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2Institut de Sciences des Matériaux de Mulhouse, Mulhouse, France
3Laboratoire TEMPO, Valenciennes, France

An extensive statistical analysis is proposed to determine the best relevant rough-
ness parameters as a function of spatial scales that affect adhesion on surfaces.
The methodology is based on a multiscale decomposition of the roughness surface
and is linked with adhesion measurements. This method is applied to study cell
adhesion on a very wide range of roughnesses of titanium substrates (22 surfaces,
the average roughness Ra from 1 to 21mm) tooled by an electro-erosion process and
coated with a polyelectrolyte, that leads to identical surface chemistry. It is shown
that the scale length of observation should be a few times the cell size to put into
evidence the influence of the surface morphology on cell adhesion. It is observed
that the adhesion is the lowest when the distance between the asperities of the
roughness is near the cell size.

Keywords: Biomaterials; Cell adhesion; Multi-scale analyses; Osteoblastes; Rough-
ness; Titanium

1. INTRODUCTION

Adhesion plays a major role in a large number of science and indus-
trial fields. Adhesion between two bodies is governed by three different
surfaces properties: physical and chemical properties of both surfaces
and finally the roughness of the two surfaces. By selecting appropriate
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maxence.bigerelle@utc.fr

The Journal of Adhesion, 87:644–670, 2011

Copyright # Taylor & Francis Group, LLC

ISSN: 0021-8464 print=1545-5823 online

DOI: 10.1080/00218464.2011.596093

644

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
0:

18
 1

2 
Ja

nu
ar

y 
20

15
 



surface process technologies (coating, tool-machining, etching,...), it is
possible to change the surface topography without changing physical
and chemical properties. Then, the influence of roughness on adhesion
can be studied for a given physico-chemical surface property. In this
paper, only the roughness influence on adhesion mechanisms is ana-
lyzed. The authors propose a method to determine the roughness para-
meters and the special scale length that are the most relevant to
correlate surface topography with adhesion properties. Briefly, the
method is based on a multiscale decomposition of the roughness of
all samples. Then, roughness parameters are computed at all scales
and the relevant roughness parameter with its associated spatial scale
is chosen to best discriminate adhesion measures with topographical
data.

This method is applied in the case of cell adhesion on titanium
electro-eroded surfaces with different roughness (electrical discharge
machining). This method has the finality to answer the global question
‘‘How does surface roughness influence adhesion?’’ This general ques-
tion is too complex to be treated directly. This problem could be split to
more specific questions on instrumental and methodological aspects:

. How to measure roughness? Which apparatus should be used? At
which scale measurement should it be performed?

. How to characterize roughness? What is the most relevant rough-
ness parameter to use?

. At which scale must the roughness parameters be evaluated?

. How is uncertainty introduced in the adhesion and roughness
measurement?

. How to mathematically define the notion of influence? Is it by a
mathematical function linking adhesion and roughness? If so, how
to choose this function? Is it by a pure statistical modelling and,
under this model, what are the required assumptions?

. How to characterize the uncertainty of this influence linking
together stochastic aspects of both roughness and adhesion?

For these reasons, a methodology is developed that allows the treat-
ment of these questions. To illustrate our purpose, this methodology is
progressively treated with regard to a classical adhesion problem met
in biological science: the cell adhesion on biomaterials. In this paper,
the proposed methodology is treated without describing intensively
the biological part.

The influence of metallic implant surface topography on the cell
response has been well demonstrated over last several years using real
surfaces obtained by classical surface treatment methods used for
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implant surface modification (plasma-spray, sand-blasting,
acid-etching) [1–7] and using model surfaces prepared by photolith-
ography [8–12]. In order to study deeply the mechanisms of the cell
response to topography, isotropic topographies over a wide range of
dimensions with the same surface chemistry were tooled by electrical
discharge machining (EDM). Our objective in this study was to deter-
mine if there is a sensitivity of cell adhesion to the isotropic roughness
amplitude. To reach this objective, the EDM process that produces
perfectly isotropic, fractal, and self-similar surfaces was used. It was
shown that EDM is highly favourable for human bone cell adhesion
[13,14]. Only the scale of the topography will change relatively to
the cell dimensions. With this objective, 22 different samples were
tooled with the EDM process, forming a very wide range of roughness
overlapping the human mesenchymal stem cells length dimensions
(�100 mm). Using this system, the adhesion capacity of human
mesenchymal stem cells (hMSCs) can be analysed relative to the
dimensions of the peaks and valleys of the topography.

The paper is organised as follows: In the first part, cell adhesion
protocol, materials, and roughness measurements used to illustrate
our methodology are described. Then the multiscale decomposition of
roughness and roughness parameters are presented that allows
description of the roughness at different scales of observation. As
stochastic aspects of both adhesion and roughness are of major inter-
est, a recent method of resampling data called the bootstrap is used.
Due to intensive computation, the probability density functions of
measurement of adhesion and roughness parameters are determined.
Thanks to this modelling, an original statistical method based on the
discriminant analyses (coupled with a Bayesian approach) is proposed
to find the best roughness parameter and the scale for which adhesion
is the most relevant. Finally, at this scale of relevance, an adhesion
model is proposed.

