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A covariant, discrete time-frequency representation
tailored for zero-based signal detection

Barbara Pascal, Rémi Bardenet.

Abstract—Recent work in time-frequency analysis proposed to
switch the focus from the maxima of the spectrogram toward
its zeros. The zeros of signals in white Gaussian noise indeed
form a random point pattern with a very stable structure. Using
modern spatial statistics tools on the pattern of zeros of a
spectrogram has led to component disentanglement and signal
detection procedures. The major bottlenecks of this approach are
the discretization of the Short-Time Fourier Transform and the
necessarily bounded observation window in the time-frequency
plane. Both impact the estimation of summary statistics of the
zeros, which are then used in standard statistical tests. To
circumvent these limitations, we propose a generalized time-
frequency representation, which we call the Kravchuk transform.
It naturally applies to finite signals, i.e., finite-dimensional vec-
tors. The corresponding phase space, instead of the whole time-
frequency plane, is compact, and particularly amenable to spatial
statistics. On top of this, the Kravchuk transform has several
natural properties for signal processing, among which covariance
under the group action of SO(3), invertibility and symmetry with
respect to complex conjugation. We further show that the point
process of the zeros of the Kravchuk transform of discrete white
Gaussian noise coincides in law with the zeros of the spherical
Gaussian Analytic Function. This implies that the law of the zeros
is invariant under isometries of the sphere. Elaborating on this
theorem, we develop a procedure for signal detection based on
the spatial statistics of the zeros of the Kravchuk spectrogram.
The statistical power of this procedure is assessed by intensive
numerical simulation, and compares favorably with respect to
state-of-the-art zeros-based detection procedures. Furthermore
it appears to be particularly robust to both low signal-to-noise
ratio and small number of samples.

Index Terms—Time-frequency analysis, Covariant represen-
tations, Coherent states, Gaussian Analytic Functions, Spatial
statistics, Monte Carlo envelope tests.

I. INTRODUCTION

Context. Time-frequency analysis is the most adapted tool to
describe and process nonstationary signals, due to its ability
to simultaneously capture events that are localized in time
and a dynamically evolving frequency content. Among the
many known representations [1], the spectrogram, defined
as the squared modulus of the short-time Fourier transform,
is one of the most natural. It provides a natural energy
distribution in the time-frequency plane, the maxima of which
correspond to the presence of information of interest. Thus,
the precise localization of the maxima of the spectrogram has
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been thoroughly studied, leading to the development of so-
phisticated techniques such as ridge extraction, reassignment
and synchrosqueezing [1, 2] to name but a few, which can be
leveraged to perform demodulation of real signals [3].

From another point of view, it has recently been remarked
that the zeros of random spectrograms, seen as a random
point pattern in the time-frequency plane, possess a peculiarly
regular structure [4, 5]. This opened a dual perspective on
time-frequency analysis, shifting the interest from spectrogram
maxima toward the zeros of the spectrogram, which rather
reflect the absence of signal. One intuition in favour of
considering the zeros rather than maxima is that, even when
the level of noise in the data is moderate, the zeros show a
rigid spatial organization, while the structure of the maxima
intrinsically lacks robustness to noise and deformations, thus
requiring heavy procedures [3].
Related work. Observing that the zeros of the spectrogram
tend to repel each other and spread uniformly all over the
time-frequency plane at the only exclusion of the region
where the underlying deterministic signal lies, [5] proposed
a filtering procedure relying on the identification of abnormal
distances between close-by zeros, which [6] modified into a
more direct identification of holes in the pattern of zeros. A
similar methodology has been adapted to the Paul-Daubechies
Continuous Wavelet Transform [7, 8]. The motivation of [7]
comes from filtering audio signals using the zeros of their
scalograms, while the authors of [8] establish the common
theoretical ground on which zero-based time-frequency pro-
cessing is based, demonstrating the close connection between
representations of the complex white Gaussian noise and
particular Gaussian Analytic Functions. A Gaussian Analytic
Function is a random function that is analytic on a certain
domain of the complex plane. These random functions have
recently caught the attention of the probability community [9].
Gaussian Analytic Functions lie behind many signal process-
ing theoretical results, though in an implicit way, such as in
the pioneering work [5]. Their explicit identification [6, 8]
motivates a systematic investigation of analytic-valued signal
representations.

In particular, identifying the distribution of the zeros of the
spectrogram of white noise and the zeros of the so-called
planar Gaussian Analytic Function, [6] developed statistical
tests for signal detection that rely on the properties of the zeros
of that particular Gaussian Analytic Function. Considering
data of the form

y = snr × x+ ξ, (1)

where x is a deterministic signal of interest corrupted by
complex white Gaussian noise ξ, with snr ≥ 0 the signal-
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to-noise ratio, signal detection consists in determining, given
an observation y, whether there is a such a non-zero signal
of interest, x 6= 0 and snr > 0, or whether y consists in
pure noise. Such a task has been a long-standing problem
in statistics [10, Chapter 10], with numerous applications in
signal processing, ranging from radar [11] to finance [12]
and astrophysics [13, 14]. In a sense, [5–7] all use spatial
statistics tools to design detection tests in the setting (1), with
[6] relying on more standard spatial statistics procedures like
envelope tests. Recently, spectrogram level sets have also been
investigated for the detection of elementary Hermite functions,
with theoretical guarantees on the test performance [15].
Goals, contributions and outline. There are two bottlenecks
to developing procedures based on the zeros of the standard
spectrogram. First, the continuous Fourier transforms involved
need to be approximated by discretization. Implicitly, this re-
quires tuning the width of the analysis window, which amounts
to set the time-frequency resolution; see the discussion in [6,
Section 5.1.2]. A good tuning requires prior knowledge about
the characteristic time and frequency scales of the underlying
signal, which can be inaccessible in practice. Moreover, the
effect of approximating the continuous Fourier transforms in
the Fourier spectrogram on the existence and extraction of
zeros are largely unknown. Second, in practice, only a bounded
time-frequency window is observed. The accurate estimation
of functional statistics of the pattern of zeros thus requires
sophisticated edge corrections [16].

To tackle these issues, we construct an alternative time-
frequency transform, specifically designed for discrete signals
in CN , and with no hyperparameter like a window width.
Moreover, unlike the Short-Time Fourier transform, the phase
space associated with this new transform is compact, and
the transform of white noise has almost surely N zeros.
This drastically simplifies the estimation of spatial statistics.
We show that, unlike related discrete transforms motivated
by orthogonal polynomial arguments in [8, Section 2], our
Kravchuk transform possesses the traditional properties of
a time-frequency representation, such as covariance and a
resolution of the identity, providing stable reconstruction. Like
the transforms of [8, Section 2], when applied to a standard
white Gaussian vector, the zeros of our Kravchuk spectrogram
have the distribution of the zeros of the so-called spherical
Gaussian analytic function, a well-known random polynomial.
An alternative formulation of our transform enables us to
provide a numerically stable scheme for the computation of
the corresponding spectrogram, and a robust algorithm for
extracting its zeros. Then, using spatial statistics on the sphere,
we propose a detection procedure based on the zeros of our
new spectrogram, along the lines of [6]. We give exhaustive
empirical evidence that the resulting detection test is more
robust to high noise levels and low sample size than the tests
based on the zeros of the Short-Time Fourier transform with
Gaussian window of [6].

