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Introduction

The concept of an epileptic network is based on the long-

standing clinical observation that ictal electroencephalography

(EEG) patterns cannot be easily explained by the traditional

model of a single seizure focus triggering activity that spreads

to uninvolved brain regions.1 Accumulating evidence suggests

that the pathophysiological underpinnings of focal seizure gen-

eration and propagation may involve large-scale networks,

which are characterized by 1- and 2-way communication (often

undergoing time delays via signal transmission2) across sites in

multiple lobes of the brain. Focal seizures evolve over multiple

cortical and subcortical structures often with remarkable repro-

ducibility from one seizure to the other in a given patient;

however, even when stereotyped, seizures commonly evolve

in a distributed fashion with delayed secondary discharges and

complex propagation patterns.3-8 In such cases, the traditional

model of the epileptogenic focus is too simplistic to capture the

spatiotemporal organization of the epileptic network, which

has spurred many to start applying complex system approaches

used in data and network to understand the underlying neuro-

physiological mechanisms in epilepsy.

Epileptic networks are mapped onto a network defined by

nodes (brain regions) and edges (connections between the

nodes). These connections can be defined for each patient

structurally (ie, nerve fiber tracts) or functionally (ie, examin-

ing the coupling of different brain regions during activity

recorded with different modalities, such as EEG or functional

MRI (fMRI)). In some cases, directionality of the edges may

also be assessed. Together, the defined nodes and edges

comprise a complete set of structural or functional links, the

so-called connectome, that can then be subject to network

analysis. This conceptual framework has been used extensively

to characterize epileptic networks in terms of structural and

dynamic, state-dependent properties.9-12 When the connectome

is linked to a dynamic model, it represents a large-scale brain

network model, which can be used for data analysis or the

simulation of patient-specific brain activation data. The orga-

nizational scale of the network model determines its applic-

ability to data and may cover wide ranges, spatially from the

subcellular to the full-brain scale and temporally from milli-

seconds for action potentials to days/years for modeling seizure

occurrence.13,14 Despite its simplicity, connectome-based anal-

yses have yielded potentially important observations, such as

elucidating the role of widespread pathological excitation, clar-

ifying the loss of inhibition in modulating seizure severity and

extent of spread,15-18 and quantifying the degree of connectome

patient-specificity for the prediction of seizure propaga-

tion.19,20 Microelectrode recordings in small cell populations

in the human are well-situated to address questions on
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imaging biomarker for secondary generalization of seizures.

However, the study methods and data/result presentation are

complicated and require some attention before we dive deeper

into the discussion of the results.

The authors present data of a large but overall heteroge-

neous group of TLE patients—MRI-negative patients, patients

with hippocampal sclerosis, dysembryoplastic neuroepithelial

tumors, and cavernomas. While not necessarily a major prob-

lem, combining all these groups prior to showing that their

task-related fMRI activations are not different (and that thala-

mic activations are not different) creates a potential confounder

that is not addressed in the study. Further, they utilize their “go-

to” fMRI task—verb fluency—to assess language lateralization

including thalamic involvement in the task. However, since

there is no performance tracking with this covert task, there

is no way of knowing how well the participants performed the

task and how performance on the task influenced the observed

fMRI activations. To offset this, they tested letter fluency as

part of their neuropsychological battery—there were some

group differences including significant differences between left

TLE with and without generalized seizures.

In the primary analysis, they compared fMRI activation

patterns in patients with FBTCS within the last year to patients

with no FBTCS (ie, only with focal seizures [FS]) in the last

year to find that the activation patterns were different between

the groups with higher fMRI activation and more leftward

activation in patients with FS including differences in thalami.

Of interest is the fact that some of the peak activations fell into

the anterior thalamic nuclei that, as we all know, are the target

of deep brain stimulation. In the post hoc analyses, they showed

that FS patients’ thalamic activations were similar to healthy

controls performing the same task but active FBTCS partici-

pants had overall lower thalamic activations when compared to

either of those two groups. Important is that having FBTCS in

the last year was the most significant determinant of thalamic

activation. The study would be very easy to understand and

interpret had they stopped their analyses here. However, the

authors performed several useful but very complicated analyses

that undoubtedly make the interpretation of the results difficult.