2. MATERIALS AND CELL ADHESION EXPERIMENT

2.1. Preparation of Surfaces

A 5-mm thick plate of pure titanium (Ti) was electro-eroded by electri-
cal discharge machining (EDM) using a spark erosion machine pro-
vided by CharmillesTM (Meyrix, Switzerland). A copper electrode
with a diameter of 20mm was used with a tension of 220V. Intensity
and gap were controlled from 0.5 to 64 A for intensity and from 0.02 to
0.25mm for the gap such that the first sample is the smoother and the
last sample is the rougher. Then the plate was cut in order to obtain 22
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samples with 22 increasing roughness grades with an amplitude
roughness parameter (Ra) of between 1.2 and 21 mm (Grades 1 to
22). XPS analysis (X-Ray Spectrometer Scienta SES-200, Scienta,
Courtaboeuf, France) confirmed that the surface chemistry was
identical on all 22 samples (data not shown).

2.2. Roughness Measurements

2D and 3D roughness measurements were achieved on a TENCORTM

P10 tactile profilometer system using a stylus with 2-mm tip radius
(KLA Tencor, Grenoble, France). The axial resolution of the machine
is around 10nm and the plane resolution is around 50nm. As seen
in Fig. 1, the surfaces obtained by electro-erosion present an isotropic
structure formed by successive peaks and valleys.

No specific direction or periodical structure is visible on the sur-
faces. The higher the grade, the higher the roughness amplitude
and the larger the peaks and valleys. The surfaces are also fractal
since, when the grade rises, the surfaces appear like a zoom of the

FIGURE 1 3D topographical measurements of four surfaces electro-eroded at
different grades (different EDM intensities).
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surface at a lower grade. A crucial point for our analysis is that the
scale at which the roughness parameter influences cell adhesion is
not known a priori. The roughness considered at either the
sub-cellular scale or at the supra-cellular scale, or both, could have
a strong influence. Hence, this requires that the resolution of the
roughness profile starts from microns and rises to several millimetres.
Another important point is that the 3D figures have a limited spatial
resolution (1024� 1024) that cannot really be improved, notably in
the vertical direction, since 3D measures are obtained from the sum
of 2D profiles taken in the horizontal direction with a shift in Y
between each profile.

However, as our surfaces were perfectly isotropic (Fig. 1), the
authors decided to proceed to the acquisition of 30 high-resolution
2D profiles taken randomly on each substrate to be able to develop
further multiscale analysis. On each sample, 30 random profiles were
measured at a 100 mm=s speed over a length of 8mm with a 1000Hz
sampling frequency under 5mg load. With those parameters, the dis-
tance between two consecutive points of a profile was 0.1 mm. On these
profiles, roughness parameters were computed and the value for a
sample was considered as the mean of 30 measurements.

2.3. Cell Cultures

Human mesenchymal stem cells (hMSCs) were prepared from the
bone marrow of normal patients as previously defined [15]. hMSCs
were cultured in direct contact with the surfaces during 2 hours in
Iscove modified Dulbecco medium þ10% fetal bovine serumþ
penicillin-streptomycin at 37�C in a 24-well plate. 40,000 cells were
inoculated per sample. After culture, samples were rinsed in phos-
phate buffered saline (PBS) and fixed at least 30 minutes in parafor-
maldehyde 2% in NaK2P 0.2M buffer. After rinsing with PBS, and
permeabilization with Triton1 0.2% in PBS, the cells were labelled
wi1th 0.4 mg=mL FITC-phalloidin (Sigma, L’ile d’Abeau, France) and
100ng=mL DAPI (40,6-diamidino-2-phenylindole) (Sigma, France).
The samples were observed with an epifluorescence microscope
Olympus BX51 (Olympus, Rungis, France). After culture, cell layers
were fixed in 2% paraformaldehyde (w=v) in qakzp 0.2M buffer, rinsed
in water, and examined in a low vacuum mode, without metallization,
in an environmental scanning electron microscope at 15 kV (FEI,
Lyon, France). The number of cells was determined by counting the
number of nuclei labelled by DAPI on fluorescent pictures using
the ImageTM J 1.40 g software (Public domain software, National
Institutes of Health, Bithesda, MD, USA).
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3. MULTI-SCALE CHARACTERISATION OF THE
ROUGHNESS

As cell adhesion depends on spatial scale, a mathematical formalism
was developed by the authors to analyze the profiles at different scales
(see Appendix 1). This methodology was used to find:

. Form of a profile at a given scale of observation

. Residual roughness, i.e., roughness when the form of the profile was
removed.