Section II reviews the key steps followed by [4–6, 8], from
standard time-frequency analysis to the description of the zeros
of the Fourier spectrogram of complex white Gaussian noise
as zeros of a Gaussian Analytic Function. Our new covariant
discrete transform is designed in Section III-A, and its main

properties are listed. The complete characterization of the
zeros of the novel spectrogram is derived in Section III-B.
Practical implementation is discussed in detail in Section IV.
Finally, the detection procedure based on the zeros of the
novel spectrogram is developed in Section V, and assessed by
numerical experiments exploring a wide range of situations in
Section VI.
A typical waveform. Many real-world signals, e.g., gravita-
tional waves [17] or ultrasound recording of bats [18], are
well described by chirps, consisting in waveforms of limited
duration modulated in amplitude and frequency. A widely used
parametric model is

x(t) = Aν(t)× sin

(
2π

(
f1 + (f2 − f1)

(t+ ν)

2ν
,

)
t

)
(2)

where the time-varying instantaneous frequency increases
linearly from f1 at time −ν to f2 at time ν, and Aν(t)
is an infinitely differentiable function with compact support
[−ν, ν]. Figure 1 presents examples of noisy observations
following (1), where the deterministic signal is of the form (2),
for different noise levels. For the sake of illustration, we
shall systematically illustrate both standard tools and our
contributions on signals following Model (2). Note however
that the procedures we introduce are nonparametric, and thus
by no means restricted to chirps.
Notation. Complex-valued functions of the real variable t are
denoted y(t). Discrete signals, obtained, e.g., by sampling a
function y of R at N + 1 points, are stored as column vectors
y = (y[`])

N
`=0, with, e.g., y[`] = y(t`) the `th sample. Finally,

y denotes the entrywise complex conjugates of y.

II. ZEROS OF THE STANDARD FOURIER SPECTROGRAM

A. From time-frequency analysis to the Bargmann transform

Given a short-time window h ∈ L2(R), either having a
compact support or decreasing fast outside of a bounded inter-
val, the Short-Time Fourier Transform of a signal y ∈ L2(R)
consists in the decomposition of the signal over the family of
time-translated and frequency-modulated replica of h [19],

Vhy(t, ω) =

∫ ∞

−∞
y(u)h(u− t)e−iωu du. (3)

The Fourier spectrogram is then defined as the squared mod-
ulus of the Short-Time Fourier Transform and, provided that
‖h‖2 = 1, it satisfies

∫ ∫

R
|Vhy(t, ω)|2 dt

dω

2π
= ‖y‖22. (4)

The Fourier spectrogram is thus often interpreted as a time-
frequency energy distribution [1, 2, 19]. Furthermore, the
energy conservation of Equation (4) comes with reconstruction
formulæ [19, Section 3.2], which are crucial to perform, e.g.,
component separation [5].

When it comes to the study of the zeros of the Fourier spec-
trogram, the choice of a circular Gaussian analysis window,
g(t) = π−1/4e−t

2/2, is common [5, 6], since it is essentially
the only window providing an analytic transform1 [21]. Indeed,

1On spectrogram zeros and non-Gaussian windows, see [20, Theorem 1.9].
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Fig. 1: Chirp signals immersed in white noise (1). Deterministic chirp (2) of duration 2ν = 30 s observed for 40 s embedded
in complex white Gaussian noise, with N + 1 = 513 sample points. The signal-to-noise ratio snr decreases from left to right.

introducing z = (ω+it)/
√

2, the Gaussian Short-Time Fourier
Transform coincides, up to a nonvanishing function, with the
Bargmann transform [19, Chapter 3]

∀z ∈ C, By(z) =
e−z

2/2

π1/4

∫

R
y(t)e

√
2tz−t2/2 dt, (5)

via the relation

Vgy(t, ω) = e−|z|
2/2e−iωt/2By(z). (6)

First introduced in quantum physics [22] as an interlacing op-
erator between the Schrödinger and the Fock representations,
the Bargmann transform caught afterward the attention of the
signal processing community [23] due its ability to provide
analytic representations of signals. In particular, the analyticity
of the Bargmann transform of y ∈ L2(R) ensures that its
zeros are isolated points of the complex plane. Intuitively,
identifying the time-frequency plane to the complex plane
through z = (ω+it)/

√
2, the zeros of the Fourier spectrogram

of a noisy signal can then be seen as a random configuration
of points in the complex plane, and can thus be analyzed with
the tools of spatial statistics [5, 6].

B. Zeros of the spectrogram of complex white Gaussian noise
Fourier spectrograms of the noisy chirps of Figure 1 are

displayed in Figure 2, with their zeros indicated by pale rose
dots. As can be observed in Figure 2e, when observations are
dominated by noise, the zeros are evenly spread, while larger
and larger holes in the zeros pattern appears at the location of
the signal in the time-frequency plane as the signal-to-noise
increases. Detection procedures developed by [5, 6] rely on
the measurement of the discrepancy between the observed
configuration of zeros and the reference situation of pure noise.
Because white Gaussian noise does not correspond to a signal
in L2(R), there was a need to rigorously characterize the
distribution of the zeros of the Fourier spectrogram of white
noise.

The first step toward characterization of the zeros [6, 8] is to
expand complex white Gaussian noise onto the Hilbertian basis
of L2(R) formed by Hermite functions {hk, k = 0, 1, . . .}.
The latter functions have a very simple closed-form Bargmann
transform [19, Section 3.4], namely Bhk(z) = zk/

√
k!. Then,

using linearity and carefully studing the convergence of the
series, one can compute the Bargmann transform of white
noise ξ =

∑
k∈N〈ξ, hk〉hk

Bξ(z) =

∞∑

k=0

〈ξ, hk〉
zk√
k!
. (7)

The probabilist’s eye then recognizes the so-called planar
Gaussian analytic function

GAFC(z) =

∞∑

n=0

ξ[n]
zn

n!
, ξ[n] ∼ NC(0, 1) i.i.d., (8)

whose modulus is displayed in grey level in Figure 3a, its
zeros being indicated by pale rose dots. In particular, the
zeros of the spectrogram of white Gaussian noise coincide in
law with the zeros of the planar Gaussian Analytic Function.
The latter distribution has been fully characterized; see [9,
Section 3.4]. Notably, the distribution of zeros is invariant
under isometries of the plane, as can be observed from
Figure 3a. This invariance is of primary importance in the
construction and estimation of the summary statistics used in
detection tests [6].

C. Algebraic interpretation and the covariance principle

The invariance under isometries of the plane of the zeros is
deeply linked to a core property of the time-frequency repre-
sentation (3): its covariance with respect to time and frequency
shifts [2, 19]. Covariance properties of representations is a
major topic in the theory of signal processing [24], and has
been widely documented, notably in the cases of the Short-
Time Fourier Transform [19, Chapter 9] and of the Contin-
uous Wavelet Transform [25], establishing a fruitful bridge
between quantum physics [26, 27] and signal processing [28].
This original perspective, consisting in the identification of
an underlying symmetry group, not only provides precious
insights on the properties of signal representations [24, 29],
but also yields general alternative formulations [28], and can
be exploited in applications, as illustrated by gravitational
wave detection [17]. Importantly for us, it has been shown
that, given a symmetry group, one can construct a covariant
representation [27], known as the coherent state decomposi-
tion, with completeness properties. Before taking advantage
of this algrebraic framework to design a novel transform at
Section III, we briefly describe the construction of the Short-
Time Fourier transform through the Weyl-Heisenberg group.

From a Hilbert space point of view, the Short-Time Fourier
Transform of a signal can be interpreted as the scalar product

Vhy(t, ω) = 〈y,W (t,ω)h〉, W (t,ω)h(u) = eiωth(u− t)
(9)

between the signal and a family of functions
{W (t,ω)h, (t, ω) ∈ R2}, called coherent states, and obtained
by applying time translations and frequency modulations to
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(a) snr = ∞ (b) snr = 5 (c) snr = 2 (d) snr = 1 (e) snr = 0.5

Fig. 2: Fourier spectrogram of noisy chirps. squared modulus of the Gaussian Short-Time Fourier Transform of the signals
of Figure 1, with zeros indicated by pale rose dots. The signal-to-noise ratio snr is decreasing from left to right.

