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The attractive Bose-Hubbard model is applied for describing the quantum self-trapping in an
extended star graph. In the strong coupling limit and when two excitons are created on the core
of the star, the dynamics is dominated by pair states whose properties is governed by the branch
number N . When N = 2, the star reduces to a linear chain so that the energy does not self-localize.
Conversely, when N ≥ 3, a restructuring of the eigenstates arises and a low-energy state occurs
describing a pair localized on the core of the star. Preferentially excited, this localized state gives
rise to a quantum self-trapping of the energy, a process that intensifies as N increases.

PACS numbers:

I. INTRODUCTION

Exploiting the propagation of a quantum excitation
in a complex network is a promising way for elabo-
rating scalable quantum devices1. For instance, in a
dendrimer2, electronic excitons play a central role to ob-
tain an artificial light-harvesting complex3–9. To con-
vert the energy of a radiation into a chemical fuel, the
main idea consists in the functionalization of the termi-
nal groups by chromophores that are responsible for light
harvesting. The capture of light generates excitons that
propagate towards the core that contains either a trap,
a reaction center or a chemical sensor10,11. Similarly, in
complex networks, the exciton propagation defines a con-
tinuous time quantum walk (CTQW)12 that is expected
to be useful in quantum information processing13–19. It
has been studied in a great variety of networks such as
binary and glued trees20, Apollonian networks21, fractal
networks22,23, sequentially growing networks24 and star
graphs25–31.

In that context, to judge the efficiency of the excitonic
propagation, the fundamental question arises whether
the exciton propagates coherently or localizes along the
network. Although the localization still remains an open
problem, recent investigation suggests that the localized
or delocalized nature of the exciton depends on general
features such as its initial position, the presence of defects
and the network topology1.

Indeed, as shown by Mulken et al.32, localization pro-
cesses may result from the degeneracy of the excitonic
spectrum that originates in the symmetry of the net-
work. In this case, when the excitonic state initially
expands over few highly degenerate eigenstates, specific
quantum self-interferences arise. The propagation of the
exciton is thus stopped and the latter remains confined in
the neighborhood of the excited region. As in solid-state
physics, localization may also arise when the network is
perturbed by defects. For instance, disordered site ener-
gies completely stop the quantum walk in linear chains33,
discrete rings34, binary trees35 and glued trees36,37. Fi-

nally, the localization may originate in the architecture
of the graph, as observed in extended dendrimers38. In
that case, exciton that propagates from the periphery to
the core is prone to a localization-delocalization transi-
tion. This transition results from quantum interferences
that arise due to the multiple scatterings that occur each
time the exciton tunnels from one generation to another.

In this paper, a new facet of the localization in com-
plex networks is addressed by investigating quantum self-
trapping in nonlinear extended star graphs.

The concept of energy localization due to nonlinear-
ity has been intensively studied in classical lattices with
translational invariance39–41. In that context, the dis-
crete nonlinear Schrödinger (DNLS) equation plays a key
role due to its relevance to interpret a large number of
phenomena. This equation has revealed the occurrence of
a remarkable feature known as the classical self-trapping
mechanism42: the local accumulation of energy remains
trapped where it has been created. In the quantum
regime, a different situation arises in lattices with transla-
tional invariance. The quantum equivalent of the DNLS
equation is the Bose-Hubbard model43–45 in which the
nonlinearity favors a coupling between bosonic excita-
tions, called excitons in the following of the text. It leads
to the occurrence of specific states, namely two-exciton
bound states (TEBS)45–55, which have been observed in
various molecular structures56–60. A TEBS corresponds
to the trapping of two quanta over a few neighboring
sites. The two excitons form a pair that behaves as a
single particle delocalized along the lattice with a well-
defined momentum. Although the pair cannot localize
the energy, it takes a very long time to tunnel from one
lattice site to another. Therefore, the initial excitation
of two excitons on a single site produces a localization of
the energy over a time scale that increases with the non-
linearity. This localized behavior, known as the quantum
signature of the classical self-trapping, disappears in the
long-time limit due to the nonvanishing dispersion of the
bound-state energy band.

Beyond translational invariant lattices, TEBS were



2

studied very recently in a star graph61. In that case,
it has been shown that when the excitons are created on
the core of the star, the interplay between the architec-
ture of the graph and the nonlinearity favors the occur-
rence of a real quantum self-trapping. Quite weak in the
small nonlinearity limit, this self-localization is enhanced
as the nonlinearity increases. This feature originates in
the restructuring of the two-exciton eigenstates whose
localized nature intensifies with the nonlinearity. Never-
theless, the quantum self-trapping is never complete since
it is impossible to localize the entire exciton density.