These additional, in-part confirmatory in-part follow-up anal-

yses are psychophysiologic interaction, graph theory, and

receiver operating characteristic (RUC) curve analyses. The

understanding and interpretation of these analyses is neither

intuitive nor simple. While disentangling these analyses is not

part of this commentary, for the purpose of better understand-

ing their approach, we can briefly state that psychophysiologic

interaction is a between regions connectivity analysis for fMRI

data that is context-dependent. Graph theory analysis, as

explained previously in great detail,5 allows mathematical

analysis and description of complex systems using terms such

as “hubs,” “centrality,” and “betweenness.” Finally, the term

ROC—probably most recognized by neurologists—is a binary

classifier that allows diagnostic discrimination between groups.

These analyses show that, in patients with active FBTCS, there

is greater context-dependent thalamo-temporal and thalamo-

motor connectivity, higher thalamic degree and betweenness

centrality, and that ROC curves discriminate well between

individuals with and without active FBTCS. These findings

also indicate that having active FBTCS changes the brain more

than having FS alone and that the presence and the degree of

the changes may be used as a biomarker for disease severity.

As complicated as these analyses are, the authors provide

meticulous description of the procedures performed and of the

results in the main body of the manuscript with additional

details included in the supplement. However, more important

are implications of this study. Since fMRI has been a mainstay

of presurgical language and verbal memory evaluation for

years,6 most epilepsy centers obtain fMRI as part of their pre-

surgical patient staging protocol. However, we cannot expect

that psychophysiologic interaction, graph theory, and ROC

curve analyses of the task-related fMRI data will be performed

in the course of such evaluation. Rather, what the study shows

is that the task fMRI data can be used not only to perform a

rather simplistic analysis of language lateralization but also to

identify the negative effects of pathophysiology (here seizures)

on brain networks. Whether independently or in combination

with other measures (eg, functional connectivity or thalamic

stereoelectroencephalography), future research could teach us

if/how such results could be applied to evaluating disease

severity, staging in presurgical evaluation, predicting out-

comes, or deciding the treatment approaches (eg, resection vs

implantable devices).

Perhaps more importantly, these findings teach us some-

thing about the disease itself. They provide information about

the pathophysiology of temporal lobe seizures, about the

negative effects of seizures not only on local but also on

remote executive brain regions (ie, confirm the proposed a

long-time ago “nociferous cortex hypothesis”7), and outline the

negative effects of FBTCS on brain connectivity and pathways

of information transfer. While previously such negative effects

have been documented in resting-state studies, this effort

extends those findings to cognitive tasks and task-based con-

nectivity. This study shows that the task data can be used not

only to localize and lateralize brain functions but also to mea-

sure the effects of the disease on brain networks and its

severity.

Jerzy P. Szaflarski, MD, PhD
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pathophysiology and mechanisms of localized seizure spread

and interaction between different seizure territories, whereas

intracranial macroelectrode recordings sample large-scale net-

work organizational features used in clinical decision-making.

This field bears promise, especially when shifting its focus

from simply identifying generic large-scale networks toward

characterizing such connections across temporal and spatial

scales. We discuss this progress in the following for macro-

scopic and micro-/mesoscopic networks.