(a) planar GAFC (b) spherical GAFS

Fig. 3: Gaussian Analytic Functions. In grey level: squared
modulus of the planar and spherical Gaussian Analytic Func-
tions, respectively introduced at Equations (8) and (21), in
their natural geometry, pale rose dots indicates their zeros.

the analysis window h. The operators W (t,ω) act unitarily
and transitively on L2(R), satisfy the non-commutative
composition rule

W (t′,ω′)W (t,ω) = eiωt
′
W (t+t′,ω+ω′). (10)

Then, the operator family {eiγW (t,ω), (γ, t, ω) ∈ [0, 2π] ×
R2} constitutes the Weyl-Heisenberg group, whose group law
derives from (10). By construction, up to a pure phase factor,
the family of coherent states {W (t,ω)h, (t, ω) ∈ R2} is
invariant under the action of the Weyl-Heisenberg group. The
reconstruction formula for the Short-Time Fourier Transform
is equivalent to the overcompleteness of the coherent state
family [19, Chapter 9], i.e., a signal can be exactly recon-
structed from the knowledge of its inner products with all
the coherent states. Finally, the covariance of the Short-Time
Fourier Transform under the time-frequency shifts, writes, for
any signal y ∈ L2(R),

Vh[W (t,ω)y](t′, ω′) = e−i(ω
′−ω)tVhy(t′ − t, ω′ − ω), (11)

involving an extra phase term, which disappears when taking
the squared modulus to obtain the spectrogram. In particu-
lar, the covariance of the Fourier spectrogram under time-
frequency shifts ensures that the performance of an algorithm
relying on spectrograms does not depend on the a priori
unknown location of the signal in the time-frequency plane.

III. A NEW COVARIANT DISCRETE TRANSFORM

The purpose of this section is to construct a novel covariant
representation, specifically designed for discrete signals, in
order to circumvent both the theoretical difficulty of defining
continuous white noise [6, Section 3.1] and [8, Section 3.2],
and the subtle practical question of discretizing the Short-Time

Fourier transform [6, Section 5.1]. To that end, we consider
the algebraic framework of Section II-C , and choose as
underlying symmetry group the group of rotations SO(3). This
group acts irreducibly on the finite-dimensional space CN+1

of digital signals, N ∈ N∗. Then, inspired by the physics
literature on coherent states [26, 27], we introduce what
we call the Kravchuk transform, derive its main properties.
Finally, we study the distribution of the zeros of the associated
Kravchuk spectrogram.

A. Definition of the Krachuk transform

1) The Kravchuk basis: The first step is to identify the
orthonormal basis in which the Kravchuk transform has a
comprehensible explicit expression. Following [26, 30], this
basis is built from the symmetric Kravchuk polynomials,
consisting in a collection of N + 1 polynomials, which are
orthogonal with respect to the symmetric binomial measure of
parameter, 1/2 and the associated N + 1 Kravchuk functions.
Denoting by Qn(t;N) the evaluation at t of the Kravchuk
polynomial of order n associated to the symmetric binomial
measure with N trials, then the orthogonality relation writes

N∑

`=0

(
N

`

)
Qn(`;N)Qn′(`;N) = 2N

(
N

n

)−1
δn,n′ , (12)

where δn,n′ denotes Kronecker’s delta. Defining the Kravchuk
functions as

qn(`;N) =
1√
2N

√(
N

n

)
Qn(`;N)

√(
N

`

)
, (13)

and the associated column vectors qn = (qn(`;N))
N
`=0, which

will be abusively called Kravchuk functions as well in the
following, (12) induces that the family {qn, n = 0, 1, . . . , N}
is an orthonormal basis of CN+1, namely the Kravchuk basis.

2) Decomposition into SO(3) coherent states: Adapting
the decomposition onto the family of SO(3) coherent states
from quantum physics [25, Chapter 6] to the framework of
signal processing and discrete signals, leads to the following
definition of a novel covariant representation.

Definition 1. For a discrete signal y ∈ CN+1, the general-
ized covariant time-frequency transform (or simply Kravchuk
transform) of y is

Ty(ϑ, ϕ) =

N∑

n=0

√(
N

n

)(
cos

ϑ

2

)n(
sin

ϑ

2

)N−n
einϕ(Qy)[n],

(14)
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where (ϑ, φ) ∈ [0, π] × [0, 2π] are the spherical coordinates
parameterizing the phase space S2, and

(Qy)[n] = 〈y, qn〉 =

N∑

`=0

y[`]qn(`;N) (15)

are the coefficients of the vector y in the orthonormal basis
of Kravchuk functions {qn, n = 0, 1, . . . , N}, seen as vectors
(qn(`;N))

N
`=0 with N + 1 points.

The Kravchuk transform naturally embeds in the algebraic
framework presented in Section II-C in the case of the Short-
Time Fourier transform. Indeed, consider the vectors

Ψϑ,ϕ =

N∑

n=0

√(
N

n

)(
cos

ϑ

2

)n(
sin

ϑ

2

)N−n
einϕqn, (16)

for ϑ ∈ [0, π] and ϕ ∈ [0, 2π]. By construction, Ty(ϑ, ϕ) =
〈y,Ψϑ,ϕ〉. Proposition 1 then insures that the family of vectors
introduced in (16) are coherent states for the SO(3) symmetry
group.

3) Properties of the novel representation:

Proposition 1. The Kravchuk transform T (14) satisfies
1) y → Ty is linear.
2) T is invertible and is associated with a resolution of the

identity, providing an explicit reconstruction

y = (4π)−1
∫

S2

Ty(ϑ, ϕ)Ψϑ,ϕ dµ(ϑ, ϕ) (17)

where dµ(ϑ, ϕ) = sin(ϑ)dϑdϕ is the uniform measure
on the sphere.

3) T preserves the energy, that is,

‖y‖22 = (4π)−1
∫

S2

|Ty(ϑ, ϕ)|2 dµ(ϑ, ϕ), (18)

4) T is covariant under the action of SO(3), meaning that

T [Ruy](ϑ, ϕ) = Ty(Ru(ϑ, ϕ)), (19)

where Ru (resp. Ru) denotes the action of the rotation
parameterized by the unitary vector u ∈ R3 on vectors
of size N + 1 (resp. on points of the unit sphere). (See
Section A of the Appendix for a short presentation of
the representation theory of SO(3)).

5) If the signal is real-valued, y ∈ RN+1, then its Kravchuk
spectrogram is symmetric in ϕ: ∀(ϑ, ϕ) ∈ [0, π]×[0, 2π],
|Ty(ϑ, ϕ)|2 = |Ty(ϑ, 2π − ϕ)|2.

Proof. Proposition 1 derives from a careful translation of the
properties spin coherent states [30], into the framework of
signal processing. For completeness, the computations are
detailed in Section C of the Appendix.

Remark 1. Instead of the linear transform (14), one could
follow the seminal paper [31] and try to design a covariant
Wigner-like, quadratic distribution, e.g., inspired by the physi-
cists’s Wigner distribution. Yet, the theoretical study of level
sets of Wigner-like distributions is intricate. Morever, Wigner
distributions usually do not come with efficient implementa-
tions. Consequently, we focus in this paper on the Kravchuk
transform and spectrogram, postponing the study of covariant
discrete Wigner-like distributions like [31] to future work.

B. Zeros of the Kravchuk spectrogram

We can easily characterize the distribution of the zeros of
the Krachuk spectrogram of white Gaussian noise on CN+1.

Theorem 1. Let ξ ∼ NC(0, I). The zeros of the Kravchuk
spectrogram |Tξ(ϑ, ϕ)|2 of complex white Gaussian noise,
when sent to the Riemann complex plane C ∪ {∞} via the
stereographic mapping

(ϑ, ϕ) 7→ z = cot(ϑ/2)eiϕ, (20)

coincide, in law, with the zeros of the spherical Gaussian
Analytic Function

GAFS(z) =

N∑

n=0

ξ′[n]

√(
N

n

)
zn, ξ′[n] ∼ NC(0, 1) i.i.d..