In the present work, this previous study is generalized
to the case of an extended star graph within the strong
nonlinearity limit. In that case, owing to the extended
nature of the branches of the star, it will be shown that
the graph supports a TEBS that localizes exponentially
on the core of the star. As a result, depending on the
architecture of the network, a strong self-trapping can
be obtained when two excitons are initially created on
the core of the graph.

The paper is organized as follows. In Sec. II the ex-
tended star graph is introduced and the exciton Bose-
Hubbard Hamiltonian is defined. Then the Schrodinger
equation is established in the strong coupling. The prob-
lem is solved numerically in Sec. III and the results are
finally discussed and interpreted in Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

As shown in Fig. 1, we consider the extended star
graph formed by N branches that emanate out from a
central node. Each branch B`, with ` = 1, ..., N , corre-
sponds to a semi-infinite chain whose nodes are labeled
by the index s = 1, 2, 3, ... The central node, denoted
(` = 0, s = 0), is connected to the side site s = 1 of each
branch.

On this network, we are interested in the motion of
bosonic excitations, called excitons, whose quantum dy-
namics is described according as the Bose version of the
Hubbard model. Within this model, each site (`, s) is oc-
cupied by a molecular subunit whose internal dynamics

is described by an anharmonic oscillator. By denoting b†`s
and b`s the corresponding boson operators, the exciton
Hamiltonian is defined as (with the convention ~ = 1)

H =
∑
`s

ω0b
†
`sb`s −Ab

†
`sb
†
`sb`sb`s

+

N∑
`=1

Φ(b†00b`1 + b†`1b00)

+

N∑
`=1

∞∑
s=1

Φ(b†`sb`s+1 + b†`s+1b`s), (1)

where ω0 is the internal frequency of each oscillator, i.e.
the energy of an exciton located on a given site, A stands

for the attractive interaction between two excitons that
occupy the same site and Φ is the exciton hopping con-
stant between the linked nodes of the network.

l =1

l =N

l =2

l =3

l =...

s =1 s =2 s=3
l =0
s=0

FIG. 1: The extended star graph.

To describe the exciton dynamics, the number state
method is applied since the Hamiltonian H conserves
the exciton number49. Within this method, the Hilbert
space E is partitioned into independent subspaces as
E = E0 ⊕E1 ⊕E2 ⊕ ..., where Ev refers to the v-exciton
subspace. The Hamiltonian is thus block-diagonal, each
block corresponding to a particular exciton number.

In this work, our aim is to characterize the dynamics
that results form the initial creation of two excitons on
the core of the star. Therefore, we focus our attention on
the E2 subspace that can be entirely generated by using
the local basis {|`s, `′s′)}. A particular vector |`s, `′s′)
characterizes two excitons located onto the sites (`, s) and
(`′, s′), as

|`s, `′s′) =


b†`sb

†
`′s′ |�) if (`, s) 6= (`′, s′)

1√
2
b†2`s |�) if (`, s) = (`′, s′),

(2)

where |�) stands for the vacuum state. Note that the
basis is normalized and symmetrized to avoid counting
twice the same configuration.

B. Schrodinger Equation

In the local basis the two-exciton Schrodinger equation
is written as∑

`1s1

∑
`′1s

′
1

(`s, `′s′|H|`1s1, `′1s′1)Ψ`1s1`′1s
′
1

= ωΨ`s`′s′ . (3)

As discussed in detail in previous works50,55,61,
the calculation of the Hamiltonian matrix elements
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(`s, `′s′|H|`1s1, `′1s′1) reveals that the Schrodinger equa-
tion for the two-exciton wave function Ψ`s`′s′ is isomor-
phic to a tight-binding model for a single fictitious par-
ticle. This particle moves quantum mechanically on a
more complex network whose nodes are labeled by the
indexes (`s, `′s′). The architecture of that network is
schematized in Fig. 2. To be clear, when the fictitious

00

0B1 0B2 0B3 0B4 0B5

B B2 2B B1 1 B B3 3 B B4 4 B B5 5

B B1 2 B B2 3 B B3 4 B B4 5

B B1 3 B B2 4 B B3 5

B B2 5B B1 4

B B1 5

FIG. 2: Schematic view for N = 5 of the complex network
for the equivalence between the two-exciton dynamics and
the tight-binding model for a single fictitious particle (see the
text).