Networks Across Scales: Macroscale EEG and
Imaging

Complex system theory provides a fundamental organizing

principle of seizure dynamics, capturing characteristics in elec-

trophysiological recordings comprising seizure onset and ter-

mination. The set of a seizure’s dynamic properties is called the

dynamotype, which leads naturally to a Taxonomy of Seizure

Dynamics providing practical, objective metrics for classifica-

tion into 16 theoretically possible classes.21 This taxonomy

coupled with the underlying connectome of the brain is the

basis for computational brain network models simulating the

range of possible seizure propagation profiles.14 Recognizing

that different biological processes might have similar out-

comes, as well as the fact that the same (nonlinear) systems

may produce a range of different behaviors, the connectome-

based brain model presents a strategy to identify what those

processes might be experimentally. The capacity to individua-

lize the brain model opens up the possibilities for a personali-

zation of diagnostic and curative approaches. Personalized

network modeling is currently being studied by multiple inves-

tigators to predict outcome in patients undergoing epilepsy

surgery.20,22-24

Currently, when evaluating a patient for epilepsy surgery,

the seizure-onset zone region is defined qualitatively based on

clinical, EEG, and imaging features. For surgeries outside the

temporal lobe, even when there is a clear hypothesis for the

area of seizure origin, less than half of patients achieve com-

plete seizure freedom.25 A third of these candidates have a

complex pattern of remission or relapse.25 Often this is attrib-

uted to an error in identifying the seizure focus. It is also not

uncommon for the focus to be incompletely resected,26 or for

seizures to be multifocal, with some seizure foci going unde-

tected. Personalized brain network models address these issues

as they allow a large number of clinical hypotheses to be tested

and may help overcome sampling limitations as they are not

limited by the number of intracranial electrodes that can be

implanted. Initial retrospective studies indicate good precision

in detecting the epileptogenic networks using this approach,

underlying the importance of ongoing prospective multicenter

trials to estimate the impact of virtual epileptic patient models

on improving surgical prognosis. The analysis of factors lim-

iting prospective model performance is critical for future clin-

ical application outside of clinical trials.

Another intriguing possibility for surgical failure is a reor-

ganization of the large-scale pathological network

postsurgically to produce seizures from sites that were previ-

ously dormant. In the current clinical state, physicians do not

know if they selected the optimal resection or ablation size and

location even in patients who are seizure free after surgery.

Could a better understanding of the patient-specific brain net-

work improve care?27 This question has spurred multiple stud-

ies of novel biomarkers or computational models of

personalized networks with the goal of improving the outcomes

of epilepsy surgery and exploring minimally invasive interven-

tions. For example, using data collected from intracranial mon-

itoring done for presurgical evaluation, and a network analysis

approach, a computational model for neocortical focal seizures

was generated that categorized the observed networks of indi-

viduals into 3 discrete network types.28 The classification,

if verified, could be clinically relevant, as it also suggested

3 different treatment approaches based on the network classi-

fication (pharmaceutical, surgical, or neurostimulation). This

concept of network analysis having predictive value for surgery

has been also studied in other computational models derived

from electrocorticographic patient data to reconstruct net-

works.7,23,24 Computational modeling has also been applied

in other whole-brain imaging modalities such as fMRI func-

tional networks, which suggest network changes over the

course of disease progression.5,29,30 Aberrant structural net-

works based upon diffusion tractography have been shown to

predict outcome and structural node-based abnormalities in

unresected brain region have been associated with poor surgi-

cal outcomes.31,32 In addition, seizure spread as measured by

intracranial EEG has been shown to be constrained by the

underlying white matter networks as measured by diffusion

tractography.33 These network changes in the different models

suggest that there may be dynamic network biomarkers for

predicting surgical treatment outcome. A caveat to this work

is that it has all been done retrospectively, and the true test of

computational models will be in whether they can inform clin-

icians prospectively.

Networks Across Scales: Micro and
Mesoscale

Although microelectrodes provide highly specific data for

small cell populations, any investigations into large-scale net-

work activity in humans proposing to take advantage of these

data must take into account their limited spatial coverage, as

well as the relatively limited number of such recordings avail-

able. Current microelectrode systems approved for human use

cover a few square mm (the “Utah” microelectrode array,

Blackrock Microsystems Inc) or a small number of cells

sampled at a limited number of brain sites (Behnke-Fried

microwire depth arrays, Ad-tech Medical Instrument Corp).

Due to these limitations, such recordings are perhaps best used

to test specific hypotheses or to validate animal experiments or

computational models. Animal studies have several noted

advantages, for example, the ability to employ widefield cal-

cium or GCaMP imaging, perturbation techniques such as

optogenetics or pharmacological intervention, and the ability

2 Epilepsy Currents
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imaging biomarker for secondary generalization of seizures.

However, the study methods and data/result presentation are

complicated and require some attention before we dive deeper

into the discussion of the results.

The authors present data of a large but overall heteroge-

neous group of TLE patients—MRI-negative patients, patients

with hippocampal sclerosis, dysembryoplastic neuroepithelial

tumors, and cavernomas. While not necessarily a major prob-

lem, combining all these groups prior to showing that their

task-related fMRI activations are not different (and that thala-

mic activations are not different) creates a potential confounder

that is not addressed in the study. Further, they utilize their “go-

to” fMRI task—verb fluency—to assess language lateralization

including thalamic involvement in the task. However, since

there is no performance tracking with this covert task, there

is no way of knowing how well the participants performed the

task and how performance on the task influenced the observed

fMRI activations. To offset this, they tested letter fluency as

part of their neuropsychological battery—there were some

group differences including significant differences between left

TLE with and without generalized seizures.