(21)

Proof. We first rewrite the Kravchuk transform (14) as a
function of a complex variable, using the stereographic map-
ping (20). This leads to

Ty(z) =
1√

(1 + |z|2)N

N∑

n=0

√(
N

n

)
(Qy)[n]zn, (22)

where we abusively denote by Ty the Kravchuk transform,
either expressed as a function of the spherical coordinates
(ϑ, ϕ) or of the complex stereographic variable z.

Now, since the Kravchuk basis introduced in Section III-A1
is orthonormal, the vector ξ′ = Qξ is also a complex white
Gaussian noise. Using (22), it follows that

Tξ(z) =
1√

(1 + |z|2)N

N∑

n=0

√(
N

n

)
ξ′[n]zn (23)

is proportional to the spherical Gaussian Analytic Function
defined in (21), up to a nonvanishing prefactor.

Now that we have identified the law of the zeros of the
Kravchuk transform of complex white Gaussian noise, we can
leverage known results on Gaussian Analytic Functions. In
particular, Theorem 1 combined with (22), yields two corol-
laries of utmost importance in designing zero-based detection
procedures in Section V.

Corollary 1. [9, Proposition 2.3.4] The distribution of the
zeros of the Kravchuk spectrogram of complex white Gaussian
noise is invariant under the isometries of the sphere.

Corollary 2. [9, Lemma 2.4.1] The Kravchuk spectrogram of
the complex white Gaussian noise has almost surely N simple
zeros.

IV. IMPLEMENTATION OF THE KRAVCHUK TRANSFORM
AND EXTRACTION OF THE ZEROS

The definition (14) of the Kravchuk transform has been
handy to establish Theorem 1. However, we explain in
Section IV-A why its naive implementation appears to be
numerically unstable. Therefore, in Section IV-B, we follow
the construction of [8] and rewrite our transform using a
generating identity for Kravchuk polynomials. We then show
that the resulting expression is amenable to computation.
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Fig. 4: The maximal degree is N = 100, and we consider the
orthogonality of the n = 81th Kravchuk function with respect
to the entire basis. The bold red line at ε = 10−16 indicates
the machine precision.

A. Instability of the evaluation of Kravchuk polynomials

The definition Equation (14) of the Kravchuk transform
involves the coefficients of the signal in the basis of Kravchuk
functions. This amounts to evaluating the scalar products (15)
for each degree n = 0, . . . , N . The most direct method to
compute (15) requires prior evaluation at all entire points
` = 0, . . . , N of the Kravchuk functions, themselves defined
using Kravchuk polynomials (13). In turn, the standard way to
evaluate Kravchuk polynomials is to iterate the computation
over the index n, relying on the recursion relation

(N − n)Qn+1(t;N) =

(N − 2t)Qn(t;N)− nQn−1(t;N), (24)

which is provided, e.g., in [32, Chapter 6]. However, the
coefficients involved in (24) grow with N , making the re-
cursion based on (24) unstable as one considers signals with
large number of points. As a consequence, the practical
decomposition of a signal onto the Kravchuk basis turns out to
be dramatically ill-conditioned. This is illustrated in Figure 4b,
where we show the lack of numerical orthogonality between
the elements of the basis, even for moderate values of n,N .
Without further insight, this has prevented us so far from
designing a robust decomposition algorithm from the recursive
evaluation of the Kravchuk polynomials.

B. A stable reformulation of the Kravchuk transform

To obtain a stable implementation of (14), we circumvent
in Proposition 2 the problematic change from the canonical
basis to the Kravchuk basis operated in Equation (15).

Proposition 2. Let z = cot(ϑ/2)eiϕ denote the stereographic
parameterization of Riemann’s complex plane by the unit
sphere. Equation (14) rewrites

Ty(z) =
1√

(1 + |z2|)N
N∑

`=0

√(
N

`

)
y[`]

(1− z)` (1 + z)
N−`

√
2N

.

(25)

Note that (25) only involves the coefficients y[`] of the
discrete signal y in the canonical basis of CN+1, and does
not depend anymore on evaluating Kravchuk functions.

Proof. We start from a generating formula for the Kravchuk
polynomials [32, Section 6.2]. For all ` ∈ {0, 1, . . . , N},

N∑

n=0

(
N

n

)
Qn(`;N)zn = (1− z)`(1 + z)N−`. (26)

The symmetric Kravchuk functions (13) thus satisfy
N∑

n=0

√(
N

n

)
qn(`;N)zn =

√(
N

`

)
(1− z)` (1 + z)

N−`
√

2N
.

(27)

On the other hand, injecting the expression of the scalar
product (15) into the original expression of the Kravchuk
transform (14), and remembering that z = cot(ϑ/2)eiϕ, we
obtain

Ty(z) =
1√

(1 + |z|2)N

N∑

n=0

√(
N

n

)( N∑

`=0

y[`]qn(`;N)

)
zn,

(28)

from which we derive

Ty(z) =
1√

(1 + |z|2)N

N∑

`=0

y[`]

(
N∑

n=0

√(
N

n

)
qn(`;N)zn

)
.

(29)

Finally, we rewrite the term in parentheses using (27).

C. Finding zeros of Kravchuk spectrograms

As derived at Equation (22), when the Kravchuk transform
is expressed as a function of the complex stereographic
variable, it turns out to be proportional, up to a nonvanishing
prefactor, to a polynomial of degree N . Hence, extracting
the zeros of the Kravchuk spectrogram amounts to finding
N polynomial roots. Unfortunately, the computation of the
roots of a polynomial, e.g., from its companion matrix, is
numerically unstable for values of N in the hundreds. For
the extraction of the zeros of the Kravchuk spectrogram, we
thus resort to approximate techniques.

We follow the same lines as in [5, 6], using the method
of Minimal Grid Neighbors, illustrated at Figure 5a. More
precisely, assume that we have evaluated the Kravchuk spec-
trogram on a uniform grid on the sphere

(ϑ, φ) ∈ aZ× bZ ∩ [0, π]× [0, 2π],

for some a, b > 0. Local minima, e.g., (ϑj , ϕj) in red
in Figure 5a, are first identified as the points of the grid
at which the value of the Kravchuk spectrogram is lower
than the values at its eight nearest neighbors, represented
by the bold dashed square in Figure 5a. Then, all the local
minima inferior to a pre-specified threshold are considered
as numerical zeros. To the best of our knowledge, a similar
method is used in all practical studies involving the zeros of
Fourier spectrograms [5, 6, 8] and [2, Chapters 13 and 15], or
scalogram zeros [7], although using a threshold might not be
necessary in the Fourier case [33, Theorem 1].

Compared to the case of Fourier spectrograms discussed in
Section II-B, the main advantage of the Kravchuk spectrogram
is that, thanks to Corollary 2, we know that in the white
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Fig. 5: Extraction of zeros of Kravchuk spectrograms. A
point of the phase space, red square in (a), is considered
as a spectrogram local minima as soon as the value of the
spectrogram at this point is lower than all of its eight nearest
neighbors, dashed black square in (a). The Minimal Grid
Neighbors method described in Section IV-C is applied to 200
noisy chirps, with signal-to-noise ratio snr = 2, for different
resolution of the spherical phase space (ϑ, ϕ) and the averaged
number of zeros extracted is displayed in (b).

noise case, it has almost surely N simple zeros. Further,
the zeros arise from the noise structure, thus it is reasonable
to expect that, as soon as the noise level is moderate, the
same proposition applies to Kravchuk spectrogram of noisy
signals. This enables a very simple assessment of the accuracy
of the extracted set of zeros, and it circumvents technical
considerations to compare the number of extracted zeros to
their expected number in [6]. In particular, the threshold used
in the extraction of zeros can be chosen by checking that this
condition is fulfilled. Another key setting of the Minimal Grid
Neighbors method is the resolution of the grid on which the
spectrogram is computed. We plot on Figure 5b the number of
zeros detected for different resolutions of the grid, averaged
over 200 realizations. As soon as the resolution Nϑ × Nϕ
is large enough, the expected N zeros are indeed detected,
up to intrinsic randomness, which validates the Minimal Grid
Neighbors approach.