particle occupies the top site, this means that the two ex-
citons are located on the core of the star. In other words,
the top site for the fictitious particle corresponds to the
physical state |00, 00). Then, from a schematic point of
view, this site is linked to a set of blocks denoted (0B`)
that refer to a situation in which the first exciton is lo-
cated on the core whereas the second exciton belongs to
the branch B`. Finally, these blocks are linked to many
other blocks that correspond to the various ways for dis-
tributing the excitons, i.e. either when the two excitons
belong to the same branch (blocks (B`B`)) or when they
belong to distinct branches (blocks (B`B`′) with ` 6= `′).

Within this representation, the Hamiltonian can be
easily diagonalized numerically. The knowledge of the
corresponding eigenvalues and eigenvectors allows us to
solve the Schrodinger equation and to compute the var-
ious observables required for describing the dynamics.
However, in the strong coupling limit (A >> Φ), it turns
out that the dynamics is mainly governed by pair states
involving two excitons ”glued” to each other. Restrict-
ing our attention to those states, one obtains a simplified
problem which provides a simple view of the dynamics,
as illustrated in the next sections.

C. The strong coupling limit

In the strong coupling limit (A >> Φ), states involv-
ing two excitons on the same site, whose energy is equal
to 2ω0 − 2A, decouple from states in which two exctions
lye far from each other and whose energy is equal to
2ω0. Therefore, when the two excitons are initially cre-
ated on the core of the star, the quantum dynamics is
mainly confined in a restriction of the subspace of E2, as
shown in great details in Refs54,55. According to Fig. 2,
this restriction can be built by neglecting the influence
of the states describing two exciton belonging to differ-
ent branches. Therefore, disregarding the blocks (B`B`′)
with ` 6= `′, one obtains a first network for the equiva-
lence between the two-exciton dynamics and the tight-
binding model for a single fictitious particle, as shown in
Fig. 3a.

(0B )

(B B )

l

l l

00

2��-2A0

2��0 ��

2��

(0B )

(B B )

l

l l

s

s'

s

|l s,l s')
 s'>s

|00,l s)

(a)

(b)
(c)

FIG. 3: (a) Complex network for the equivalence between the
two-exciton dynamics and the tight-binding model for a sin-
gle fictitious particle in the strong coupling limit. (b) Tight-
binding model in a block (0B`). (c) Tight-binding model in
a block (B`B`) (see the text).

This network is a star graph in which the central node
refers to the pair state |00, 00). Then, this pair state is
connected to the states |00, `s = 1) that define the side
of the blocks (0B`). As illustrated in Fig. 3b, the block
(0B`) refers to the states |00, `s) in which an exciton
occupies the central node whereas the second exciton is
allowed to delocalize along the `th branch. It corresponds
to a tight-binding model on a semi-infinite chain. Finally,
the states of the block (0B`) are coupled with those of
the block (B`B`) which contains all the states |`s, `s′)
with s′ ≥ s. As shown in Fig. 3c, the block (B`B`),
that refers to configurations in which the two excitons
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occupy the same branch, yields a tight-binding model for
the fictitious particle on a 2D lattice which exhibits a row
of defects. Note that grey sites describe pair states with
self-energy 2ω0 − 2A whereas white sites, associated to
the energy 2ω0, refer to states formed by two excitons
located on different sites. The strength of the link is
either Φ or

√
2Φ, depending on the nature of the states

involved in the coupling.
In practice, when the two excitons are initially created

on the core of the extended star, the relevant states that
play the principal role are the pair states. Restricting our
attention to the dynamics of those states, the network
Fig. 3a can still be simplified by applying standard per-
turbation theory. To illustrated how perturbation theory
works, let us consider two nearest neighbor pair states
|`s, `s) and |`s+1, `s+1) in a given block (B`B`). These
two states, whose energy reduces to 2ω0 − 2A, do not
interact directly. However, they are coupled with a com-
mon state |`s, `s + 1) whose energy is 2ω0. Due to this

coupling, whose strength is equal to
√

2Φ, the energy of
each pair state is renormalized by an among −J with
J = Φ2/A. In addition, an effective interaction arises
between the two pair states whose intensity is −J .