FIGURE 2 Spline decomposition of the original roughness profile of Ti sam-
ple 18 at the scale e¼ 376 mm (right) and the transformed profile from which
roughness parameters were evaluated (color figure provided online).

FIGURE 3 Multiscale analyses for four Grades (1, 7, 17, 22) and two scales
(60 and 600 mm) (color figure provided online).
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Figure 2 (left) presents the form corresponding to an evaluation
length of 376 mm and the final profile (right) from which rough-
ness parameters were estimated. Figure 3 presents the reconstruc-
tions of the same profile rectified with a first degree regression
fitting corresponding to two different evaluation lengths (60 and
600 mm) for different grades of EDM. The reconstructed profiles
show that the rectification for a given evaluation length
corresponds to a set of high pass filters which reveal the
micro-roughness.

4. ROUGHNESS PARAMETERS

4.1. Definition

Basically, surface roughness 2D parameters are normally categorized
into three groups according to their functionalities. They are defined
as amplitude, spacing, and hybrid parameters. These definitions are
the same in 3D but another category appears corresponding to spatial
parameters that can be, for example, the density of summits, the tex-
ture direction, and the dominating wavelength [16]. The more used
roughness parameter in the biomaterials field is the well-known Ra

parameter [17,18]. Another interesting parameter is the Sm that
represents the distance between asperities on the profile. Let us con-
sider the scheme for four cases A, B, C, and D (Fig. 4). Surfaces (A,
C) have the same Ra as surfaces (B, D). On the other hand, surfaces
(C, D) and surfaces (A, B) have the same Sm. This clearly means that
Ra is unable to characterize lateral roughness [19] and is unable to
see the skewness of the profile, i.e., cannot distinguish peaks and
valleys [20].

FIGURE 4 A roughness example that illustrates both Sm and Ra para-
meters: (a) are roughness profiles, (b) is the plot of values of Sm versus Ra

parameters.
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4.2. The Multi-Scale Roughness Parameters

Roughness parameters were calculated on all sub parts of a fixed
evaluation length, e. Then, the average value of each roughness para-
meter, q, noted, qi(e), was computed by averaging on all equal parts of
the profile. Thereafter, this step was reproduced for different evalu-
ation lengths. For this investigation, the roughness profile is supposed
to be ergodic, i.e., roughness is homogeneous on the whole evaluation
length of the profile. In this case, all multiscale measures are not spa-
tially located and, therefore, our multiscale approach is quite different
from the wavelet analysis [21–23].

Figure 5 represents the Ra and Sm parameter mean values (mean
calculated from all the 30� 22 profiles) versus the evaluation length.
Each curve presents two stages: an increasing stage where the Ra or
the Sm values increase with the evaluation length and an asymptotic
stage where the Ra or the Sm values stay approximately constant with
the evaluation length. The threshold values for e and for Ra depend on
the sample. Thus, it appears that the roughness values depend on the
evaluation length and cannot be arbitrary chosen. The determination
of the pertinent evaluation length is the object of the next paragraph.
It must be emphasised that the log-log plot presents a linear tendency

FIGURE 5 Roughness parameter values Sm versus the observation scale for
the 22 samples (color figure provided online).
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for small values of evaluation length that can be linked with the frac-
tal dimension of the profile, D. For example, taking qi¼Rt, Tricot [24]
shows that, at small evaluation lengths, the slope, H, of the log-log
plot, estimates the fractal dimension of the profile (D¼ 2-H). However,
the linearity of the relation in a log-log graph fails in our graphs
(Fig. 5), meaning that limiting the multiscale analysis only to the frac-
tal dimension reduces the multiscale profile information. It can be
noticed around 200 mm length, the relation between Ra and e is curved
downward because the profilometer tip radius (1 mm) smoothes the
surface and decreases the roughness amplitude [25].

5. ADHESION AND ROUGHNESS PARAMETERS AND
THEIR UNCERTAINTY

To determine the uncertainties on both adhesion measures and rough-
ness parameters, an original statistical protocol based on the bootstrap

FIGURE 6 Plot of the two roughness parameters Ra and Sm at the two scales
5 mm (left) and 376mm (right) versus the number of counting cells. Each point
of each group (22 samples) is the mean obtained on the experimental data after
resampling simulation with replacements (100 simulations by group) (color
figure provided online).
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theory is constructed (see Appendix 2). We process to the bootstrap
simulation with two parameters R1 ¼ Ra (the average roughness, most
used parameters) and R2 ¼ Sm (the mean distance between asperi-
ties). In this illustration, two scale analyses are used: e¼f5mm,
376 lmg. 100 bootstraps (indicated by j) are then performed and
Cj

�ðkÞ ¼ f ðRj
a;�ð5 lm; kÞÞ for all the j bootstraps and all K surfaces (indi-

cated by k) are plotted (Fig. 6, left bottom). Three others bootstraps
were performed to plot Cj

�ðkÞ ¼ f ðRj
a;�ð376 lm; kÞÞ, Cj

�ðkÞ ¼
f ðSj

m;�ð5lm; kÞÞ and Cj
�ðkÞ ¼ f ðSj

m;�ð376 lm; kÞÞ.
Let us now briefly comment on the result of the bootstrap.