D. Kravchuk representation of noisy chirps

Direct implementation of Formula (25) permits to compute
the Kravchuk transform of the noisy chirps signals of Figure 1,
the squared modulus of which yields the associated Kravchuk
specrogram, then, the Minimal Grid Neighbors method de-
scribed at Section IV-C provides the zeros, altogether leading
to Figure 6. First, a planar representation in (ϑ, ϕ) coordinates
is provided in Figure 6, top row, on which the symmetry in ϕ
for real signals can be clearly observed; see Proposition 1, 5).
Second, a direct representation on the sphere, bottom row of
Figure 6, illustrates the uniform spread of the zeros, outside
of the phase space region corresponding to the signal. This
very regular behavior of the zeros in the absence of signal
illustrates Theorem 1, as the zeros of the spherical GAF are
known to be a repulsive point process [9]. Furthermore, the
fact that the signal repels the spectrogram zeros is in perfect
agreement with previous observations in the Fourier case [4–

6], and is at the core of the development of signal processing
procedures based on the zeros of the spectrogram.

V. A DETECTION PROCEDURE BASED ON THE ZEROS OF
THE KRAVCHUK SPECTROGRAM

As observed in Figure 6, the presence of a signal induces
local perturbations in the pattern formed by the zeros of the
Kravchuk spectrogram: holes appears in the distribution of
zeros in the regions of the phase space corresponding to
the signal. Consequently, the random configuration of zeros
deviates from the regularly spread point process of Figure 3b
obtained for pure noise. In this section, we follow the same
lines as for the classical Short-Time Fourier transform [6]
and turn Theorem 1 into nonparametric statistical tests for
detecting the presence of some signal embedded into white
noise.

A. General principle of hypothesis testing

We aim at discriminating between the null hypothesis H0,
“the observations consist in pure noise”, and the alternative
H1, “the data contain a deterministic signal of interest”.
Mathematically, we consider the two situations

H0 : y = ξ, H1 : y = snr × x+ ξ

where ξ denotes the complex white Gaussian noise and x is
an unknown deterministic waveform, e.g., a sampled chirp of
the form (2), and snr > 0 is the signal-to-noise ratio.

To design a detection procedure, we use a summary statistic
s(y) ∈ R satisfying E [s(y)|H1] > 0 and E [s(y)|H0] = 0, so
that measuring large value of s advocates for rejecting the
null hypothesis. For the test to be efficient, s should quantify
precisely the discrepancy between the data and pure noise.

We consider Monte Carlo tests, characterized by a level of
significance α, a number of samples under the null hypothesis
m and an index k, chosen so that α = k/(m+ 1). Once these
parameters are fixed, testing data y consists in going through
the following steps: (i) generate m independent samples of
complex white Gaussian noise and compute their summary
statistics s1 ≥ s2 ≥ . . . ≥ sm sorted in decreasing order;
(ii) compute the summary statistics of the observations y under
concern; (iii) if s(y) ≥ sk, then reject the null hypothesis with
confidence 1− α.

A key point in constructing detection tests based on the
zeros of the Kravchuk spectrogram lies in the design of
appropriate summary statistics s, enabling to discriminate
between the pure noise situation in which zeros are evenly
spread on the sphere, such as in Figure 3b, and signal plus
noise cases, in which holes appears in the zeros pattern, as in
the Kravchuk spectrograms in Figure 6. To that aim, we turn
to the toolbox of spatial statistics , specifically developed for
the analysis of point processes, i.e, random point patterns.

B. Spatial statistics on zeros of spectrogram

1) Point processes: Theorem 1 and Equation (22) insures
that the zeros of the Kravchuk transform of a noisy signal are
almost surely N isolated points lying on the unit sphere. In
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(a) snr = ∞ (b) snr = 5 (c) snr = 2 (d) snr = 1 (e) snr = 0.5

Fig. 6: Kravchuk spectrogram of noisy chirps. For each of the signals of Figure 1, the squared modulus of the proposed
Kravchuk transform (14) is displayed in grey level as a function of the spherical coordinates (ϑ, ϕ), in an unfolded representation
(top row) and in the natural spherical geometry (bottom row), with zeros indicated by pale rose dots. The signal-to-noise ratio
is decreasing from left to right.

particular, the set of zeros is a point process on the sphere
equipped with the chordal distance

d ((ϑ1, ϕ1), (ϑ2, ϕ2)) (30)
= arccos (sinϑ1 sinϑ2 cos(ϕ1 − ϕ2) + cosϑ1 cosϑ2) .

Formally a point process Z is a distribution over configurations
of points in a metric space, characterized by its spatial
statistics. The simplest, first order, spatial statistics is the
density ρ : S2 → R+ satisfying, if it exists,

∀U ⊆ S2, E [card(Z ∩ U)] =

∫

U

ρ(ϑ, ϕ) dµ(ϑ, ϕ), (31)

where µ is the uniform measure on the sphere defined in
Proposition 1, and card denotes the cardinality of a set, so
that the left-hand side of (31) counts the expected number of
points of the point process falling into U .

If the point process is invariant under isometries of S2, e.g.,
if Z consists in the zeros of the spherical Gaussian Analytic
Function displayed in Figure 3b, it is said to be stationary, and
its density is constant. The interest reader is referred to [16]
for further definitions and properties.

2) Functional statistics: As illustrated on Figure 6, the
presence of some signal creates some holes in the zeros
pattern. The presence of such holes, modifies the distribution
of distances between zeros, advocating for the use of second
order spatial statistics to discriminate between the signal plus
noise and the pure noise cases. We will consider two of them,
benefiting from robust estimators which can be implemented
efficiently.

First, Ripley’s K function accounts for the distribution of
the pair distances, and is proportional, for each r > 0, to
the expected number of pairs at distance less than r [34].
The standard definition initially proposed by [16, Chapter 4]
for point processes in Rd, has very recently been adapted to

the case of stationary point processes on S2 [35, Section 3.2]
defining

K(r) =
1

4πρ2
E

6=∑

(ϑi,ϕi)∈Z

1 (d ((ϑ1, ϕ1), (ϑ2, ϕ2)) < r) (32)

where the sum runs over all pairs ((ϑ1, ϕ1), (ϑ2, ϕ2)) of
distinct points in Z. where ρ denotes the constant density of
the point process Z, 4π is the surface of the unit sphere and
1 denotes the indicator of an event, taking value one or zero
depending on whether the condition is fulfilled.

Second, the empty space function F of a stationary point
process is the distribution function of the distance from the
origin, or equivalently to any fixed point of the space due to
the stationarity of the point process, to the nearest point of
the point process. Direct adaptation of the definition proposed
by [16], lead to the definition:

F (r) = P (b(0, r) ∩ Z 6= ∅) , (33)

where P is the probability measure over the realizations of the
point process Z, and b(0, r) denotes the ball centered at the
origin and of radius r > 0 for the chordal distance.

3) Practical estimators: Performance of the testing pro-
cedure rely on the ability to estimate accurately the func-
tional statistics, which encodes the characteristics of the point
process made of the zeros of the Kravchuk spectrogram.
We review shortly nonparametric estimators for each of the
two functional statistics K and F . Further considerations are
discussed in [36].

