s health. In fact, some studies, such
as [49], state that considering the perspectives of stakeholders
in AAL systems, (e.g., Telemonitoring systems) can address
frequent problems in emergency services. In this case study,
for example, stakeholders were emphatic in highlighting that
availability is a critical attribute for them because if sensors
data are not available, it can compromise a patient’s life. For
this reason, the effort to include stakeholders in the evaluation
of frameworks to implement the AAL system turned out to
be quite beneficial because (i) we were able to make, explain
and show design and implementation decisions and (ii) we
were able to identify early risks that may arise in the devel-
opment and deployment of the system. We hence were able to
early manage stakeholder expectations by clarifying what the
AAL system can and cannot do.

Stakeholders also highlighted that pAzimut is quite useful
because, instead of selecting frameworks by ““trial and error™,
uAzimut generates frameworks assemblies supported by
architectural constructs (microservices patterns and microser-
vices tactics). Consequently, we realized that using architec-
tural patterns and architectural tactics allowed us to have a
precise response to any stakeholder inquiry regarding why we
use a specific framework rather than another.

Another interesting aspect to discuss is the prioritization of
properties. What difference would it have made if an architect

VOLUME 9, 2021

with expertise in microservices and AAL systems had priori-
tized properties? A probable answer to that question would be
“none”’. Nevertheless, the significant difference we detected
after analyzing the results and interviewing the stakehold-
ers points to understanding the stakeholders’ views. A col-
laborative selection among stakeholders helps the architect
to understand better how different stakeholders observe the
system. Therefore, considering stakeholder opinions allows
the architect to make architectural decisions by judging and
balancing different views of the system.

H. LESSONS LEARNED

In this case study, we could identify that, in general,
stakeholders had many expectations regarding the use of
a microservices architecture for the AAL system. These
expectations arise from experiences of other researchers in
the use of microservices architecture in different projects
related to IoMT. However, stakeholders realized that tech-
nology selection seriously compromises the capabilities of
microservice-based systems. The use of the properties to eval-
uate the solutions was critical for the stakeholders because
it made it easier for them to evaluate solutions without
necessarily being experts in microservice development tech-
nology. Therefore, we realized that if stakeholders have an
instrument to facilitate their analysis and understanding of
microservices architectures, it is possible to increase their
participation in the decision-making process of implementing
microservice-based systems.

Schulenklopper and Rommes [5] describe three sugges-
tions for bridging the communication gap between stakehold-
ers and IT professionals. The first suggestion is to ignore the
differences between stakeholders and IT professionals and
use technical models and languages to explain a technological
solution. The second suggestion is to become a polyglot and
learn the language of the stakeholders. The third suggestion
is to create a common language between stakeholders and
IT professionals to communicate technical solutions. Our
case study experience shows that creating a common lan-
guage between stakeholders and architects could help eval-
uate microservice-based systems technology solutions (the
third suggestion). This common language corresponds to the
pAzimut properties. From a clinical point of view, creating
this common language also allowed us to understand the
catastrophic consequences of making bad architectural deci-
sions in systems that manage elderly patients’ data.

On the other hand, some challenges emerge when consid-
ering stakeholders in the implementation of microservices
architectures. The main challenge is related to managing
expectations regarding the qualities that microservices archi-
tecture should satisfy. Due to each stakeholder has a partic-
ular perspective and interest in the system, the analysis and
trade-offs of the qualities may not easily lead to agreements.

Another challenge that we detected in the case study is
time management when there are no agreements between
stakeholders. In the discussion of certain qualities attributes,
the time used to reach an agreement is quite long. The reasons

9423

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

for the increased discussion time can be varied. However,
we realized that the analysis of architecture trade-offs takes
quite some time. Each stakeholder has a particular interest in
the system. In those moments, when trade-offs had to be dis-
cussed, some stakeholders did not want to compromise their
interests. Consequently, the moderator’s role is important in
monitoring these cases and making a final determination if
there is no agreement among stakeholders.

VIl. THREATS TO VALIDITY

In this section, we proceed to describe the threats to the
validity of our research. We used the validity threats described
by Wohlin et al. [50].

