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Learning-based approaches are now typically used to extract building rooftop from overhead imagery. However, converting boundaries of segmented objects from raster format to vector coordinates remains a challenging problem. Using recent advances in multi-task learning, we propose a fast and scalable approach, based on a polygonal partitioning of the space and discrete optimization, to deliver accurate and simple vectorized building rooftops, that are compared to those produced by state-of-the-art techniques.

INTRODUCTION

Over the years, the development of commercial satellite imagery has attracted an increasing attention from the computer vision and remote sensing communities. Technological advances, in terms of sensors and image resolution, now open the door to precise cartography of urban environments, with applications in urban planning or environmental simulations.

This paper addresses the problem of automatic extraction of building rooftops from satellite imagery, and their representation in a vector format, with respect to the following objectives. [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] Fidelity: the detected rooftops should constitute an accurate representation of the observed data. (2) Simplicity: the rooftops should consist of simple polygons with a low number of points, ideally just enough, given a tolerance error. Regular polygons, with parallel edges and straight corners, should be preferred whenever possible. (3) Efficiency: the proposed method should be simple, scalable and proceed with a low number of user parameters.

To extract polygons from remote sensing imagery, a traditional approach consists in running a vectorization pipeline. Such techniques proceed as follows: over a first phase, an object of interest is detected in an image as a region of pixels, using an interactive or automatic model [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF]. Then, a line approximation algorithm is used to simplify its contours as a simple polygon. To perform this task, one may cite the well-known Douglas-Peucker algorithm, but the choice of the tolerance parameter must result from a delicate compromise between complexity and distorsion. In a subsequent step, squaring operations can be applied to enforce the regularity of the obtained shapes [START_REF] Zhao | Building extraction from satellite images using mask r-cnn with building boundary regularization[END_REF]. Alternative techniques might be based on lattice refinement [START_REF] Tasar | Polygonization of binary classification maps using mesh approximation with right angle regularity[END_REF], or search for an optimal path in a regular grid of points [START_REF] Gribov | Searching for a compressed polyline with a minimum number of vertices[END_REF]. The latter is robust, but edges of the obtained polygon are forced to follow the orientations of the grid. Therefore this technique is not adapted to non-Manhattan-style urban areas.

Another family of techniques aims at directly extracting polygons from images, exploiting recent advances in neural network architectures. In a recent work, Acuna et al. [START_REF] Acuna | Efficient interactive annotation of segmentation datasets with polygon-rnn++[END_REF] propose PolyRNN++, a semi-interactive method to capture an object of interest in a bounding box. Closer to a remote sensing context, PolyCNN [START_REF] Girard | End-to-End Learning of Polygons for Remote Sensing Image Classification[END_REF] automatically predicts all corners of polygons in an image, but this approach is restricted to quadrilaterals. PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] alleviates this problem by using recurrent neural networks to produce vectorial city maps, but polygons still offer no geometric guarantees such as orthogonality, or absence of overlap. This issue is partially addressed in [START_REF] Wang | Machine-learned 3d building vectorization from satellite imagery[END_REF], where an architecture similar to [START_REF] Li | Topological map extraction from overhead images[END_REF] is used to favor the extraction of regular polygons from remote data, but this method also requires a DSM. Zorzi et al. [START_REF] Zorzi | Machinelearned regularization and polygonization of building segmentation masks[END_REF], for their part, look into the problem of obtaining regular rooftops by regularizing the raster contours of the prediction through generative adversarial networks.

Nonetheless, predicting accurately the contours of an object in an image remains a difficult problem. Interestingly, a few recent works [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF][START_REF] Li | Joint semantic-geometric learning for polygonal building segmentation[END_REF] have introduced the notion of multitask learning: the model does not only produce a pixel-wise segmentation, but also predicts directional information about the building contours. However, the subsequent vectorization procedure in [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF], based on active skeleton model, tends to output irrealistic asperities calling for manual corrections, while the one in [START_REF] Li | Joint semantic-geometric learning for polygonal building segmentation[END_REF] requires another training procedure and does not necessarily generate regular polygons, without redundant vertices.

Based on these observations, we present a pipeline (see Figure 1) that automatically detects building rooftops in a satellite image, and provides accurate descriptions of such rooftops in a vector format. Our contribution is two-fold: (i) a robust deep learning model for semantic segmentation of buildings, (ii) a vectorization algorithm that exploits the geometric information generated by the model, and favors the creation of regular and simple polygons, following a compu- tational geometry approach based on polygonal partitions.