Ripley’s K function being linked to the pair distances,
estimating K(r) amounts to count the number of pairs of zeros
which are at chordal distance less than r. Then, for a stationary
point process Z on the sphere

K̂(r) =
(4π)2

Nz

6=∑

(ϑi,ϕi)∈Z

1 (d ((ϑ1, ϕ1), (ϑ2, ϕ2)) ≤ r) , (34)

where NZ is the empirical number of points in Z, yields an
unbiased estimator of Ripley’s K function.
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Remark 2. Note that, thanks to Corollary 2, we know that
NZ = N almost surely. Thus NZ could be replaced by N
in (34), reducing the variance the estimate. In practice, the
empirical number of zeros differs from N by at most one and
we observed no difference in the result of the detection.

The empty space function F accounts for the distribution of
the size of the holes in the zeros pattern. Let {(ϑj , ϕj), j =
1, . . . , N#} a uniform grid on the sphere. The practical
estimation of F requires to count how many points of the
grid lie at distance less than r from a point of Z. An unbiased
estimate of the empty space function of a stationary point
process Z on the sphere is thus given by

F̂ (r) =
1

N#

N#∑

j=1

1

(
inf

(ϑ,ϕ)∈Z
d ((ϑj , ϕj), (ϑ, ϕ)) < r

)
. (35)

C. Monte Carlo envelope testing

The methodology of envelope testing [37] being the same
whatever the chosen function statistics, we describe it for a
generic functional S(r), which should be thought of as either
Ripley’s K function (32) or the empty space function (33).
A relevant summary statistics s should measure precisely the
discrepancy between the functional statistics estimated from
the data, Ŝy(r), to the reference functional statistics of the
zeros of the Kravchuk spectrogram of complex white Gaussian
noise, S0(r). To that aim, following [6], we construct the
summary statistics

sy =

√∫ r2

r1

∣∣∣Ŝy(r)− S0(r)
∣∣∣
2

, (36)

which quantifies the quadratic distance between the estimated
functional statistics and the expected functional under the null
hypothesis.

Though, to the best of our knowledge, nor the Ripley’s K0

function, neither the empty space function F0 of the point
process of the zeros of the spherical Gaussian Analytic Func-
tion, corresponding the the pure noise reference case, have
a documented explicit expression. In practice, the theoretical
functional statistic S0(r) involved in the definition of the
summary statistics (36), is hence replaced by an empirical
averaged S̄0(r) over the functional statistics estimated from
the m realizations of complex white Gaussian noise and from
the data

S̄0 =
1

m+ 1
(S1 + . . .+ Sm + Sy) . (37)

Interestingly, it has been demonstrated in [37] that replacing
the theoretical functional statistics by the pointwise aver-
age (37) does not impair the significance of the Monte Carlo
envelope test.

VI. EXPERIMENTS

The detection procedure based on the zeros of the Kravchuk
specrogram designed in Section V is assessed on synthetic
data. The performance of the test is investigated, varying the
characteristics of the signal, and hence the difficulty of the

task. Furthermore, we compare the proposed strategy to the
state-of-the-art detection procedure based on the zeros of the
Fourier spectrogram.

A. Settings

1) Synthetic data: Numerical simulations focus on the
detection of deterministic chirps following the parametric
Model (2), corrupted by a superimposed complex white Gaus-
sian noise, according to (1). The discrete signals considered
consist in these noisy chirps, sampled at N+1 points, regularly
spaced in a temporal window of 40 s. The characteristic
frequencies of the chirps are fixed at f1 = 0.5 Hz and
f2 = 1 Hz, while the duration of the chirp ν and the length
of the observation N are varied. The noise level is controlled
by the signal-to-noise ratio snr, introduced at Equation (1). In
practice, both the deterministic signal x and the additive noise
ξ are `2-normalized, i.e., ‖x‖2 = ‖ξ‖2, so that the noise level
only depends on snr, and not on the characteristics of the chirp.
Example of noisy chirps of duration 2ν = 30 s with N = 513
points and decreasing signal-to-noise ratios are provided in
Figure 1.

2) Estimation of functional statistics: Ripley’s K function
is estimated using the unbiased estimator provided at Equa-
tion (34), for 104 points ranging from r1 = 0 to r2 = π,
the maximal possible distance on the sphere, as can be seen
from (30). As for the estimation of the empty space function
F , we use of the estimator (35), with a grid (ϑi, ϕi) of
resolution N# = 4

√
NZ × 4

√
NZ , where NZ denotes the

empirical number of zeros of the Kravchuk spectrogram. F̂ (r)
is computed at 104 points, for r ranging from r1 = 0 to
r2 = 2π/

√
N , as we observed that F̂ (r) was saturating at

1 for larger values of r.
3) Power assessment: The Monte Carlo testing methodol-

ogy designed in Section V is run with systematic significance
level α = 0.05, relying on m = 199 noise realizations,
and hence corresponding to comparing the observed summary
statistic to the k = 10th largest value obtained under the
null hypothesis. To measure the performance of the designed
detection test for given duration ν, number of points N ,
and signal-to-noise ratio snr, 200 independent noisy chirps
are generated from the observation model (1). Then the test
is run, choosing either the K or the F functional statistic,
and the averaged number of detection yields the estimated
power of the test β̂. The quality of β̂ as an estimator for the
power of the test is assessed using Clopper-Pearson confidence
intervals [38] at level 0.01. We chose this value for ease of
mental computation: for an experiment summarized with 10
intervals, for instance, a simple Bonferroni correction [10] thus
allows jointly considering all intervals at significance level 0.1.

B. Detection performance

1) Choice of the functional statistics: We consider noisy
chirps of duration 2ν = 30 s, with N + 1 ∈ {257, 513}
sample points, for eight different signal-to-noise ratio snr ∈
{0.5, 1, 1.25, 1.5, 2, 5, 10, 50} and compare the power of the
detection test based on the zeros of their Kravchuk spectro-
gram when using either Ripley’s K function or the empty
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Fig. 7: Comparison between K and F functional statistics.
Evolution of the power of the test with the signal-to-noise
ratio.

space function F for defining the summary statistic s(y). First,
as expected, we observe in Figure 7 that the power of the
test increases as the signal-to-noise ratio increases, i.e., the
easier the detection, the better the test performance. Second,
whatever the noise level snr, the test using the empty space
function F has a significantly higher power than the one using
Ripley’s K function. Similar conclusions were obtained for
other signal lengths and chirp durations. Since, like for Fourier
spectrograms [6], the empty space function systematically
yields larger power for the same significance, we henceforth
focus on the empty space function.

2) Influence of the characteristics of the signals: Intuitively,
the detection task is all the more difficult that: (i) the signal-
to-noise ratio is low, (ii) the duration of the chirp is small
compared to the length of the observation window, and (iii) the
number of sampling points N + 1 is small. In order to verify
these statements, we run systematic tests on signals of different
lengths N ∈ {128, 256, 512, 1024}, two different durations
2ν ∈ {20 s, 30 s} for a fixed observation window of 40 s, and
different signal-to-noise ratio snr ∈ {1.5, 2}.

In the easier configuration, snr = 2 and 2ν = 30, in magenta
on Figure 8a, increasing the number of point increases the
power of the test. As the detection problem gets harder, either
because of lower signal-to-noise ratio, or shorter duration,
increasing the number of points is not enough to improve
performance. This observation led us to conjecture that the
number of points is not a critical feature and that, as soon as N
is large enough, functional statistics are accurately estimated,
and the detection procedure is only limited by the difficulty of
the task. This could indicate that the proposed methodology
possesses a regime in which it is independent of the sampling
rate, which turns very interesting for processing real-world
signals. Furthermore, the magenta solid curve, corresponding
to signal of larger duration is always above the blue dashed
curve, assessing that the power of the test is larger when the
chirp is longer.