A. INTERNAL VALIDITY

The threats to internal validity refer to the factors that could
negatively affect the analysis process and data collection. The
main threats detected and their mitigation are as follows:

o Stakeholder analysis capacity: This threat emerges
when stakeholders react differently as time passes.
To mitigate this threat, we analyzed the implementation
solutions proposals in a single session, with a 10-minute
break in between.

o Instrumentation: This threat is related to the impact of
using incorrect artifacts in the case study. This threat
was mitigated through the research of other AAL sys-
tems. The frameworks used to develop the systems were
analyzed and then they were incorporated into £t Azimut.
Additionally, the ©Azimut catalogs were updated based
on the analysis of AAL systems.

B. EXTERNAL VALIDITY

The threats to external validity threats limit the ability to gen-
eralize the study results to other setting. The main threat we
detect is selecting subjects that are not representative of the
population we want to generalize to, i.e., wrong people par-
ticipate in the case study. To mitigate this threat, we defined
four steps to identify stakeholders. Furthermore, we followed
the practices suggested by McGee et al. [34] and Pacheco
and Garcia [35] to characterize and evaluate stakeholders.
These guidelines allow us to identify suitable stakeholders to
execute the case study.

C. CONSTRUCT VALIDITY

The threats to construct validity are related to the study’s
generalizability to the theory behind it. We identified as the
main threat the inadequate explanation of constructs, i.e., the
little description of pwAzimut and the case study’s objec-
tives. We explained to the stakeholders the main concepts
related to microservice architectures, AAL and IoMT systems
to mitigate this threat. Likewise, we also showed them the
functionalities of some of the frameworks that satisfy the
project’s needs. Additionally, we explained all the properties
of nwAzimut and showed them examples of these.

9424

D. CONCLUSION VALIDITY

Conclusion validity is concerned about issues that may affect
the ability to draw the correct conclusion about the relation
between the case study and the results. We identified the qual-
ity attributes addressed by pAzimut as a threat. The version
of nAzimut we used for the case study considers four quality
attributes, which are availability, scalability, interoperability
and security. Although this number of quality attributes is
limited, they belong to the group of quality attributes crit-
ical for AAL systems. Therefore, we know that we cannot
generalize the results obtained in the case study because
we show the solution of a part of the AAL system. Still,
the promising results we obtained with these quality attributes
allow us to infer that we will have more successful results
in the future. Furthermore, we are currently increasing the
number of quality attributes in wAzimut in order to obtain
more significant and replicable results.

VIil. CONCLUSION

In this article, we have present a collaborative tech-
nique to include stakeholders in the implementation of
microservice-based systems. Our technique considers the
extension of the nuAzimut technique. This technique focuses
on support architects in the analysis, evaluation, and com-
parison of framework assemblies to satisfy QARs in
microservice-based systems. Our proposal points to extend
the input of the wAzimut technique in order to allow stake-
holders’ consensus decisions. Additionally, we defined a
set of steps to (i) identify and evaluate suitable stake-
holders to use our technique and (ii) prioritize properties
collaboratively.

We evaluate our proposal in a case study, where stake-
holders participated in selecting frameworks and platforms
to implement an Ambient Assisted Living (AAL) sys-
tem composed of microservice architecture and an IoMT
environment. The results suggest that the stakeholders felt
comfortable evaluating implementation solutions because the
properties they selected were used as evaluation criteria for
the solutions proposed by the project architect. Our proposal
was also useful to manage the stakeholders’ expectations
regarding the implementation of the AAL system, i.e., the
technique allowed the architect to manifest the functionalities
and restrictions that the AAL system will have in the early
stages of the project development.

To further our research, we plan to expand the capac-
ity of pwAzimut, including more quality attributes. On the
other hand, we are developing a platform to identify frame-
works used by microservices developers in order to enrich
the wAzimut catalogs. We also want to include properties
and technological tools related to DevOps and microser-
vices architectures [51] in pAzimut. Finally, we will eval-
uate including Multiple-Criteria Decision-Making methods
(MCDM) (such as Analytic Hierarchy Process (AHP) [52])
in our technique.

VOLUME 9, 2021

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

TABLE 10. High-availability properties.

TABLE 13. Scalability properties.

TABLE 11. Interoperability properties.

1d Name Description

11 High cooperation | The system demands the capability of exchange
among components information among services and devices (such as

sensors) to use data that has been exchanged for
research and patient monitoring purposes.

12 | High coordinated | This property points to a control mechanism to
orchestration coordinate, manage and sequence the invocation of
among components particular components (which could be ignorant of

each other).

TABLE 12. Security properties.