By applying the perturbative approach to the net-
work drawn in Fig. 3a, the dynamics of the pair states
is described by an effective tight-binding Hamiltonian
whose graphical representation corresponds to the net-
work shown in Fig. 4. The architecture of this net-
work is identical to that of the physical extended star
graph Fig. 1, but the meaning of both the nodes and
the links are rather different. A node labeled by the in-
dexes (`, s) now refers to the pair state |`s, `s) involving
two excitons located on the same site (`, s) of the physi-
cal star graph. The central node corresponds to a defect
site whose self-energy 2ω0 − 2A − NΦ2/A is red-shifted
by an among ∆ = (N − 2)Φ2/A from the self-energy
ε0 = 2ω0 − 2A − 2Φ2/A of the branch nodes. This de-
fect arises because the pair state |00, 00) is coupled with
N branch states |00, `1), ` = 1, ..., N . By contrast, in a
given branch, a pair state |`s, `s) interact with two states
only, i.e. |`s − 1, `s) and |`s, `s + 1). Finally, the links
between nearest neighbor nodes define the effective pair
hopping constant equal to −J .

D. Effective Pair state Hamiltonian

According to Fig. 4, the pair dynamics is governed by
the following Effective Hamiltonian

H = (ε0 −∆)|0, 0〉〈0, 0|+
N∑
`=1

∞∑
s=1

ε0|`, s〉〈`, s|

−
N∑
`=1

J(|0, 0〉〈`, 1|+ |`, 1〉〈0, 0|)

−
N∑
`=1

∞∑
s=1

J(|`, s〉〈`, s+ 1|+ |`, s+ 1〉〈`, s|) (4)

�0

�����0

-J

s=1 s=2 s=3
l=1

l=2

l=3

l=...

l=N

FIG. 4: Effective Hamiltonian that governs the pair states
dynamics in the strong A limit (see the text).

where the notation |`, s〉 ≡ |`s, `s) has been used.
The Hamiltonian H is invariant under the discrete

rotation of angle θ = 2π/N and centered on the cen-
tral node. Consequently, its diagonalization is simpli-
fied when one works with an intermediate basis that in-
volves the pair state localized on the core |0, 0〉 and a

set of orthogonal Bloch states {|χ(k)
s 〉} with s ≥ 1 and

k = 1, ..., N , defined as

|χ(k)
s 〉 =

1√
N

N∑
`=1

|`, s〉e−ik`θ (5)

Within this basis, k is a good quantum number so that H
becomes block diagonal. It is expressed as a direct sum
H = H(1)⊕H(2)...⊕H(N) where H(k) is the block Hamil-
tonian associated to the quantum number k. Therefore,
two situations arise depending on the value of the integer
k. For all k 6= N , all the block H(k) are identical. They
are expressed as

H(k 6=N) =

∞∑
s=1

ε0|χ(k)
s 〉〈χ(k)

s |

−
∞∑
s=1

J(|χ(k)
s 〉〈χ

(k)
s+1|+ |χ

(k)
s+1〉〈χ(k)

s |) (6)

The Hamiltonians H(k 6=N) is the tight-binding Hamilto-
nian of a single fictitious particle moving a semi-infinite

1D chain. It involves the Bloch states |χ(k)
s 〉 with s ≥ 1

but it does not involve the pair state |0, 0〉 localized on
the core.

For k = N , a different situation occurs and the Hamil-
tonian H(N)is defined as

H(N) = (ε0 −∆)|0, 0〉〈0, 0|+
∞∑
s=1

ε0|χ(N)
s 〉〈χ(N)

s |

−
√
NJ(|0, 0〉〈χ(N)

1 |+ |χ(N)
1 〉〈0, 0|)

−
∞∑
s=1

J(|χ(N)
s 〉〈χ(N)

s+1|+ |χ
(N)
s+1〉〈χ(N)

s |) (7)
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According to Eq.(7), the pair dynamics is isomorphic to
that of a single fictitious particle moving of a semi-infinite
chain. This chain involves the sites s = 0, 1, 2, ... asso-
ciated to the states |0, 0〉 (a pair located on the core of

the extended star graph), |χ(N)
1 〉 ( a pair uniformly de-

localized over the first site s = 1 of the branches of the
extended star), |χ(N)

2 〉 (a pair uniformly delocalized over
the second site s = 2 of the branches of the extended
star), ... and so on. When compared with what happens
when k 6= N , the equivalent lattice exhibits two defects.
First, a defect is localized on s = 0 whose self-energy is
red-shifted when compared with that of the other sites.
Second, the strength of the link between the side site
s = 0 and the site s = 1 is equal to

√
NJ whereas in the

core of the chain this strength reduces to J .
Within this block diagonal representation of the ef-

fective pair state Hamiltonian H, the corresponding
Schrödinger equation can be solved numerically to de-

termine the eigenvalues {ω(k)
µ } and the associated eigen-

vectors {|ϕ(k)
µ 〉} labeled by the indexes k and µ. From the

knowledge of these eigen-properties, one can compute in
principle all the observables needed for characterizing the
dynamics, as illustrated in the next section.