. At the scale of 5mm, no relation seems to appear between adhesion
and both roughness parameters, Ra and Sm.

. At the scale of 376 mm, a relation like a U-shape emerges between
adhesion and both roughness parameters, Ra and Sm. In fact, it will
be demonstrated in this paper that Sm is the best roughness
parameter to characterize cell adhesion at the scale of 376 mm.

. Ra and Sm seem to follow the same law. The electro-eroded surfaces
are self-affine. That means that a surface with a higher grade is
identical to a surface with a lower grade if this last one is amplified
by a constant factor. Indeed, if the roughness structures are the
same on all grades except for a constant scale factor, the peaks
and valleys will be identical except the constant scale factor and a
linear relation should be found between the distance between peaks
(Sm parameter) and the distance between peaks to valleys (Rt

FIGURE 7 Evolution of Sm versus Ra for the 22 samples evaluated at the
macroscopic scale (color figure provided online).

Method to Determine Spatial Scale in Adhesion 653

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
0:

18
 1

2 
Ja

nu
ar

y 
20

15
 



parameter, with the experimental relation Rt� 8Ra). This linear
relation was effectively found between Ra and Sm characterized by
the equation Sm¼ 26.7þ 18.5*Ra in mm (see Fig. 7). The good accu-
racy of this linear relation to fit experimental data confirms that
peaks and valleys get the same shapes.

6. A METHODOLOGY TO DETERMINE THE SCALE ON
WHICH ADHESION OCCURS

6.1. Problems

As shown in the previous section, at the scale of 376 mm, a relation like
a U-shape emerges between adhesion and the roughness parameters
Ra and Sm and no relation occurs at the scale of 5mm. However, this
analysis was only visual and limited to two scales and two roughness
parameters. So the question is: ‘‘Does there exist another roughness
parameter and another scale for which a better relation would emerge
between adhesion and roughness characterization?’’ An original meth-
odology is then created to answer this major question. A method to
demonstrate mathematically what is shown in Fig. 6, i.e., the Sm eval-
uated at the scale of 376 mm better discriminates cell adhesion than at
the scale of 5 mm, must be developed. This method should be applicable
for all evaluation lengths and for all roughness parameters. With this
objective, an original method based on a discriminant analysis on boot-
strapped data was developed (Appendix 3). This method used the dis-
criminant analyses to determine if the data are well clustered, i.e.,
finding the evaluation length and the roughness parameter that allow
each group of samples to be better discriminated. Thanks to the use of
classification functions, the number of ‘‘well classified’’ data for each
surface was computed and one uses as a best classification indicator
the mean percentage of well classified data (see Fig. 8, left). As will
be illustrated in the next paragraph, this extrapolation is of major
interest to find the more relevant scale and the associated roughness
parameters that characterize the cell adhesion.

6.2. Results

The probability of ‘‘badly classified’’ data for the 81 parameters was
computed for all the evaluation lengths, e. The graph on Fig. 9 pre-
sents effectively the roughness parameters discrimination to charac-
terize cell adhesion as a function of the scale of measurement (only
three parameters are shown, Ra, Sm, and the developed surface ratio
Lr). As can be observed, the best roughness parameter is obtained
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for the Sm evaluation scale, e¼ 376 mm. A very important fact must be
emphasized: under the size of 100 mm, the probability of badly classi-
fied data dramatically increases and this scale is around the cell size.
This clearly means, thanks to this original influence graph, that below
the cell size, the roughness does not influence cell adhesion. On the
contrary, the Lr parameter does not influence cell adhesion at all
scales. To appreciate the relevance of the discriminant analysis, the
well classified data and the badly classified data are plotted for the

FIGURE 9 Values of the probability of ‘‘badly classified’’ data versus the
evaluation length for three roughness parameters Ra, Sm, and Lr (developed
surface) (color figure provided online).

FIGURE 8 Example of discrimination between adhesion and a roughness
parameter for two surfaces (left) and values of a ‘‘badly classified’’ datum esti-
mated by a counting technique and a Bayesian approach (right) (color figure
provided online).
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FIGURE 11 (a) Zoom of an original profile (thin line) of the surface grade 1
(see Fig. 1) and form associated with this profile obtained by the multiscale
analyses at the maximal scale of relevance (376 mm). The cells are represented
at their mean size value. (b) Filtering profile resulting from the form removal
operation of the profile shown in (a) (color figure provided online).