Id Name Description
Cl High level of | Capacity of control users to grant them limited ac-
individuals, cess to platforms systems resources without having
groups, or systems to expose their credentials.
authorization
Cc2 High-security Capacity of verifying the identity of a person or
authentication device.
C3 Effective credentials Property related to the management of credentials,
management making them available to less or high privileged
users for authentication to other systems without
giving them access to the credentials themselves.
C4 | Effective access | Property that allows verifying if an entity request-
control ing access to a resource has the necessary rights to
do so.

APPENDIX I. PROPERTIES

In this section, we describe the properties used by pAzimut.
Tables 10, 11, 12 and 13 describe the properties of Availabil-

ity, Interoperability, Security and Scalability, respectively.

APPENDIX II. MICROSERVICES DESCRIPTION
In this appendix, we describe the system’s microservices.

APPENDIX IIl. ARCHITECTURAL DRIVERS

In this section, we describe the architectural drivers used by

stakeholders as criteria for evaluating properties.

VOLUME 9, 2021

1d Name Description 1d Name Description
Pl High detection of | This property defines the capability of detect failed S1 Effective technical | This property focuses on the need to execute multi-
failed host hosts in order to a load balancer can stop requests duplication ple identical copies of an application behind a load
to them. balancer, to improve its capacity and availability.
P2 Intermittently Communication property where a message sender S2 | High functional de- | This property focuses on separating services and
asynchronous data | does not wait for a response. composition data along noun or verb boundaries, allowing seg-
transmission mentation of teams and ownership of code and
P3 Regular snapshots Property related to recovering the system from data.
planned host maintenance owing to hardware up- S3 | Effective data parti- | This property focuses on grouping related items.
grade, soft reboot, among others. tioning
P4 Efficient duration of | Property that prevents remote procedure calls from
timeouts periods waiting indefinitely for a response.
P5 High isolation The property where each microservices is its own
encapsulated application. TABLE 14. Tracking microservice description.
P6 Effective load bal- | Efficiently distributing incoming network traffic
ancing among groups of backend servers.
pP7 Quick broken state Capability to restart states when they are broken for Name Tracking service
recovery a more extended period. . N N .
P8 High control of fail- Property which indicates the capability of isolate Description The primary purpose of this service is
ure propagation failures through a good definition of service bound- to provide information to investigate
aries.
P9 High service moni- | Property that allows visibility into the health of the the activities of elderly patients in the
toring visibility microservice architecture. rooms.
P10 | Periodic heartbeat | Property related to the periodic signal to check the -
signal status of services. Dependencies
P11 Low application | This property refers to the low rate of restart ser- Invokes Subscribes to
restarting vices when a failure occurs.
P12 | Efficient resources Property related to the impact on the resources . .
consumption consumption (hardware/software) of a system. » Devices Management » Patient Management

o Historical events
o Alert service

TABLE 15. Middleware microservice description.

Name Middleware service

Description These services usually provide an ab-
straction layer for devices. Thus, they
are able to ensure data transfer be-
tween such services and therefore

achieve interoperability

Dependencies

Invokes Subscribes to

e No services involved o Devices Management

A. ARCHITECTURAL CAPABILITIES

Since the system is based on IoMT, this concept points to
the collection of medical devices and applications that con-
nect to healthcare systems through networks [53]. Therefore,
the main system capabilities from the [oMT viewpoint are as
follow:

o Provide real-time data to monitor the patient’s health
status: This capacity is relevant since the data that the
system will receive comes from patients. This means that
this real-time communication must ensure the integrity
of the data. Furthermore, security and privacy aspects
must also be taken into account so that the patient can
trust in the devices’ functionalities.

o Integration with other devices: IoMT extends systems’
capacity to the integration of data from several medical
devices using appropriated middleware services.

9425

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

TABLE 16. Devices management microservice description.

TABLE 18. Patient management microservice description.

Name Devices management

Name Patient management

Description This service processes all the informa-
tion captured by sensors in the room or
house. In addition, this service is not
limited to sensors; it can be extended

to other devices.

Dependencies

Invokes Subscribes to

Description This service manages the different pro-
files of elderly patients. It uses infor-
mation from other health institutions
that allow it to characterize the patient
and his health conditions (for example,
patients who, due to health conditions,

regularly attend the bathroom

o Historical events
e Alert service
e Tracking system

o Middleware service

TABLE 17. Historical events microservice description.