PROPOSED PIPELINE

Morphological graph of buildings

Given an input image, we perform semantic segmentation to extract a map of buildings. Each pixel is classified as exterior, building interior, or building edge. We use a convolutional neural network with a U-Net encoder-decoder architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], modified to use ResNet-101 as encoder. The model is trained on images of 110 cities from various image sources and regions of the world, which increases its robustness to variations in colorimetry, image quality, and building architecture.

We compute the morphological skeleton of all predicted building contours, expressed as a binary map: a pixel receives value 1 if it is included in the skeleton, 0 otherwise. We initialize an undirected graph of buildings contours depending on pixel connectivity: nodes of this graph have a connectivity of 1 or greater than 3, edges have connectivity 2.

Vectorization procedure

Once constructed, we select walks in the morphological graph. Walks connect two nodes of the morphological graph through a sequence of successive edges. Note that the walk is closed, if it relates to an isolated building contour in the prediction map.

Then, we apply our vectorization procedure for each selected walk. Firstly, we determine a set of local orientations, that are inferred from the prediction or obtained through an external public source, by assuming that buildings are well-aligned with roads. Secondly, we solve an optimization problem, by searching for a polyline with the best quality/complexity ratio, i.e. with the minimum number of vertices within a specified error tolerance.

Polyline assembling algorithm

The vectorization of closed walks produces regular polygons. However, the vectorization of shared contours in a building block produces disjoint polylines which must be assembled to form final polygons.

The first step of the assembling algorithm consists in partitioning the 2D space into polygonal cells. To this end, we apply the kinetic framework of [START_REF] Bauchet | Kippi: Kinetic polygonal partitioning of images[END_REF]. The choice of this technique, compared with existing algorithms such as [START_REF] Forsythe | Convex constrained meshes for superpixel segmentations of images[END_REF] is justified by its scalability and an improved semantic meaning for the cells, which are also convex by construction.

Provided a decomposition of the 2D space into convex cells, we should now group the cells into final polygons. Inspired by [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF], we cast this problem to a discrete energy optimization procedure. Let C = {c 1 , c 2 . . . c N } be a polygonal partition with N cells. We assign to each cell c i a semantic variable x i ∈ B = {0, 1, . . . M } where M is the number of buildings to reconstruct. x i = 0 indicates that c i belongs to none of them. Let X = (x 1 , x 2 , . . . x N ) a configuration of semantic variables, we consider a three-term energy

E(X) = E d (X) + E p (X) + E c (X) (1) 
where E d (X) is a data term encouraging x i to accept a label in B referring to a building close to the cell c i , E p (X) is a pairwise term penalizing a difference of labels for a pair of adjacent cells c i and c j , as their common edge delimits two buildings in the output vector layer, and E c (X) is a complexity term, defined as the number of edges of all polygons obtained for the current configuration of semantic variables. E(X) being non-convex in a discrete space, its optimization is a difficult problem. We search for an approximate solution based on the following algorithm: given the current configuration X, we generate a set of neighbor configurations leading to an energy decrease. Those configurations, and their associated energetic variations, feed a priority queue. For each new iteration, we pop from the queue the configuration corresponding to the highest energy decrease, and repeat these operations until the queue gets empty.

EXPERIMENTS

We compare the presented approach to two vectorization pipelines. The former consists in simplifying the contours of the morphological skeleton using a regular grid [START_REF] Gribov | Searching for a compressed polyline with a minimum number of vertices[END_REF], the latter in plugging the probability maps produced by our neural architecture to the vectorization technique in [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF], based on the active skeleton model.

Our dataset consists of three satellite images representing various urban environments: Mourmelon-le-Grand (FR), Cheb (CZ) and Ouagadougou (BF), acquired using Pleiades or WorldView imagery, with a resolution of 50 cm per pixel.