FIGURE 10 ‘‘Well classified’’ data (left) and ‘‘badly classified’’ data (right)
plotted for the Sm graph presented in Fig. 5 (color figure provided online).
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Sm (Fig. 10). As can be observed, a very small number of data are badly
classified (Fig. 10 on the right: amount of badly classified data is
around 1%). At the more relevant evaluation scale, e¼ 376 mm, the
number of cells decreases when roughness increases until, respect-
ively, Ra¼ 4 mm and Sm¼ 110mm (Grade 18). After this threshold,
the number of cells increases with roughness until it reaches the same
value as on the lowest roughness grade (�120 cells). To better visua-
lize the effect of scale on cell adhesion, the profile of Grade 1 substrate
is plotted in Fig. 11a. The function that represents the form of the sur-
face at the scale of e¼ 376 mm is plotted for comparison over that pro-
file (Fig. 11a). It is clear that the variation of the profile at this scale is
much larger than the cell scale. This means that cells will not see the
roughness given by this form function and, thus, whatever the grade of
the surface. To avoid inclusion in the future roughness analyses of
these components that do not affect cell adhesion, this form will be
further withdrawn from the original profile. This is illustrated in
Fig. 11b that shows the profile really seen by cells

Here, a remark must be made won the graphical representation of
cells on profiles and the interpretation that can be done from these fig-
ures. To visualize the roughness on the whole evaluation length, the
profiles in Fig. 11 were very anamorphosed, i.e., the metric scale in
the roughness direction (y-axis) was very amplified compared with
the scanning direction (x-axis). Then, narrow peaks appeared to be

FIGURE 12 On the top, profile of Grade 1 (lower roughness) on which the cell
adheres. On the bottom, the same profile at the non anamorphosed scale, i.e.,
the vertical metric is equal to the horizontal one (color figure provided online).
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present under the cells while, in reality, peaks under cells are
considerably flatter (Fig. 12).

7. INTERPRETATION

7.1. Experimental Analysis

As can be observed in Fig. 10 left, the number of cells decreases signifi-
cantly when Sm passes from 40 to 110 mm at the appropriate scale of
observation (e¼ 376 mm). It can be stated that in an interval [Sminf

,
Smsup

], cells are located in the valleys rather that on the peaks. In an
interval [0, Sminf

], they adhere rather on the top of the peaks. Then,
how to explain this decrease? Roughness is stochastic in our case
meaning that the morphology of peaks and valleys follows a statistical
distribution, different for each grade. The lower the roughness (lower
grade), the lower Sm will be. But Sm is an average, i.e., it represents
the mean size of the valleys (or peaks). That means that it is possible
to meet some valleys (or peaks) greater than Sminf

even on samples
with a mean Sm value lower that Sminf

. Of course, the lower the mean
Sm value, the lower the probability of meeting a peak (or a valley)
wider thanSminf

.
So, when the mean Sm increases, the number of peaks wider than

Smsup
increases. At the scale of the cell, when peaks=valleys are

greater than Smsup
, peaks (and valleys) will be seen flatter and flatter

and cells will only see the nanoroughness and adhere indifferently
on peaks and valleys. As a consequence, cell adhesion increases as
the number of peaks greater than Smsup

increases. As for cells that
adhere on peaks less than Sminf

, cells that adhere on peaks=valleys
higher than Smsup

see the same nanoroughness (this crucial point will
be demonstrated in the next section) and then it can be expected
that cells on peaks=valleys<Sminf

adhere like peaks=valleys>Smsup
.

This leads finally to a minimal value of Sm¼ 125 mm that is near
the cell size and clearly means that if peaks are around the cell size,
cells do not adhere on peaks. The proposed model is summarized in
Fig. 13.

7.2. Verification of the Homogeneity of the
Nano-Roughness by Multiscale Analyses

In the previous section, it was claimed that cells that adhere on peaks
less than Sminf

and cells that adhere on peaks=valleys higher than Smsup

see the same nanoroughness (nanoroughness represents the rough-
ness at the scale of the solidified droplets of the EDM process).
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To quantify this nano-rouhness, a wavelet analysis, that is a new and
promising set of tools and techniques for analyzing the roughness sig-
nal, was used. For example, these analyses can be used in biology for
cell membrane recognition to distinguish the normal from the patho-
logical membranes. A wavelet is a waveform of effectively limited dur-
ation that has an average value of zero and is used in our case to
decompose signals at a given scale. The Meyer wavelet was used
to reconstruct the signal by adding all approximation components
from the scale of 0.2 mm to the scale of 5 mm (about the wavelet size)
(Fig. 14).

Briefly speaking, this reconstruction allows the suppression of all
forms of the profile at all scales over 5 mm. Thus, the resulting profile

FIGURE 13 Biological explanation of the shape of graphs shown in Fig. 6 at
the scale of relevance of the roughness (right) (color figure provided online).
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FIGURE 14 Nano roughness at the scale less than 5 mm for both (a) lowest
and (b) highest roughness surface (color figure provided online).