Name Historical events

Description This service intends to provide in-
formation and analysis regarding ac-
cidents or incidents in order to dis-
cover all the history of an accident so
that it can be avoided. Furthermore,
the idea of this service is to identify
improvements aimed at preventing or
mitigating possible accidents in elderly
patients. This service also allows the
identification of hazards in order to be

evaluated and classified.

Dependencies

Invokes Subscribes to

o Historical events
e Tracking service

o Other sources of information

TABLE 19. Alert microservice description.

Name Alert service

Description This service aims to generate the cor-
responding alerts to warn the medical
staff, family, or other interested parties.
This service should eventually interop-

erate with other systems.

Dependencies

Invokes Subscribes to

o Devices Management o Client or other alert systems

Dependencies

Invokes Subscribes to

e Devices Management o Patient Management

o Alert family members or medical staff when there are
abnormalities in the patient’s daily behavior: The sys-
tem must have the ability to integrate all the necessary
services to alert and inform family members or medical
staff when in life-threatening circumstances. For this,
procedures for checking the status of services in time
batches (time to be defined) must be applied in order to
monitor the current status of the services.

Interoperability, subscription, notification, and command

execution should be performed in the middleware layer. This
layer offers an abstraction to handle connected objects. This
set of services is critical to be able to integrate different
devices into the system.

The system should have an asynchronous event-driven web

application server for presenting information and notifica-
tions in a client’s application. It communicates by REST API.

B. NETWORK CAPABILITIES
The access protocol management module should implement

an interface to handle the different communication protocols
(such as IEEE 802.15. x and 802.11).

9426

The connectivity protocol module will use lightweight
Publish/Subscribe messaging transport. Publish/subscribe
messaging is a method of asynchronous service-to-service
communication used in serverless and microservices archi-
tectures. In a Publish/Subscribe model, any message pub-
lished to a topic is immediately received by all subscribers
to the topic [54]. Publish/Subscribe messaging can be used
to decouple applications in order to increase performance,
reliability, and scalability.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Glenview, IL, USA: Software Engineering Institute, 2013.

[2] A. Aurum and C. Wohlin, “The fundamental nature of requirements
engineering activities as a decision-making process,” Inf. Softw. Technol.,
vol. 45, no. 14, pp. 945-954, 2003, doi: 10.1016/S0950-5849(03)00096-X.

[3] K. Petersen, D. Badampudi, S. M. A. Shah, K. Wnuk, T. Gorschek,
E. Papatheocharous, J. Axelsson, S. Sentilles, I. Crnkovic, and
A. Cicchetti, “Choosing component origins for software intensive
systems: In-house, COTS, OSS or outsourcing?—A case survey,”
IEEE Trans. Softw. Eng., vol. 44, no. 3, pp. 237-261, Mar. 2018, doi:
10.1109/TSE.2017.2677909.

[4] K. Smolander and T. Pidivérinta, “Describing and communicating software
architecture in practice: Observations on stakeholders and rationale,” in
Proc. Int. Conf. Adv. Inf. Syst. Eng., 2002, pp. 117-133, doi: 10.1007/3-
540-47961-9_11.

[5] J.Schulenklopper and E. Rommes, ‘“Why they just Don’t get it: Communi-
cating about architecture with business stakeholders,” IEEE Softw., vol. 33,
no. 3, pp. 13-19, May 2016, doi: 10.1109/MS.2016.67.

VOLUME 9, 2021

http://dx.doi.org/10.1016/S0950-5849(03)00096-X
http://dx.doi.org/10.1109/TSE.2017.2677909
http://dx.doi.org/10.1007/3-540-47961-9_11
http://dx.doi.org/10.1007/3-540-47961-9_11
http://dx.doi.org/10.1109/MS.2016.67

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

IEEE Access

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Lewis and M. Fowler. Microservices. A Definition of This New
Architectural Term. Accessed: Nov. 9, 2020. [Online]. Available:
https://martinfowler.com/articles/microservices.html

P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” J. Syst. Softw., vol. 150, pp. 77-97,
Apr. 2019, doi: 10.1016/j.js5.2019.01.001.

S. Haselbock, R. Weinreich, and G. Buchgeher, “Decision models for
microservices: Design areas, stakeholders, use cases, and requirements,”
in Proc. Eur. Conf. Softw. Archit., 2017, pp. 155-170, doi: 10.1007/978-3-
319-65831-5_11.

F. Rademacher, P. Sorgalla, J. Wizenty, S. Sachweh, and
A. Zindorf, “Graphical and textual model-driven microservice
development,” in Microservices. Cham, Switzerland: Springer, 2020,
pp. 147-179, doi: 10.1007/978-3-030-31646-4_7.