In the primary analysis, they compared fMRI activation

patterns in patients with FBTCS within the last year to patients

with no FBTCS (ie, only with focal seizures [FS]) in the last

year to find that the activation patterns were different between

the groups with higher fMRI activation and more leftward

activation in patients with FS including differences in thalami.

Of interest is the fact that some of the peak activations fell into

the anterior thalamic nuclei that, as we all know, are the target

of deep brain stimulation. In the post hoc analyses, they showed

that FS patients’ thalamic activations were similar to healthy

controls performing the same task but active FBTCS partici-

pants had overall lower thalamic activations when compared to

either of those two groups. Important is that having FBTCS in

the last year was the most significant determinant of thalamic

activation. The study would be very easy to understand and

interpret had they stopped their analyses here. However, the

authors performed several useful but very complicated analyses

that undoubtedly make the interpretation of the results difficult.

These additional, in-part confirmatory in-part follow-up anal-

yses are psychophysiologic interaction, graph theory, and

receiver operating characteristic (RUC) curve analyses. The

understanding and interpretation of these analyses is neither

intuitive nor simple. While disentangling these analyses is not

part of this commentary, for the purpose of better understand-

ing their approach, we can briefly state that psychophysiologic

interaction is a between regions connectivity analysis for fMRI

data that is context-dependent. Graph theory analysis, as

explained previously in great detail,5 allows mathematical

analysis and description of complex systems using terms such

as “hubs,” “centrality,” and “betweenness.” Finally, the term

ROC—probably most recognized by neurologists—is a binary

classifier that allows diagnostic discrimination between groups.

These analyses show that, in patients with active FBTCS, there

is greater context-dependent thalamo-temporal and thalamo-

motor connectivity, higher thalamic degree and betweenness

centrality, and that ROC curves discriminate well between

individuals with and without active FBTCS. These findings

also indicate that having active FBTCS changes the brain more

than having FS alone and that the presence and the degree of

the changes may be used as a biomarker for disease severity.

As complicated as these analyses are, the authors provide

meticulous description of the procedures performed and of the

results in the main body of the manuscript with additional

details included in the supplement. However, more important

are implications of this study. Since fMRI has been a mainstay

of presurgical language and verbal memory evaluation for

years,6 most epilepsy centers obtain fMRI as part of their pre-

surgical patient staging protocol. However, we cannot expect

that psychophysiologic interaction, graph theory, and ROC

curve analyses of the task-related fMRI data will be performed

in the course of such evaluation. Rather, what the study shows

is that the task fMRI data can be used not only to perform a

rather simplistic analysis of language lateralization but also to

identify the negative effects of pathophysiology (here seizures)

on brain networks. Whether independently or in combination

with other measures (eg, functional connectivity or thalamic

stereoelectroencephalography), future research could teach us

if/how such results could be applied to evaluating disease

severity, staging in presurgical evaluation, predicting out-

comes, or deciding the treatment approaches (eg, resection vs

implantable devices).

Perhaps more importantly, these findings teach us some-

thing about the disease itself. They provide information about

the pathophysiology of temporal lobe seizures, about the

negative effects of seizures not only on local but also on

remote executive brain regions (ie, confirm the proposed a

long-time ago “nociferous cortex hypothesis”7), and outline the

negative effects of FBTCS on brain connectivity and pathways

of information transfer. While previously such negative effects

have been documented in resting-state studies, this effort

extends those findings to cognitive tasks and task-based con-

nectivity. This study shows that the task data can be used not

only to localize and lateralize brain functions but also to mea-

sure the effects of the disease on brain networks and its

severity.
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to conduct longitudinal and well-powered studies in a homo-

geneous data set. Unfortunately, there are few established epi-

lepsy models that have been shown to reproduce the large-scale

network effects seen in humans, particularly for focal neocor-

tical syndromes. Existing work includes a focal brain tumor

model explored during spontaneous epileptiform activity and

seizures using widefield GCaMP imaging,34 a post-stroke epi-

lepsy model in which thalamic connectivity with the seizure

focus site in primary somatosensory cortex was demonstrated

to have an important role in seizure generation,35 and studies of

the effects of optogenetic cell-type specific activation on

pilocarpine-induced seizures,36,37 with stimulation of inter-

neurons in the fastigial nucleus of the cerebellum preventing

seizures in a mouse pilocarpine model.38 As these models all

have important limitations in terms of relevance for patients

with chronic focal epilepsy syndromes, there is an urgent need

for further work in this area.