3) Kravchuk vs. Fourier spectrograms: We now compare
to the zero-based detection test proposed by [6], relying on
the zeros of the standard Fourier spectrogram described in
Section II. Tests are run on noisy chirps with fixed signal-to-
noise ratio snr = 2, and we explore the robustness of power
against the number of sampled points in both an easy situation,
corresponding to chirps of duration 2ν = 30 s, and a difficult
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Fig. 8: Robustness to small number of samples and short
duration. Evolution of the power of the test with the length
of the observation.
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Fig. 9: Detection tests based on the zeros of either Fourier
or Kravchuk spectrogram. Evolution of the power of the test
with the signal length N for noisy signals with fixed snr = 2.

one, corresponding to 2ν = 20 s.
We observe in Figure 9 that the Kravchuk-based detection,

corresponding to the yellow solid line, systematically outper-
forms the Fourier-based detection, corresponding to the brown
dashed line. Furthermore, the power of the test decreases more
slowly as N decreases in the case of Kravchuk spectrogram,
especially for chirps of shorter duration, as shown in Figure 9b.

The better performance of the detection strategy based
on Kravchuk spectrograms can be explained by two core
properties of the Kravchuk transform. First, it has been specif-
ically designed for discrete signals, hence its computation
is exact and does not induce information loss. Second, the
phase space associated with the Kravchuk representation is
compact, consequently the entire point process of zeros is
observed and the estimation of functional statistics is direct,
not requiring sophisticated edge corrections. In other words,
the characteristic patterns reflecting the presence of a signal are
more faithfully rendered by the Kravchuk representation than
by the traditional discrete approximation to the Short-Time
Fourier transform with Gaussian window. These patterns are
then more precisely captured by functional statistics on the
sphere, which is compact, compared to the unbounded time-
frequency plane.

Remark 3. The signal detection experiments based on the
zeros of the Fourier spectrogram in [6, Section 5.2] were
performed on signals normalized in amplitude, contrary to
the `2 normalization used in the present work. Consequently
the signal-to-noise ratios cannot be compared. In particular,
the detection problems considered in our Section VI-B are
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more difficult than those tackled in [6], explaining the poor
performance observed in Figure 9 when using the Fourier
spectrogram.

VII. CONCLUSIONS

We introduced of a new covariant representation, the
Kravchuk spectrogram, tailored for discrete signals. The phase
space is the unit sphere, and we showed that the zeros of
the Kravchuk spectrogram of complex white Gaussian noise
have the same distribution as the zeros of the spherical Gaus-
sian Analytic Function. In particular, the zeros are invariant
under isometries of the sphere. Leveraging the stationarity
of the zeros, we demonstrated that Monte Carlo envelope
tests based on spherical functional statistics yield powerful
detection tests. Compared to Fourier spectrograms [6], our
Kravchuk representation bypasses both the need to discretize
the continuous Short-Time Fourier Transform, and the need
for edge correction of functional statistics estimators. Intensive
numerical simulation demonstrates that these advantages lead
to more powerful detection tests than Fourier spectrograms,
in particular when the signal-to-noise ratio or the number of
samples is low. Another advantage of our procedure is its non-
parametric aspect, along with the absence of hyperparameters.

We now list a few avenues for future work. While our imple-
mentation circumvents the instability of evaluating Kravchuk
polynomials, it requires O(N3) operations for each point of
the grid we put on the phase space. While this is enough
for small signals, say N . 1024, a fast implementation
of the Kravchuk transform would significantly broaden its
applicability. We are currently working on a fast scheme, con-
sisting in a rotation-covariant counterpart of the Fast Fourier
Transform algorithm. Then, taking advantage of the recon-
struction formula (17) and of the compactness of the phase
space, we will construct new zero-based denoising and AM-
FM component separation algorithms. We expect the latter to
outperform previous procedures in some regimes of practical
interest [5], notably when the Riemann approximations to
the continuous Fourier transforms involved in the classical
Short-Time Fourier transform are inaccurate. Furthermore, we
plan to adapt the recent extraction of zeros of [39], which
comes with more theoretical guarantees than the Minimal Grid
Neighbors approach. Again, the advantage of the Kravchuk
transform here is that we can evaluate it pointwise, unlike
the classical Short-Time Fourier transform which needs to be
approximated.

On the stochastic geometry side, spatial statistics on the
sphere have received interest lately [35, 40, 41]. For starters,
the Kravchuk transform applied to white noise can be seen
as a way to approximately sample the zeros of the spherical
Gaussian Analytic Function. Moreover, real-valued noisy sig-
nals yield a symmetric spherical Gaussian Analytic Function,
in the spirit of the symmetric Gaussian Analytic Functions of
[42]. Results on the zeros of this random polynomial with real
coefficients are bound to have an interest in signal processing.

Finally, a large body of work in mathematical quantum
physics, including contraction theorems [43], suggest that, as
the number of sample points grows, the Kravchuk transform

converges in some sense to an Short-Time Fourier transform
with Gaussian window. A rigorous statement on this conver-
gence could mean that the Kravchuk transform is a natural way
of discretizing the continuous Short-Time Fourier transform
while preserving a covariant structure.

A PYTHON toolbox is publicly available on the GitHub of
the first author2, enabling to reproduce all the experiments
presented in Section VI.

APPENDIX

For the sake of completeness, we summarize the main tools
of group theory that are needed to understand the covariance
of the Kravchuk transform in Proposition 1 4). A detailed and
rigorous presentation can be found in [44, Chapter 6].

Essentially, we are reviewing below the construction of a
particular covariant family of signals, called spin coherent
states [26, 30]. To build such a family, we need a group and a
unitary representation of that group that acts on signals. Here
the group shall be SO(3) and the space of signals CN+1. This
is a counterpart of the construction of the Short-Time Fourier
transform, where the Weyl-Heisenberg group is used a phase
space for signals in L2(R); see Section II-C.

A. A geometrical description of SO(3)

The group of rotations SO(3) acts on vectors of R3, preserv-
ing the Euclidean norm. In particular, SO(3) acts transitively
on the unit sphere S2 of R3. The sphere is the phase space
of the Kravchuk transform, and SO(3) is to that phase space
what the Weyl-Heisenberg group of time-frequency shifts is
to the time-frequency plane; see Section II-C.

The group SO(3) can be parameterized by the sphere S2,
seen as a collection of unit vectors

u(ϑ, ϕ) = (sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)) . (38)

More precisely, the rotation of angle ϑ, with axis directed by
the unit vector of cartesian coordinates (− sin(ϕ), cos(ϕ), 0),
is denoted by Ru. Note that, for the sake of clarity, we shall
omit the dependency of u to (ϑ, ϕ) when not explicitly needed.

By construction, the rotation Ru sends the north pole of
the sphere, of spherical coordinates (0, 0), onto the point of
spherical coordinates (ϑ, ϕ),

Ru(ϑ,ϕ)(0, 0) = (ϑ, ϕ).

Moreover, the successive application of two rotations Ru and
Ru′ is still a rotation. Hence it is associated to a unit vector,
denoted by u · u′. The group law of SO(3) is encapsulated
into the product ·, namely

Ru·u′ = Ru ◦Ru′ . (39)

A precise description of the composition law u · u′ can be
found in [26, Section 6.5].

2https://github.com/bpascal-fr/kravchuk-transform-and-its-zeros

https://github.com/bpascal-fr/kravchuk-transform-and-its-zeros
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B. A specific finite-dimensional representation

A linear representation of the symmetry group SO(3) on a
vector space H is an application

R :

{
SO(3) → GL(H)
Ru 7→ Ru

where GL(H) denotes the linear group of H, which preserves
the group law, i.e., satisfies

∀u,u′ ∈ S2, Ru·u′ = RuRu′ . (40)

Note that the product in the right-hand side of (40) is the prod-
uct of linear operators of H. The representation R transposes
the natural action of SO(3) on vectors of S2 to an action on
vectors of H, with the same composition structure.