Qualitatively (see Figure 2), our method delivers simpler and more regular polygons, thanks to the use of predicted orientations for building contours. The discrete grid used by Gribov et al. [START_REF] Gribov | Searching for a compressed polyline with a minimum number of vertices[END_REF] to simplify complex contours does not exploit such orientations. It guarantees that all produced polygons (a) Satellite image crop (b) Prediction map (c) Vectorization using [START_REF] Gribov | Searching for a compressed polyline with a minimum number of vertices[END_REF] (d) Vectorization using [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF] (e) Our approach Fig. 2: Vectorization results of predicted building contours from various urban environments. Top to bottom: Mourmelon-le-Grand (FR), Cheb (CZ), Ouagadougou (BF). The pipeline based on [START_REF] Gribov | Searching for a compressed polyline with a minimum number of vertices[END_REF] returns overly complex polygons for buildings with more than one principal axis, and does not handle well adjacency relationships between polygons, while the algorithm of [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF] generates distorted, irregularly-shaped polygons. Best viewed in electronic version. have straight corners, but this method is too restrictive, and delivers poor results for non-Manhattan-style areas. Since it processes all contours sequentially and independently, it also leaves small empty spaces or overlaps between polygons of a same building block. A contrario, our polyline assembling algorithm produces polygons that are already snapped. The active skeleton model of Girard et al. [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF], for its part, re-turns a lot of distorted polygons. It also fails to vectorize a lot of building instances, yet correctly predicted by the neural network.

Quantitatively, we compare algorithms using three metrics: mean symmetric Hausdorff distance (SHD) with respect to a ground truth, mean maximal tangent angle error (MTAE), introduced by [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF], and running time. Cities of Mourmelon- We obtain comparable SHD values for the three pipelines, since all vectorization techniques are based on the same prediction. The algorithm of [START_REF] Girard | Polygonal building extraction by frame field learning[END_REF], though, misses more buildings, which tends to increase the error. Still, none of the pipelines returns a SHD value lower than 1.85 meter: this is mainly due to misalignment problems between the truth and the rooftops actually observed in the input image, or missed details due to an unsufficient image resolution.

By exploiting the directional information predicted by the model, our algorithm returns a lower average MTAE than other algorithms for both cities. As emphasized in Figure 3, orientations of rooftops vectorized by our pipeline are more faithful to the ground truth. This statement applies to simple rectangular buildings, as well as more complex shapes. Residual error is typically caused by buildings incorrectly segmented by the model.

Besides, our algorithm achieves comparable performances to the techniques cited before. Its running time is approximatively proportional to the number of visible buildings in the image. However, our method delivers results that require less manual corrections from GIS technicians, prior to a commercial exploitation of the produced data, as it exploits predicted orientations and comes up with a few geometric guarantees, such as the absence of overlap between polygons.

CONCLUSION

This paper presented a pipeline for extracting accurate vector coordinates of building rooftops from remote sensing imagery. Compared to the state-of-the-art, our method produces polygons that are simple and regular, benefit from a better alignment with the observed data, and thus require less manual corrections before a commercial exploitation of the produced data.

Future work may include an adaptation of the vectoriza-tion pipeline to other classes of man-made objects in urban scenes.

Fig. 1 :

 1 Fig. 1: Overview of our pipeline. Our model reads a satellite image (a) and predicts occurrences of building instances at pixel level (b). Vectorized contours generate a decomposition of the space into polygonal cells (c). Final polygons are obtained via a labelling procedure of these cells, formulated as a discrete optimization problem (d).

Fig. 3 :

 3 Fig. 3: Distributions of measured MTAE values (in degrees) for different vectorization pipelines on the city of Cheb. Building rooftops produced by our method are better aligned with the ground truth. Best viewed in electronic version.

Table 1 :

 1 Compared metrics for vectorization pipelines. Grand and Cheb appear to be fully covered by public GIS databases such as OpenStreetMap: we consider the related data as the ground truth. We report measured values for those metrics in Table1. Running times are measured on a standard machine.

	City	Metric	[5]		
		SHD	1.87 m. 1.97 m. 1.85 m.
	Mpx,	MTAE	4.1 •	4.0 •	1.8 •
	∼3K bldgs)	Time	16.5 s.	18.5 s.	43 s.
	Cheb (414 Mpx, ∼9K bldgs)	SHD MTAE Time	1.92 m. 1.96 m. 1.89 m. 4.8 • 4.8 • 2.5 • 48 s. 111 s. 106 s.
	Ouagadougou				
	(25 Mpx, ∼15K	Time	46 s.	28 s.	165 s.
	bldgs)				
	le-				
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