A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: An experience report from the bank-
ing domain,” IEEE Softw., vol. 35, no. 3, pp. 50-55, May 2018.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘“Microservices architecture
enables DevOps: Migration to a cloud-native architecture,” IEEE Softw.,
vol. 33, no. 3, pp. 42-52, May 2016.

W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, and
R. Bonifécio, “An experience report on the adoption of microservices in
three Brazilian government institutions,” in Proc. 32nd Brazilian Symp.
Softw. Eng. (SBES), 2018, pp. 32-41, doi: 10.1145/3266237.3266262.

G. Marquez, Y. Lazo, and H. Astudillo, “‘Evaluating frameworks assem-
blies in microservices-based systems using imperfect information,” in
Proc. IEEE Int. Conf. Softw. Archit. Companion (ICSA-C), Mar. 2020,
pp. 250-257, doi: 10.1109/ICSA-C50368.2020.00049.

F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z. Zamli, “Soft-
ware requirements prioritisation: A systematic literature review on sig-
nificance, stakeholders, techniques and challenges,” IEEE Access, vol. 6,
pp. 71497-71523, 2018, doi: 10.1109/ACCESS.2018.2881755.

N. Ernst, J. Klein, G. Mathew, and T. Menzies, “Using stakeholder
preferences to make better architecture decisions,” in Proc. IEEE Int.
Conf. Softw. Archit. Workshops (ICSAW), Apr. 2017, pp. 133-136, doi:
10.1109/ICSAW.2017.19.

F. Hujainah, R. B. A. Bakar, and M. A. Abdulgabber, “StakeQP: A semi-
automated stakeholder quantification and prioritisation technique for
requirement selection in software system projects,” Decis. Support Syst.,
vol. 121, pp. 94-108, Jun. 2019, doi: 10.1016/j.dss.2019.04.009.

M. H. Yip and T. Juhola, “Stakeholder involvement in software system
development—insights into the influence of product-service ratio,” Technol.
Soc., vol. 43, pp. 105-114, Nov. 2015, doi: 10.1016/j.techsoc.2015.05.006.
V. A. Shekhovtsov, H. C. Mayr, and C. Kop, ““Stakeholder involvement into
quality definition and evaluation for service-oriented systems,” in Proc.
1st Int. Workshop User Eval. Softw. Eng. Researchers (USER), Jun. 2012,
pp. 49-52.

M. Sultan, “Linking Stakeholders’ viewpoint concerns and microservices-
based architecture,” 2020, arXiv:2009.01702. [Online]. Available:
http://arxiv.org/abs/2009.01702

H. Astudillo, J. Pereira, and C. Lépez, “Identifying ‘interesting’ com-
ponent assemblies for NFRs using imperfect information,” in Soft-
ware Architecture. Berlin, Germany: Springer, 2006, pp. 204-211, doi:
10.1007/11966104_15.

V. Lenarduzzi and O. Sievi-Korte, *“Software components selection in
microservices-based systems,” in Proc. 19th Int. Conf. Agile Softw.
Develop., Companion, 2018, pp. 1-3, doi: 10.1145/3234152.3234154.

N. Ernst, R. Kazman, and P. Bianco, “Component comparison, evaluation,
and selection: A continuous approach,” in Proc. IEEE Int. Conf. Softw.
Archit. Companion (ICSA-C), Mar. 2019, pp. 87-90, doi: 10.1109/ICSA-
C.2019.00023.

H. Cervantes, R. Kazman, J. Ryoo, J. Cho, G. Cho, H. Kim, and J. Kang,
“Data-driven selection of security application frameworks during architec-
tural design,” in Proc. 52nd Hawaii Int. Conf. Syst. Sci., 2019, pp. 1-10.
D. Badampudi, K. Wnuk, C. Wohlin, U. Franke, D. Smite, and A. Cicchetti,
“A decision-making process-line for selection of software asset origins
and components,” J. Syst. Softw., vol. 135, pp. 88-104, Jan. 2018, doi:
10.1016/j.s5.2017.09.033.

D. Taibi, V. Lenarduzzi, and C. Pahl, ““Architectural patterns for microser-
vices: A systematic mapping study,” in Proc. 8th Int. Conf. Cloud Comput.
Services Sci., 2018, pp. 221-232, doi: 10.5220/0006798302210232.