FIGURE 15 Ra and Sm reconstructed by the wavelet analysis compared with
the macroscopic Ra and Sm (color figure provided online).
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can be seen as a profile when all the local forms greater than 5 mm are
suppressed. Then, roughness parameters are computed from these
profiles. Figure 15 represents the Ra and Sm reconstructed by this
wavelet analysis compared with the macroscopic Ra and Sm. As can
be seen, the Ra and Sm are quite constant with grades at the 5-mm
scale while they increase at the macroscopic scale. This wavelet
multi-scale approach confirms the result obtained by the B-Spline
function as no relation was found between Sm and cell adhesion
measurement at the scale of 5 mm (Fig. 6).

FIGURE 16 3D topographies of six samples (Grade 1, 2, 7, 13, 16, 19)
obtained by AFM on a evaluation area of 5� 5 mm2.
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7.3. Validation of the Multiscale Analyses by AFM
Measurement

To confirm our multiscale analyses, a number of measures were car-
ried out under atomic force microscopy (AFM). The size of the zone
measured was 5� 5mm2. On each sample, nine measures were
recorded on different zones. Figure 16 represents the 3D topographical
maps. Thanks to an analysis of variance, Ra obtained by the nine mea-
sures taken on each sample can be considered as constant (F¼ 1.56,
p¼ 0.19, see Fig. 17). As a consequence, the AFM measurement con-
firms the result of homogeneity of nanoroughness obtained by our
multiscale analyses on a high definition profile measured by stylus
profilometry.

7.4. SEM Validation of the Proposed Model of Adhesion

The SEM analysis was performed to validate the model described pre-
viously (Fig. 18). For Grade 1 (small amplitude roughness), cells see all
the roughness and covered the surface. For Grade 11, some cells can-
not be located on large peaks and they stay in valleys, and cell
adhesion diminishes. The minimum of adhesion is given on a surface
of Grade 18. At this scale, no cell is located on peaks and cells are only
located in valleys of the profile and, then, the cell adhesion is lowest.
When the grade increases (Grade 18!Grade 22), peaks and valleys
become more and more wide and cells see at their scale a flat
surface leading to an increase of cell adhesion.

FIGURE 17 Analyses of the mean Ra (from nine measurements) of the AFM
topographies described in Fig. 16 (color figure provided online).
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8. CONCLUSIONS

In this paper, a new and original methodology was used to select, with-
out preconceived opinion, relevant roughness parameters for discrimi-
nating different topographies with regard to an adhesion measure and
to find at which scale adhesion is governed. Two statistical methods
were combined in this methodology: the usual discriminant analysis
which enabled definition and estimation of a quantitative indicator
of performance (the average percentage of well classified data) for each
roughness parameter and the recent and powerful computer-based

FIGURE 18 SEM photographs of osteoblastes adhesion on titanium surfaces
tooled with different EDM grades.
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bootstrap method. This methodology was then applied to cell adhesion.
Thanks to this very wide range of stochastic and self-similar rough-
nesses overlapping the critical dimensions of human hMSCs cells,
the results of this methodology revealed that the Sm parameters
measured at the scale of around 400 mm were the most
relevant to be selected for discriminating the topography effect on cell
adhesion. Under or over the cell size, cells see and react essentially to
the nano- and sub-micron roughness that is shown to be constant for
all samples.
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APPENDIX 1: THE MULTISCALE ANALYSES OF
ROUGHNESS

In this part, a mathematical formalism is developed to analyze the
profiles at different scales. Each experimental profile is split into equal
parts of a given length and each part of the profile will be considered
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as a new profile. Consecutively, the horizontal length of these profiles
will be considered as the evaluation length. To delete ‘‘the shape’’
greater than the evaluation length, each profile part was rectified by
a d-degree polynomial least squares fitting using continuous
regression. To remove the local forms, the regression parameters were
computed on a given window by imposing a Cd–1 continuity between
adjacent polynomials defined on the two neighbour windows (d¼ 1
in this paper). As a consequence, the form profile is a B-spline function
[26] described by a parametric representation which minimises the
quadratic distance with regard to the profile [26]. The equation
defined by the B-spline induces a more realistic representation of
the profile form without including artificial roughness.

The B-spline is defined as follows:
Let a B-spline function be described by the parametric represen-

tation BðtÞ ¼
����XðtÞ
YðtÞ which minimises the quadratic distance with

regard to the profile. This B-spline is defined by a list of control points
fP0;P1; . . . ;PKg whose number K corresponds to the number of win-
dows along the scanning length and the associated knot sequence
fu0, u1,. . ., uKg. More precisely, a B-spline can be written as follows:

Bd;KðtÞ ¼
PK

i¼0 Pi �Ni;dðtÞ where Pi ¼
����Xi

Yi
are the control points and

Ni, d is the polynomial function with degree d defined by the recursive
scheme:

Ni;nðtÞ ¼
t� ui�1

uiþn�1 � ui�1
Ni;n�1ðtÞ þ

uiþn � t

uiþn � ui
Niþ1;n�1ðtÞ with Ni;0ðtÞ

¼ 1 if t 2 ½ui�1;ui�
0 else

�
: ð1Þ

To simplify the problem, we have taken X(t)¼ t and the fitting prob-
lem becomes a minimisation of the quadratic distance

XL
i¼0

kyi � YðxiÞk2 ð2Þ

with

���� xiyi the coordinates of the points of the profile and L their num-

ber,that corresponds to:

XL
i¼0

yi �
XK
j¼0

Yj �Nj;nðxiÞ
" #

NQ;nðxiÞ ¼ 0 8Q 2 f0; . . . ;Kg ð3Þ
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or

Y
!¼ M � P! ¼

PL
i¼0

yi �N0;nðxiÞ

..

.

PL
i¼0

yi �NQ;nðxiÞ

..

.

PL
i¼0

yi �NK ;nðxiÞ

������������������

with P
!¼

Y0

..

.

YQ

..

.

YK

������������
; ð4Þ

with:

M ¼ ðmj;kÞ and mj;k ¼
Xp
i¼0

Nj;nðxiÞ �Nk;nðxiÞ: ð5Þ

Using Eqs. (1–5) vector P
!¼ M

� ��1
�Y! is obtained. After the B-spline

curve calculation, the profile is rectified by subtracting the B-spline.

APPENDIX 2: BOOTSTRAP ESTIMATION OF UNCERTAINTY
BETWEEN ADHESION AND ROUGHNESS PARAMETERS

In this part, a method is developed to determine the uncertainties of
both adhesion measurements and roughness parameters. One gets
K¼ 22 samples with k2f1, 2, . . . , Kg. On each sample, P measures
with p2f1, 2,. . ., Pg of cells counting noted Cp(k) were processed. In
another way, N roughness measures with n2f1, 2, . . . , Ng evaluated
at the scale e were processed on each sample from which R roughness
parameters with r2f1, 2, . . . , Rg and noted Rr were computed. Finally
Rr

nðe; kÞ represents the roughness parameters Rr (for example R1¼R1)
evaluated at the scale e and computed from the nth roughness
measurement of the kth surface. However, no correlation exists
between Rr

nðe; kÞ and Cp(k) for given k and e. So it becomes necessary
to compute means Rr

nðe; kÞ noted Rr
�ðe; kÞ for each k and e and means

of Cp(k) noted C.(k) for each k surfaces. At this step, Rr
�ðe; kÞ are plotted

versus C.(k) for each scale e and a possible relation between the rough-
ness parameters Rr

�ðe; kÞ and the cell adhesion C.(k) for a given scale e
can be observed. However, a major criticism is that the uncertainty of
the data are lost. It is a major interest to construct the bivariate prob-
ability density function of (Rr

�ðe; kÞ, C. (k)) for all k samples at a given
scale e. As the form of probability density function is not known a
priori, a rough assumption could be done as a Gaussian hypothesis.

Method to Determine Spatial Scale in Adhesion 667

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
0:

18
 1

2 
Ja

nu
ar

y 
20

15
 



To avoid this classical way of analyses, a recent statistical method was
created and is called the bootstrap. Bootstrap theory was first intro-
duced by Efron [27–30]. Roughly speaking, this computer-based boot-
strap method (CBBM), which is described in this paper, allows the
replacement of statistical inference assumptions (therefore limiting
the risk to assert wrong conclusions) by intensive calculations while
making the most of the power of modern personal computers. The
efficiency of the proposed methodology is emphasised in this work
through the study of the relationships between the cell adhesion level
and the surface roughness of coated titanium biomaterials. The main
principle of our bootstrap protocol CBBM consists in generating a high
number K (¼ 100 in this study) of simulated bootstrap samples from
the experimental data points exploiting the power of a modern com-
puter. A bootstrap sample of size n, referred to by k (1� k�K) and
noted ðtk1; tk2; . . . ; tknÞ, is a collection of n values obtained by randomly
sampling with replacement from the experimental data points
ðtExp:1 ; tExp:2 ; . . . ; tExp:n Þ. The bootstrap data set, thus, consists of some ele-
ments of the original data set: some never appearing, others appearing
once, others appearing twice, etc. Whatever the sample k in which the
measurements have been carried out, the experimental data set con-
tains P values fCExp:

1 ðkÞ;CExp:
2 ðkÞ; . . . ;CExp:

P ðkÞg of cell adhesion mea-

surements and N values fRr;Exp:
1 ðk; eÞ;Rr;Exp:

2 ðk; eÞ; . . . ;Rr;Exp:
N ðk; eÞg of

the roughness parameter Rr under consideration. The simulated boot-
strap samples obtained by randomly sampling with replacement
scores of the experimental data set, are, respectively, noted
fCj:

1ðkÞ;C
j:
2ðkÞ; . . . ;C

j
PðkÞg and fRr;j

1 ðk; eÞ;Rr;j
2 ðk; eÞ; . . . ;Rr;j

N ðk; eÞg; the
superscript j refers to the jth bootstrap simulation. The means of these
newly simulated samples were then calculated for each grade k and
are, respectively, noted Rr;j

� ðe; kÞ;Cj
�ðkÞ. These means were reported

on a graph Cj
�ðkÞ ¼ f ðRr;j

� ðe; kÞÞ for all the J¼ 100 bootstraps and the
K¼ 22 surfaces and, thus, at a given scale e.