III. NUMERICAL RESULTS

In this section, the previous formalism is applied by
considering the initial creation of two excitons on the core
of the star. The initial quantum state is thus defined as
|Ψ(0)〉 = |0, 0〉. Therefore, within the strong coupling
limit, the exciton dynamics is governed by the Hamilto-
nian H(N) only. The numerical diagonalization of H(N)

yields the eigenvalues {ωµ} and the eigenvectors {|ϕµ〉}
whose knowledge allows us to build easily the quantum
state |Ψ(t)〉 at time t. Note that the index N has been
removed to simplify the notations.

To characterize the dynamics, several observables can
be considered. In this work, we focus our attention on the
probability πs(t) to observe the pair at time t in the state

|0, 0〉 (for s = 0) or |χ(N)
s 〉 for s ≥ 1. This probability

provides information about the way the pair either prop-
agates or localizes along the star. Note that in practice, s
does not varies from zero to infinity. Instead, a maximum
s value is introduced to solve the problem numerically.
Therefore, πs(t) does not converge to a stationary value
because a unitary dynamics arises. Instead, it fluctuates
around a long-time average distribution called the limit-
ing probability π̄s defined as

π̄s =
1

T

∫ T

0

πs(t)dt (8)

In the following of the text, a special attention will be
paid on the influence of the branch number N on the
pair properties. The situation N = 1, for which the star
reduces to a semi-infinite chain, will be disregarded. Note
that Φ will be used as energy unit.

A. Space and time dynamics

FIG. 5: Space and time evolution of the probability πs(t) for
N = 2 and A/Φ = 5.

The space and time evolution of the probability πs(t)
is shown in Fig. 5 for N = 2 and A/Φ = 5. Initially
equal to unity, the population of the excited site, i.e. the
so-called survival probability to observe the pair where
it has been created, decreases slowly. It exhibits damped
oscillations whose mean period is approximately equal to
7.8Φ−1. Note that its first zero is reached for t = 6Φ−1.
This decay of the survival probability is accompanied by
the emission of a wave packet. This wave packet propa-
gates rather slowly along the network and it reaches the
site s = 37 at time t = 100Φ−1. The corresponding ve-
locity is thus approximately equal to v = 0.37Φ.

As shown in Fig. 6 for A/Φ = 5, a fully different be-
havior takes place when N = 3. Indeed, in the short
time limit, the population of the excited site rapidly de-
creases. Nevertheless, in a marked contrast with what
happens for N = 2, this decay is stopped so that π0(t)
does not tend to vanish. Instead, it exhibits damped os-
cillations around a finite value approximately equal to
0.25. In other words, 25% of the initial energy remains
stored in the core of the extended star. The remaining
part of the population propagates according as a wave
packet. The key point is that the velocity of this wave
packet is approximately equal to v = 0.38Φ, similarly to
what was observed for N = 2.

We have verified that the quantum self-trapping phe-
nomenon observed for N = 3 is enhanced as N increases.
To illustrate this feature, Fig. 7 shows the space and
time evolution of the probability πs(t) for N = 10 and
A/Φ = 5. In that case, the survival probability rapidly
converges towards 0.8, although it still shows damped
oscillations. In other words, 80% of the initial energy is
now trapped on the core of the star. As previously, this
quantum self-trapping is accompanied by the emission of
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FIG. 6: Space and time evolution of the probability πs(t) for
N = 3 and A/Φ = 5.

a wave packet that carries the remaining part of the en-
ergy. Note that the velocity of the wave packet is still
approximately equal to v = 0.38Φ.

FIG. 7: Space and time evolution of the probability πs(t) for
N = 10 and A/Φ = 5.