G. Marquez, F. Osses, and H. Astudillo, “Review of architectural pat-
terns and tactics for microservices in academic and industrial literature,”
IEEE Latin Amer. Trans., vol. 16, no. 9, pp. 2321-2327, Sep. 2018, doi:
10.1109/TLA.2018.8789551.

VOLUME 9, 2021

(27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

[40]

(41]

[42]

[43]

[44]

(45]

(46]

(47]

R. Kazman. Rapid Software Composition by Assessing Untrusted
Components. Accessed: Nov. 1, 2020. [Online]. Available: https:
//insights.sei.cmu.edu/sei_blog/2018/11/rapid-software-composition-by-
assessing-untrusted-components.html

F. Osses, G. Marquez, M. M. Villegas, C. Orellana, M. Visconti,
and H. Astudillo, “Security tactics selection poker (TaSPeR) a card
game to select security tactics to satisfy security requirements,” in
Proc. 12th Eur. Conf. Softw. Archit., Companion, 2018, p.54, doi:
10.1145/3241403.3241459.

M. Cohn, Agile Estimating and Planning. London, U.K.: Pearson, 2005.
M. Dabbagh and S. P. Lee, “A consistent approach for prioritizing
system quality attributes,” in Proc. 14th ACIS Int. Conf. Softw. Eng.,
Artif. Intell., Netw. Parallel/Distrib. Comput., Jul. 2013, pp. 317-322, doi:
10.1109/SNPD.2013.9.

M. Dabbagh, S. P. Lee, and R. M. Parizi, ‘“Functional and non-functional
requirements prioritization: Empirical evaluation of IPA, AHP-based, and
HAM-based approaches,” Soft Comput., vol. 20, no. 11, pp. 44974520,
Nov. 2016, doi: 10.1007/s00500-015-1760-z.

R. Thakurta, “A framework for prioritization of quality requirements for
inclusion in a software project,” Softw. Qual. J., vol. 21,no.4, pp. 573-597,
Dec. 2013, doi: 10.1007/s11219-012-9188-5.

A. Gupta and C. Gupta, “Towards dependency based collaborative method
for requirement prioritization,” in Proc. 11th Int. Conf. Contemp. Comput.
(IC), Aug. 2018, pp. 1-3, doi: 10.1109/1C3.2018.8530542.

R. A. McGee, U. Eklund, and M. Lundin, ‘““Stakeholder identification and
quality attribute prioritization for a global vehicle control system,” in Proc.
4th Eur. Conf. Softw. Archit. Companion (ECSA), 2010, pp. 43-48, doi:
10.1145/1842752.1842765.

C. Pacheco and I. Garcia, “A systematic literature review of stakeholder
identification methods in requirements elicitation,” J. Syst. Softw., vol. 85,
no. 9, pp. 2171-2181, Sep. 2012, doi: 10.1016/j.js5.2012.04.075.

R. Kazman, M. Klein, and P. Clements, “ATAM: Method for
architecture evaluation,” Softw. Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2000-TR-004, ADA382629,
2000.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Eng., vol. 40,
no. 2, p. 131, 2008, doi: 10.1007/s10664-008-9102-8.

D. Istrate, C. Taramasco, A. Fleury, N. Houmani, M. Hariz, and J. Boudy,
“Well-being and-ageing with chronical disease—The BV2 project,”
Journées d’Etude sur la TéléSanté, pp. 1-5, May 2019.

C. Taramasco, T. Rodenas, F. Martinez, P. Fuentes, R. Munoz, R. Olivares,
V. H. C. De Albuquerque, and J. Demongeot, ““A novel monitoring system
for fall detection in older people,” IEEE Access, vol. 6, pp. 43563-43574,
2018, doi: 10.1109/ACCESS.2018.2861331.

A. El Murabet, A. Abtoy, A. Touhafi, and A. Tahiri, “Ambient assisted
living system’s models and architectures: A survey of the state of the art,”
J. King Saud Univ. Comput. Inf. Sci., vol. 32, no. 1, pp. 1-10, Jan. 2020,
doi: 10.1016/j.jksuci.2018.04.009.

H. K. Ngankam, H. Pigot, M. Parenteau, M. Lussier, A. Aboujaoudé,
C. Laliberté, M. Couture, N. Bier, and S. Giroux, “An IoT architecture of
microservices for ambient assisted living environments to promote aging
in smart cities,” in Proc. Int. Conf. Smart Homes Health Telematics, 2019,
pp. 154-167, doi: 10.1007/978-3-030-32785-9_14.