Returning to human recordings, there remains considerable

controversy regarding such basic issues as the cellular signa-

ture of seizures, or indeed how to determine whether a given

brain site is actively seizing. Two contrasting models have been

put forward. One proposes that seizure activity across the brain

is driven from a relatively small, migrating cortical region

exhibiting a well-defined seizure signature analogous to those

seen in animal models,18,39-42 with a predominantly inhibitory

response in brain sites outside of this area,39,43,44 and the sec-

ond proposes that heterogenous firing activity across large

brain regions operate in synchrony to produce seizures, through

an as yet unexplained mechanism.45,46

If it is the case that seizures are driven from small cortical

regions, a large gap in knowledge remains: how does this loca-

lized activity translate to the large-scale seizure effects that

have been well documented in EEG studies? The focal-

seizure hypothesis was recently extended to account for this

effect, due to the dual role for inhibition inherent in this model.

At the seizing brain site, inhibition has failed and a runaway

excitation effect emerges.18,39 Outside of this region, inhibition

is not only intact but is driven to high levels due to the strong

excitatory synaptic currents generated from the seizing brain

area. This results in weakly synchronized or possibly asynchro-

nous oscillatory activity which may be interpreted as ictal

spread.41,43,44 Another possibility is the recruitment of dispa-

rate seizure sites, which may potentiate overall epileptic net-

work effects and severity. This is clinically a well-recognized

phenomenon,47 but has been only minimally explored in ani-

mal studies17 and computational models.20 Capturing this

effect in human microscale recordings is an important goal that

could help to elucidate the cellular mechanisms and effects of

such a scenario and provide crucial validation for high level

network analyses.

Conclusion

Once a computational model has been created, predictions can

be formulated and validated on new data sets that were not used

to train the initial model. This approach allows researchers to

glean new mechanistic insights and create models which can

then be tested prospectively. There are many different types of

mathematical approaches that can be applied to modeling a

dynamic nonlinear network such as the brain, which is con-

stantly plastic. However, mathematical modeling of epilepsy

network topology is still an emerging field. The field would

benefit from an influx of new mathematical perspectives on

analyzing network topologies that could be applied to modeling

seizure spread across the brain. For example, one could con-

sider symmetries within the network topology or emerging

theories on control principles of complex systems.48,49 An

interdisciplinary group including neuroscientists, computer

scientists, and mathematicians assembled in late 2018 at the

Epilepsy Foundation My Brain Map Innovation Institute Work-

shop intended to facilitate bringing together different perspec-

tives in these early days of network modeling.Major conclusions

from this workshop included (1) large curated data sets from

multiple institutions are required to validate computational net-

work models, (2) interdisciplinary approaches will facilitate

advancing the field, and (3) for clinicians to understand and

incorporate network analyses as clinical decision-making tools

(for surgery, neurostimulation, or other activities) we need visua-

lization tools that are ergonomic, intuitive to clinicians, and

recommend an action for the clinician to take. Therefore, clinical

tools to visualize the results of network based analyses will be

key for successful clinical implementation.
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Summary

� Focal epilepsy syndromes prominently feature network interac-

tions between sites in multiple lobes of the brain.

� Multiscale analyses conducted simultaneously at the cellular, local

and brain network level are essential for the discovery of seizure

origination, spread, and termination mechanisms.

� Network models guide development of patient-specific surgical

interventions.
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imaging biomarker for secondary generalization of seizures.

However, the study methods and data/result presentation are

complicated and require some attention before we dive deeper

into the discussion of the results.