B. Survival probability

The time evolution of the survival probability π0(t) is
shown in Fig. 8 for A/Φ = 8 and for different N values.
For N = 2, as observed in Fig. 5 for A/Φ = 5, the sur-
vival probability exhibits damped oscillations. It slowly
decreases to reach a very small value which tends to zero
as the size of the branches of the star tends to infinity.
The mean period of the damped oscillations is approx-
imately equal to 12.5Φ−1 and the first zero is reached

for t = 9.6Φ−1. Note that when one compares these
results with those displayed in Fig 5, it turns out that
these times scale linearly with the coupling strength A.
As N becomes larger than 2, a quantum self-trapping
takes place. The survival probability no longer vanishes
in the long time limit. Instead, it converges towards a fi-
nite limiting value π̄0 by exhibiting damped oscillations.
Both the period and the amplitude of these oscillations
decrease as N increases. By contrast, the limiting value
increases with N .

FIG. 8: Time evolution of the survival probability π0(t) for
A/Φ = 8 and for different N values.

To clarify this point, the N dependence of the limit-
ing probability is shown in Fig. 9. By considering dif-
ferent A values, we have observed a fundamental prop-
erty, namely, the limiting probability does not depend on
the coupling strength A. It only depends on the branch
number N . For N = 3, π̄0 = 0.25 as observed in Fig.
6 indicating that 25% of the initial population remains
self-trapped on the core of the star. For N = 4, one
obtains a self-trapping of the initial population approx-
imately equal to 44%. The self-trapped population on
the core site increases with N . It reaches approximately
80% when N becomes larger than 10, and 90% when N
becomes larger than 20.

C. Energy spectrum

To understand these features, let us focus our attention
on the nature of the two-exciton eigenstates. The N de-
pendence of the two-exciton eigenenergies in the k = N
subspace is displayed in Fig. 10a for A/Φ = 5. When
N = 2, the energy spectrum exhibits a continuous band
centered on ε0. This band extends from ε0 − 0.4Φ to
ε0+0.4Φ so that the resulting bandwidth is equal to 0.8Φ.
Note that with A/Φ = 5, this bandwidth corresponds to
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FIG. 9: N dependence of the limiting probability π̄0 for
A/Φ = 8.

the value 4J , as expected form the properties of the semi-
infinite chain. As N increases, the spectrum still exhibits
the continuous band. Nevertheless, it now supports an
additional state whose energy is located below the band.
The energy of this state decreases as N increases. Equal
to ε0− 0.5Φ for N = 3, it reaches ε0− 1.82Φ for N = 10.
Note that the decay of this energy scales linearly with N .

The isolated low energy state defines a localized state
whose square modulus of the wave function is displayed
in Fig. 10b for various N values. It describes a pair
whose wave function localizes on the core of the extended
star and whose amplitude decreases as one moves away
from the core along the branches. The strength of the
localization is enhanced as N increases. To illustrate this
feature, we have studied the behavior of the localization
length ξ assuming that the low energy state wave function
scales as exp(−s/ξ) for large s values. It results that ξ
decreases as N increases. It is successively equal to 0.72,
0.45 and 0.38 for N = 5, 10 and 15, respectively.

IV. DISCUSSION AND CONCLUSION

In the previous sections, we have shown that in the
strong coupling limit and when the two excitons are cre-
ated on the core of the extended star, the quantum dy-
namics is dominated by pair states. In such states, the
two excitons are ”glued” to each other. They thus be-
have as a single particle whose dynamics is described by a
tight-binding model on a semi-infinite chain. Along that
chain, the site s = 0 refers to a pair located on the core of
the extended star whereas the sites s ≥ 1 describe a pair
uniformly delocalized over the sth sites of the branches
of the star.

In that context, our numerical results reveal the oc-

FIG. 10: (a) N dependence of the two-exciton eigenenergies
in the k = N subspace for A/Φ = 5. (b) Square modulus of
the low energy state wave function.

currence of a real quantum self-trapping whose proper-
ties mainly depend on the architecture of the extended
star. More precisely, when the branch number reduces to
N = 2, the energy does not self-localize. Instead, it prop-
agates along the branches according as a wave packet that
spreads out as it moves. This result is not surprising since
for N = 2, the extended star corresponds to an infinite
chain with translational invariance. In that case, TEBS
cannot localize the energy because they must share the
symmetry of the translation operator. They thus corre-
spond to Bloch waves that belong to a finite width energy
band.