S. Ali, M. A. Jarwar, and I. Chong, ‘“‘Design methodology of microservices
to support predictive analytics for IoT applications,” Sensors, vol. 18,
no. 12, p. 4226, Dec. 2018, doi: 10.3390/s18124226.

G. Cherradi, A. E. Bouziri, A. Boulmakoul, and K. Zeitouni, ‘“Real-time
microservices based environmental sensors system for Hazmat transporta-
tion networks monitoring,” Transp. Res. Procedia, vol. 27, pp. 873-880,
Jan. 2017, doi: 10.1016/j.trpro.2017.12.087.

M. Taneja, N. Jalodia, J. Byabazaire, A. Davy, and C. Olariu, “SmartHerd
management: A microservices-based fog computing—assisted IoT platform
towards data-driven smart dairy farming,” Softw., Pract. Exper., vol. 49,
no. 7, pp. 1055-1078, Jul. 2019, doi: 10.1002/spe.2704.

R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and
B. Wood, “Attribute-driven design (ADD), version 2.0,” Softw. Eng. Inst.,
Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2006-
TR-023, 2006.

'W. Wood, “A practical example of applying attribute-driven design (ADD),
version 2.0,” Softw. Eng. Inst., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-
2007-TR-005, 2007.

C. Richardson, Microservices Patterns. New York, NY, USA: Manning,
2018.

9427

http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1007/978-3-319-65831-5_11
http://dx.doi.org/10.1007/978-3-319-65831-5_11
http://dx.doi.org/10.1007/978-3-030-31646-4_7
http://dx.doi.org/10.1145/3266237.3266262
http://dx.doi.org/10.1109/ICSA-C50368.2020.00049
http://dx.doi.org/10.1109/ACCESS.2018.2881755
http://dx.doi.org/10.1109/ICSAW.2017.19
http://dx.doi.org/10.1016/j.dss.2019.04.009
http://dx.doi.org/10.1016/j.techsoc.2015.05.006
http://dx.doi.org/10.1007/11966104_15
http://dx.doi.org/10.1145/3234152.3234154
http://dx.doi.org/10.1109/ICSA-C.2019.00023
http://dx.doi.org/10.1109/ICSA-C.2019.00023
http://dx.doi.org/10.1016/j.jss.2017.09.033
http://dx.doi.org/10.5220/0006798302210232
http://dx.doi.org/10.1109/TLA.2018.8789551
http://dx.doi.org/10.1145/3241403.3241459
http://dx.doi.org/10.1109/SNPD.2013.9
http://dx.doi.org/10.1007/s00500-015-1760-z
http://dx.doi.org/10.1007/s11219-012-9188-5
http://dx.doi.org/10.1109/IC3.2018.8530542
http://dx.doi.org/10.1145/1842752.1842765
http://dx.doi.org/10.1016/j.jss.2012.04.075
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/ACCESS.2018.2861331
http://dx.doi.org/10.1016/j.jksuci.2018.04.009
http://dx.doi.org/10.1007/978-3-030-32785-9_14
http://dx.doi.org/10.3390/s18124226
http://dx.doi.org/10.1016/j.trpro.2017.12.087
http://dx.doi.org/10.1002/spe.2704

IEEE Access

G. Marquez et al.: Involving Stakeholders in the Implementation of Microservice-Based Systems

[48] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Commun. ACM,
vol. 39, no. 11, pp. 27-34, Nov. 1996, doi: 10.1145/240455.240464.

[49] H. Calderon-Gomez, L. Mendoza-Pitti, M. Vargas-Lombardo,
J. M. Gomez-Pulido, J. L. Castillo-Sequera, J. Sanz-Moreno, and
G. Sencion, “Telemonitoring system for infectious disease prediction in
elderly people based on a novel microservice architecture,” IEEE Access,
vol. 8, pp. 118340-118354, 2020, doi: 10.1109/ACCESS.2020.3005638.

[50] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Heidelberg,
Germany: Springer-Verlag, 2012.

[51] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on
microservices architecture in DevOps,” J. Syst. Softw., vol. 170, Dec. 2020,
Art. no. 110798, doi: 10.1016/j.js5.2020.110798.