For each fixed N ∈ N, we henceforth focus on the unitary
representation of SO(3) on H = CN+1 described in [26,
Section 6.5], which is at the core of the quantum theory of
spin-J , for J = N/2 [26, 30]. Unitarity of the representation
amounts to impose that the operators Ru are unitary with
respect to the Hermitian inner product of CN+1. This is a
central property ensuring covariance of the family of coherent
states [26, Chapter 5].

C. Action on coherent states

The action of SO(3) on vectors of CN+1 described by
the spin-J representation of Section B is in general abstract,
stemming from algebraic rules for the construction of group
representations [44]. Yet, there exists a family of vectors on
which this action is more transparent, namely the family of
SO(3) coherent states.

Indeed, the family of coherent states defined in Equa-
tion (16) can be obtained by letting the rotations act on what
is called a mother wavelet Ψ(0,0) [26, Section 6.5], i.e.,

Ψ(ϑ,ϕ) = Ru(ϑ,ϕ)Ψ(0,0), (41)

where Ψ(0,0) = qN ∈ CN+1 is the Kravchuk function of
highest degree in dimension N + 1.

More generally, combining (39) and (41) shows that SO(3)
acts in a covariant way on the family of coherent states. Indeed,
considering the action of rotation Ru on the point of spherical
coordinates (ϑ′, ϕ′). The conservation (39) of the group struc-
ture ensures that, in S2, u(ϑ, ϕ) ·u′(ϑ′, ϕ′) = Ru(ϑ′, ϕ′). By
(41), the action on coherent states thus writes in the covariant
form

Ru(ϑ,ϕ)Ψ(ϑ′,ϕ′) = ΨRu(ϑ′,ϕ′). (42)

Finally, note that, anticipating the invertibility of the coherent
state decomposition provided in Proposition 1, 2) and proved
in Section C, the action of SO(3) on any vector of CN+1 can
be derived by considering its decomposition onto the family
of coherent states.

Proposition 1 is obtained by adapting the properties of
spin coherent states, a tool initially introduced in quantum
mechanics [30]. We refer to [26, Chapter 6] for a modern
account on spin coherent states.

Proof. 1) The computation of the coefficients of y in the
Kravchuk basis,

Q :

{
CN+1 → CN+1

y 7→ Qy

is linear. The Kravchuk transform (14) is a linear com-
bination of the Kravchuk coefficients (Qy)[n], and is
thus linear.

2) In order to prove the reconstruction formula and the
energy conservation, we use the following lemma.

Lemma 1. [26, Section 6.3] As S2 is equipped with
the uniform measure dµ(ϑ, ϕ) = sin(ϑ) dϑdϕ, for all
N ∈ N∗, the family of complex-valued functions defined
on the unit sphere

ψn(ϑ, ϕ) =
1√
4π

√(
N

n

)(
cos

ϑ

2

)n(
sin

ϑ

2

)N−n
einϕ

(43)

is orthonormal in L2(S2).

Let ` ∈ {0, . . . , N}. We show that the `th component
of the right-hand side of (17) equals y[`]. Using the
coherent state interpretation of the Kravchuk transform,

(4π)−1
∫

S2

Ty(ϑ, ϕ)Ψϑ,ϕ[`] dµ(ϑ, ϕ)

=(4π)−1
∫

S2

〈y,Ψϑ,ϕ〉Ψϑ,ϕ[`] dµ(ϑ, ϕ)

=(4π)−1
∫

S2

N∑

n=0

y[n]Ψϑ,ϕ[n]Ψϑ,ϕ[`] dµ(ϑ, ϕ) (44)

Then, remark that, by definition of SO(3) coherent
states (16), using the family {ψn, n = 0, 1, . . . , N},
they rewrite as Ψϑ,ϕ =

√
4π
∑N
n=0 ψn(ϑ, ϕ)qn, and

hence,

Ψϑ,ϕ[n]Ψϑ,ϕ[`]

= 4π

(
N∑

m=0

ψm(ϑ, ϕ)qm[n]

)(
N∑

m′=0

ψm′(ϑ, ϕ)qm′ [`]

)

= 4π

N∑

m=0

N∑

m′=0

ψm(ϑ, ϕ)ψm′(ϑ, ϕ)qm[n]qm′ [`]. (45)

Then, using Lemma 1,

∫

S2

Ψϑ,ϕ[n]Ψϑ,ϕ[`]dµ(ϑ, ϕ)

= 4π

N∑

m=0

N∑

m′=0

δm,m′qm[n]qm′ [`]

= 4π

N∑

m=0

qm[n]qm[`]. (46)
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Injecting the above result in (44) yields

(4π)−1
∫

S2

Ty(ϑ, ϕ)Ψϑ,ϕ[`] dµ(ϑ, ϕ)

=

N∑

n=0

y[n]

(
N∑

m=0

qm[n]qm[`]

)

=

N∑

m=0

(
N∑

n=0

y[n]qm[n]

)
qm[`]

=

N∑

m=0

Qy[m]qm[`]

= y[`].

3) The energy in the phase space writes

(4π)−1
∫

S2

|Ty(ϑ, ϕ)|2 dµ(ϑ, ϕ)

= (4π)−1
∫

S2

|〈y,Ψϑ,ϕ〉|2 dµ(ϑ, ϕ)

= (4π)−1
∫

S2

N∑

n=0

N∑

n′=0

y[n]Ψϑ,ϕ[n]y[n′]Ψϑ,ϕ[n′] dµ(ϑ, ϕ).

Then, making use of (45) and (46), we get

(4π)−1
∫

S2

|Ty(ϑ, ϕ)|2 dµ(ϑ, ϕ)

=

N∑

n

N∑

n′

y[n]y[n′]

N∑

m=0

qm[n]qm[n′]

=

N∑

m=0

(
N∑

n

y[n]qm[n]

)(
N∑

n′

y[n′]qm[n′]

)

=

N∑

m=0

Qy[m]Qy[m]

= ‖Qy‖22 = |y‖22

by orthonormality of the Kravchuk basis.
4) The covariance of the Kravchuk transform stems from its

interpretation as a coherent state decomposition. Indeed,
using the unitarity of the representation of SO(3),

T [Ruy](ϑ, ϕ) = 〈Ruy,Ψ(ϑ,ϕ)〉 (47)
= 〈y,RuΨ(ϑ,ϕ)〉. (48)

Then, from the action (42) of SO(3) on the family of
coherent states,

〈y,RuΨ(ϑ,ϕ)〉 = 〈y,ΨRu(ϑ,ϕ)〉.

Finally, remarking that

〈y,ΨRu(ϑ,ϕ)〉 = Ty (Ru(ϑ, ϕ)) .

concludes the proof.
5) Assume that y ∈ RN+1. Since the Kravchuk functions

are real-valued, qn ∈ RN+1, and then the coeffi-

cients (Qy)[n] = 〈y, qn〉 are real. Using that ∀n ∈
{0, 1, . . . , N}, e2iπn = 1, it follows

Ty(ϑ, ϕ)

=

N∑

n=0

√(
N

n

)(
cos

ϑ

2

)n(
sin

ϑ

2

)N−n
e−inϕ(Qy)[n]

=

N∑

n=0

√(
N

n

)(
cos

ϑ

2

)n(
sin

ϑ

2

)N−n
e−inϕ(Qy)[n]

=

N∑

n=0

√(
N

n

)(
cos

ϑ

2

)n(
sin

ϑ

2

)N−n
ein(2π−ϕ)(Qy)[n]

= Ty(ϑ, 2π − ϕ).

Taking the squared modulus on both sides concludes the
proof.
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