In a marked contrast, when N ≥ 3, a fully different be-
havior arises. The two excitons experience a real quan-
tum self-trapping so that they tend to localize on the
core of the star. Quite surprisingly, the strength of the
self-localization does not depend on the coupling param-
eter A. Instead, it is governed by the branch number
so that it is enhanced as N increases. In fact, we have
shown that the quantum self-trapping originates in the
restructuring of the pair eigenstates. As N increases, a
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low-energy state occurs below a continuous band. This
state describes a pair whose wave function localizes ex-
ponentially on the core of the star. As a result, the initial
creation of two excitons on the core excites preferentially
this localized state. Therefore, the main part of the en-
ergy stays trapped where it has been deposited. Never-
theless, the initial quantum state also involves propagat-
ing states that belong to the continuous band, but to a
lesser extent. Consequently, a small part of the initial en-
ergy is carried by those states according as a wave packet
which emanates out from the central core and propagates
along the branches.

To interpret these observed features, let us characterize
the relevant pair states, i.e. the eigenstates of the Hamil-
tonian H(N) Eq.(7). As described previously, these pair
states are isomorphic to those of a single particle mov-
ing on the semi-infinite chain shown in Fig. 11. The

s=1 s=2 s=3s=0

-J -J�0 �0
�0�����0

- N J

FIG. 11: Effective tight-binding Hamiltonian that governs the
relevant pair states dynamics in the strong coupling limit.
s = 0 refers to a pair located on the core of the star whereas
s ≥ 1 describe a pair uniformly delocalized over the sth sites
of the branches.

corresponding Schrodinger equation is expressed as

−
√
NJϕ(1) + (ε0 −∆)ϕ(0) = ωϕ(0)

−
√
NJϕ(0) + ε0ϕ(1)− Jϕ(2) = ωϕ(1)

... = ...

−Jϕ(s− 1) + ε0ϕ(s)− Jϕ(s+ 1) = ωϕ(s)

... = ... (9)

where ϕ(s) is the pair wave function with energy ω.
According to the standard properties of the tight-

binding model62,63, it is straightforward to show that the
semi-infinite chain supports extended states. Indeed, far
from the side site s = 0, the Schrodinger equation Eq.(9)
reduces to that of a liner chain with translational invari-
ance. Therefore, when one considers the presence of the
boundary s = 0, it turns out that the Hamiltonian H(N)

exhibits eigenstates that correspond to superpositions of
forward and backward traveling waves as

ϕq(s) = β(+)
q eiqs + β(−)

q e−iqs. (10)

These waves, characterized by a real wave vector q, define
a continuous band ω ∈ [ε0−2J, ε0 +2J ] that contains the
eigenenergies ωq = ε0 − 2J cos(q). They describe pair
states uniformly delocalized over the branches of the star
and that propagate along that branches.

However, since the semi-infinite chain Fig. 11 ex-
hibits defects which break the symmetry of the prob-
lem, the Hamiltonian H(N) supports an additional state
whose properties strongly differ from those of the travel-
ing waves. To illustrate this feature, let us seek a solution

of Eq.(9) as62

ϕ(s) =

{
α if s = 0

βeiqs if s ≥ 1.
(11)

By inserting this solution in Eq.(9) for s > 1, it turns
out that the corresponding eigenenergy still satisfies the
dispersion relation of the infinite chain ω = ε0−2J cos(q).
Then, by inserting Eq.(11) in Eq.(9) for s = 0 and s = 1,
one obtains a relation between α and β, namely β =√
Nα. Moreover, the value of the wave vector q, still

unknown at this stage, is given by the following equation

(1−N)eiq + e−iq =
∆

J
. (12)

Since ∆/J = (N − 2), this equation exhibits a complex
solution q = i/ξ provided that N ≥ 2. The so-called
localization length ξ is defines as

ξ =
1

ln(N − 1)
. (13)

The resulting wave function is thus expressed as

ϕL(s) =

√
N − 2

N − 1

[
δs0 + (1− δs0)

√
Ne−s/ξ

]
, (14)

and the corresponding eigenergy is written as

ωL = ε0 − 2J − J (N − 2)2

N − 1
. (15)

In a perfect agreement with the results displayed in
Fig. 10, the solution Eq.(14) defines a localized state
provided that N > 2. It characterizes a pair whose wave
function decreases exponentially as one moves away from
the core of the extended star. The energy of the local-
ized state is located below the continuous band. It is
red-shifted from the low-energy band edge ε0− 2J by an
among δω = J(N − 2)2/(N − 1). Note that the case
N = 2 describes an extended state whose localization
length diverges (ξ → ∞) and whose energy is equal to
the band edge δω = 0. A remarkable feature is that most
of the properties of the localized state only depends on
the branch number. This is the case for the localiza-
tion length Eq.(13) that exhibits a logarithmic divergence
when with respect to N . This is also the case for the wave
function Eq.(14) whose localized nature is enhanced as
N increases. Only the energy involves the nonlinearity A
through its dependence with respect to the effective pair
hopping constant J = Φ2/A.