[52] T. L. Saaty, “What is the analytic hierarchy process?” in Mathematical
Models for Decision Support (NATO ASI Series), vol. 48, G. Mitra,
H. J. Greenberg, F. A. Lootsma, M. J. Rijkaert, H. J. Zimmermann, Eds.
Berlin, Germany: Springer, 1988, doi: 10.1007/978-3-642-83555-1_5.

[53] H. Magsi, A. H. Sodhro, F. A. Chachar, S. A. K. Abro, G. H. Sodhro, and
S. Pirbhulal, “Evolution of 5G in Internet of medical things,” in Proc. Int.
Conf. Comput., Math. Eng. Technol. (iCoMET), Mar. 2018, pp. 1-7, doi:
10.1109/ICOMET.2018.8346428.

[54] D. Garlan, S. Khersonsky, and J. S. Kim, “Model checking publish-
subscribe systems,” in Proc. Int. Spin Workshop Modeling Checking Softw.,
2003, pp. 166-180, doi: 10.1007/3-540-44829-2_11.

GASTON MARQUEZ is currently pursuing the
Ph.D. degree in informatics engineering with Fed-
erico Santa Marfa Technical University, Chile.
He has worked in financial companies for five
years. He was a Research Visitor with the
Rochester Institute of Technology, Rochester, NY,
USA, and the Université de Technologie de Com-
piegne, Compiegne, France. He has authored or
coauthored in several international conferences

! and has participated in international software
architecture schools. He is working in the research fields of architectural
tactics, patterns, microservice architectures, technical debt, and security in
telehealth systems.

CARLA TARAMASCO received the B.Eng. degree
in computer engineering from the Universidad
de Valparaiso, Chile, in 2001, the M.Sc. degree
in cognitive science from the Ecole Normale
Superieure in 2006, and the Ph.D. degree (summa
cum laude) from the Ecole Polytechnique, France,
in 2011. She is currently a Researcher and a Pro-
fessor with the Department of Computer Science,
Universidad de Valparafso. She currently teaches
both at the undergraduate and graduate levels,
along with scientific divulging. Her main academic interests are health,
including mHealth, ambient-assisted living for elderly persons, e-health,
telemedicine and telerehabilitation, and supervision of chronic diseases,
and complex social systems, including dynamic networks, socio-semantic
networks, and analysis of trajectories both individual and collective, among
others.

9428

HERNAN ASTUDILLO (Member, IEEE) received
the Ph.D. degree in information and computer
science from Georgia Institute of Technology,
in 1995. He was an Informatics Engineer with
the Universidad Técnica Federico Santa Maria
(UTFSM), Santiago, Chile, 1988. He is currently
a Professor of informatics with UTFSM. He has
been a Lead Applications Architect with MCI Sys-
temhouse and Financial Systems Architects, USA,
a Visiting Professor with the Universidade de Sao
Paulo, Brazil, and an academic with UTFSM since 2003, where he is respon-
sible for UTFSM’s Software Engineering academic activities. He is the Chair
of the Doctorate in informatics engineering, UTFSM, and the Co-Chair of
BPM Center, UTFSM. He is a Principal Investigator of the Toeska Research
and Development Team, which conducts teaching, research, and technology
transfer in software architecture, semantic software systems, and software
process improvement. His main research and development interests are
identification, recovery, and reuse of architectural decisions and architectural
knowledge (especially architectural tactics). He is currently the Executive
Secretary of CLEI and a member of IFIP TC2 (Software Engineering) and
the ACM, IASA, and INCOSE.

VINCENT ZALC worked on MRI acquisition
and biomédical image processing for ten years.
He then joined the eBioMed Chair, Connected
Biomedical Tools. He has been an Engineer with
the Biomechanics and Bioengineering Laboratory,
UMR 7338, UTC, since 2007. He is working on
multi sensors acquisition and signal processing.

DAN ISTRATE is currently a Professor with
the Biomechanics and Bioengineering Labora-
tory, UMR 7338, UTC, and is also in charge of
the eBioMed Chair, Connected Biomedical Tools.
He is working on applications for the supervi-
sion of elderly people at home using different
connected sensors, functional rehabilitation, and
monitoring of pregnant women for predict prema-
ture delivery. He is a scientific expert of several
national and European calls.

VOLUME 9, 2021

http://dx.doi.org/10.1145/240455.240464
http://dx.doi.org/10.1109/ACCESS.2020.3005638
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1007/978-3-642-83555-1_5
http://dx.doi.org/10.1109/ICOMET.2018.8346428
http://dx.doi.org/10.1007/3-540-44829-2_11