The authors present data of a large but overall heteroge-

neous group of TLE patients—MRI-negative patients, patients

with hippocampal sclerosis, dysembryoplastic neuroepithelial

tumors, and cavernomas. While not necessarily a major prob-

lem, combining all these groups prior to showing that their

task-related fMRI activations are not different (and that thala-

mic activations are not different) creates a potential confounder

that is not addressed in the study. Further, they utilize their “go-

to” fMRI task—verb fluency—to assess language lateralization

including thalamic involvement in the task. However, since

there is no performance tracking with this covert task, there

is no way of knowing how well the participants performed the

task and how performance on the task influenced the observed

fMRI activations. To offset this, they tested letter fluency as

part of their neuropsychological battery—there were some

group differences including significant differences between left

TLE with and without generalized seizures.

In the primary analysis, they compared fMRI activation

patterns in patients with FBTCS within the last year to patients

with no FBTCS (ie, only with focal seizures [FS]) in the last

year to find that the activation patterns were different between

the groups with higher fMRI activation and more leftward

activation in patients with FS including differences in thalami.

Of interest is the fact that some of the peak activations fell into

the anterior thalamic nuclei that, as we all know, are the target

of deep brain stimulation. In the post hoc analyses, they showed

that FS patients’ thalamic activations were similar to healthy

controls performing the same task but active FBTCS partici-

pants had overall lower thalamic activations when compared to

either of those two groups. Important is that having FBTCS in

the last year was the most significant determinant of thalamic

activation. The study would be very easy to understand and

interpret had they stopped their analyses here. However, the

authors performed several useful but very complicated analyses

that undoubtedly make the interpretation of the results difficult.

These additional, in-part confirmatory in-part follow-up anal-

yses are psychophysiologic interaction, graph theory, and

receiver operating characteristic (RUC) curve analyses. The

understanding and interpretation of these analyses is neither

intuitive nor simple. While disentangling these analyses is not

part of this commentary, for the purpose of better understand-

ing their approach, we can briefly state that psychophysiologic

interaction is a between regions connectivity analysis for fMRI

data that is context-dependent. Graph theory analysis, as

explained previously in great detail,5 allows mathematical

analysis and description of complex systems using terms such

as “hubs,” “centrality,” and “betweenness.” Finally, the term

ROC—probably most recognized by neurologists—is a binary

classifier that allows diagnostic discrimination between groups.

These analyses show that, in patients with active FBTCS, there

is greater context-dependent thalamo-temporal and thalamo-

motor connectivity, higher thalamic degree and betweenness

centrality, and that ROC curves discriminate well between

individuals with and without active FBTCS. These findings

also indicate that having active FBTCS changes the brain more

than having FS alone and that the presence and the degree of

the changes may be used as a biomarker for disease severity.

As complicated as these analyses are, the authors provide

meticulous description of the procedures performed and of the

results in the main body of the manuscript with additional

details included in the supplement. However, more important

are implications of this study. Since fMRI has been a mainstay

of presurgical language and verbal memory evaluation for

years,6 most epilepsy centers obtain fMRI as part of their pre-

surgical patient staging protocol. However, we cannot expect

that psychophysiologic interaction, graph theory, and ROC

curve analyses of the task-related fMRI data will be performed

in the course of such evaluation. Rather, what the study shows

is that the task fMRI data can be used not only to perform a

rather simplistic analysis of language lateralization but also to

identify the negative effects of pathophysiology (here seizures)

on brain networks. Whether independently or in combination

with other measures (eg, functional connectivity or thalamic

stereoelectroencephalography), future research could teach us

if/how such results could be applied to evaluating disease

severity, staging in presurgical evaluation, predicting out-

comes, or deciding the treatment approaches (eg, resection vs

implantable devices).

Perhaps more importantly, these findings teach us some-

thing about the disease itself. They provide information about

the pathophysiology of temporal lobe seizures, about the

negative effects of seizures not only on local but also on

remote executive brain regions (ie, confirm the proposed a

long-time ago “nociferous cortex hypothesis”7), and outline the

negative effects of FBTCS on brain connectivity and pathways

of information transfer. While previously such negative effects

have been documented in resting-state studies, this effort

extends those findings to cognitive tasks and task-based con-

nectivity. This study shows that the task data can be used not

only to localize and lateralize brain functions but also to mea-

sure the effects of the disease on brain networks and its

severity.
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