The initial creation of two excitons on the core of the
star brings the pair in a superposition that involves both
the localized state and the traveling waves. According to
Eq.(14), the weight of the localized state equal to (N −
2)/(N − 1) increases as N increases. By contrast, the
weight of the traveling waves, that reduces to 1/(N − 1),
decays with the branch number. As time elapses, the
pair quantum state behaves as

Ψs(t) = e−iωLtϕL(s)ϕ∗L(0) +
∑
q

e−iωqtϕq(s)ϕ
∗
q(0). (16)
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Two situation arises. For N = 2, ϕL(s) = 0 so that
Ψs(t) reduces to a traveling wave. In that case, the ex-
tended star corresponds to an infinite chain with trans-
lational invariance so that there is no self-trapping. The
pair behaves as a single particle that delocalizes along
the chain, the corresponding propagator being given by
a Bessel function of the first kind as Ψs(t) ∝ Js(2Jt)

54.
By contrast, when N ≥ 3, the first term in the right end
side of Eq.(16) shows that the main part of the energy
remains trapped in the localized state. It self-localizes
in an exponential way in the neighborhood of the cen-
tral core of the star graph. The second term in the
right end side of Eq.(16) indicates that the remaining
part of the deposited energy is carried by the traveling
waves. These waves are responsible for the emission of
a wave packet that propagates along the branches of the
extended star. In the long time limit, i.e. when the wave
packet has left the excited region, the quantum proba-
bilities πs(t) = |Ψs(t)|2 converge towards their limiting
values π̄s = |ϕL(s)ϕ∗L(0)|2 expressed as

π̄s =

(
N − 2

N − 1

)2 [
δs0 + (1− δs0)Ne−2s/ξ

]
. (17)

As observed in the numerical section (see Fig. 9), the
limiting probabilities only depends on the branch num-
ber. The survival probability π̄0 = (N − 2)2/(N − 1)2

increases with N . By contrast, π̄1 first increases with the
branch number until N reaches 4. Then, it decreases as
N increases. Finally, for s ≥ 2, π̄s is a decaying function
of the branch number provided that N ≥ 3.

These results clearly show that in the strong coupling
limit, the branch number is the key parameter that con-
trols the strength of the quantum self-trapping. As N
increases, an important restructuring of the pair eigen-
states arises. The localized nature of the low-energy state
is strongly enhanced so that the self-localization of the
deposited energy intensifies.

V. CONCLUSION

In the present paper, the Bose-Hubbard model has
been used to analyze the quantum self-trapping in an

extended star graph. Within this model, we have shown
that in the strong coupling limit and when two excitons
are created on the core of the star, the dynamics is dom-
inated by pair states, that is “glued” excitons behaving
as a single particle. It turns out that the degree N of
the core site governs the pair properties so that two sit-
uations arises. When N = 2, the star reduces to a linear
chain so that the energy does not self-localize. Instead,
it propagates along the branches of the star according
as a wave packet that spreads out as it moves. Con-
versely, when N ≥ 3, an important restructuring of the
pair eigenstates arises and a low-energy localized state
occurs. This state describes a pair whose wave function
localizes exponentially on the core of the extended star.
The initial creation of two excitons on the core excites
preferentially this localized state so that the main part
of the energy self-localizes where it has been deposited.
Nevertheless, a small part of the initial energy is carried
by the remaining traveling waves according as a wave
packet which emanates out from the central core and
propagates along the branches. As N increases, this pro-
cess is enhanced and a stronger quantum self-trapping
takes place.

This work is based on the assumption of a strong
exciton-exciton coupling. Consequently, the coupling
strength does not play a significant role in the occur-
rence of a self-trapping, apart from allowing the creation
of pair states. In forthcoming works, it would be wise
to go beyond this approximation in order to investigate
the role of the coupling on the ability to self-localize the
energy. Moreover, it would be interesting to analyze the
influence of the initial conditions, i.e. to create either a
pair outside the core of the star or two excitons lying far
apart. The self-trapping could compete with degeneracy-
induced localization that arises in complex networks.
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