APPENDIX 3: ORIGINAL METHOD FOR THE
CLASSIFICATION OF THE ROUGHNESS PARAMETER
WITH ITS APPROPRIATE SCALE

For each evaluation length and each sample, 81 different roughness
parameters were computed (spectral, autocorrelation, fractal, ampli-
tude, peaks, hybrid, morphological, etc.). Actually, the evaluation
length at which the parameter is computed must be chosen according
to the surface functionality tested. In our case, the functionality of the
surface was its ability to increase cell adhesion properties and, more
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specifically, the number of cells adhered on the surface after 2 days.
However, some problems remain before performing a statistical corre-
lation analysis. Firstly, variation exists in both quantifications of
attached cells and roughness measurements, these variations being
not related. Secondly, the mathematical relation between roughness
and cell response is unknown. Finally, one should find a method that
allows defining the roughness parameter that, at a specific evaluation
length e, better discriminates between the different grades and their
functionalities. More precisely, our objective is to find a method that
determines if the data are well clustered, i.e., finding the evaluation
length and the roughness parameter that allow each group of samples
to be better discriminated. The main problems are now to find a stat-
istical method to treat the cited problems, i.e., the best roughness
parameter and its associated scale that allows us to discriminate
adhesion. The factorial method called discriminant analyses will be
used as the statistical tool to answer the cited problem [32–41]. Discri-
minant function analysis was used to determine which variables to
discriminate between two or more naturally occurring groups. The
basic idea underlying discriminant function analysis is to determine
whether groups differ with regard to the mean of a variable, and then
to use that variable to predict group membership.

Thanks to the power of actual computers, an original method is pro-
posed to give some visual indicators or relevancy. The basic idea is to
process a discriminant analysis for all the roughness parameters at all
scales. For each of the p pairs of parameters (adhesion, roughness
parameter with its own scale), thanks to the use classification func-
tions, the number of well classified data in each class (class¼ surface)
) indicated by ck was computed and noted as nw(qj(e),ck). On the other
hand, nb(qj(e),ck) denoted the number of badly classified with n(qj(e),
ck)¼nw(qj(e), ck)þnb(qj(e), ck). n(qj(e),ck,cl) denotes the number of
classified data that originally belong to the class ck and were classified
in the cl classes with nw(qj(e), ck)¼n(qj(e),ck,ck) and nbðqjðeÞ; ckÞ ¼P

l2Nc
l 6¼k

nðqjðeÞ; ck; clÞ where Nc is the number of classes. Then, one uses
as a best classification indicator noted pw(qj(e)) the mean percentage
of well classified data:

pwðqjðeÞÞ ¼ 100=Nc
X
k2Nc

nðqjðeÞ; ck; ckÞ=
X
l2Nc

nðqjðeÞ; ck; clÞ
 !

: ð1Þ

and pb(qj(e)) the mean percentage of badly classified data:

pbðqjðeÞÞ ¼ 100� pwðqjðeÞÞ: ð2Þ
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However, the proposed methodology possesses a limit because the
relevancy of a roughness parameter is based on the empirical counting
of the percentage of well classified data in the ck class. The two para-
meters qi(ei0) and qj(ej0) can discriminate 100% of experimental data
(meaning that percentage of badly classified data is equal to 0%). In
this case, it becomes difficult to quantify if the qi(ei0) parameter is bet-
ter than qj(ej0) if both these parameters classified data without any
error (0% of badly classified data). To illustrate this purpose, the case
of only two surfaces was analyzed. Figure 8 represents the plot of
adhesion value versus an arbitrary roughness parameter value. The
linear discriminate function splits the two groups and it can be
observed that some data are classified as bad. The symbol D denotes
the distance between the two gravity centers of each group. The higher
D is, the higher the roughness parameter discriminates adhesion.
However, over a critical value of D, 100% of data are well classified
and then it becomes impossible to claim if a roughness parameter bet-
ter discriminates adhesion than another one if both allow the classi-
fication of 100% of data. As a consequence, the density probability
function of the group has to be interpolated to formulate a probability
of badly classified (or well classified) data. More precisely, we use a
Bayesian approach to compute the probability error-rate estimates
for each group [42, 43]. Figure 8 (right) represents the value of the
theoretical probability and the empirical one. As can be observed, at
a pass over threshold of D¼ 0.11, all data are well classified and our
Bayesian approach allows us to extrapolate the probability of badly
classified data.
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