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Abstract. Fish-Eye image processing with conventional Machine Learn-
ing algorithms such as Convolutional Neural Networks is a challenging
task because of the distortion effects induced by dewarping the raw hemi-
spherical images into the Euclidean plane. We introduce in this paper an
approach based on the emerging field of Geometric Deep Learning in
which hyperbolic projection techniques are coupled with equivariance
mechanisms in order to preserve native geometrical dependencies and to
achieve robustness with respect to natural variations in the perception of
the Fish-Eye images. This work in particular motivates the development
of efficient SU(1, 1) and SL(2,R) Equivariant Neural Networks.

Keywords: Fish-Eye image · Hyperbolic Geometry · Equivariant Neu-
ral Networks · Geometrical Robustness · Lie Groups.

1 Introduction and Motivations

Fish-Eye lenses [3] are hemispherical sensors (180° field-of-view) and the native
geometry of the corresponding images is therefore spherical, leading to distor-
tion effects once projected onto the 2D Euclidean plane, as illustrated in Figure
1. Using conventional Deep Learning algorithms such as Convolutional Neural
Networks (CNN) [22] for Fish-Eye image processing therefore does not appear
well suited and other approaches have to be envisioned for this purpose.

More precisely, the problem of Fish-Eye image processing with Deep Learning
algorithms is getting more and more traction as Fish-Eye sensors are being
used for practical applications, such as perception tasks for autonomous driving
[26,30], visual-inertial odometry [15,23] and drone operation [24], with 3 main
families of approaches being considered:

– Adjustment of usual algorithms to take into account distortion effects during
the learning phase performed on the projected images, including the use of
data-augmentation techniques [27,29,13] and that of deformable convolution
operators [9,25]
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Fig. 1. First high-resolution color image sent by Hazard Cameras (Hazcams) of NASA’s
Perseverance Mars vehicle after its landing on February 18, 2021. Distortion effects are
in particular visible through the curved horizon line. Photo: NASA / JPL-Caltech.

– Transfer of the algorithms learned on usual planar images by modifying the
algorithmic characteristics (e.g., weights, convolution kernels, etc.) a poste-
riori [28,8]

– Using algorithms operating directly in spherical geometry for omnidirectional
images (360° field-of-view), as in [14]. In this context, spherical CNN [7,10,17]
achieve equivariance with respect to the 3D rotation group SO(3), the input
images being represented as signals on the 2D-sphere. Although operating
in the native geometry of the inputs, this approach is however not optimal
for Fish-Eye images with hemispherical support.

Although some progress has been made in order to adapt or patch existing
architectures to account for the distortion effects, no methodology has been
proposed to generalize the translation equivariance property of CNN, which is
highly beneficial from both accuracy and robustness standpoints when working
with planar images, to the case of Fish-Eye images as it was done with the
introduction of spherical neural networks for omnidirectional images.

Hence, we propose in this paper to remedy this point by using projection tech-
niques to represent the native images as signals in the 2D hyperbolic space and
then by building neural networks which are equivariant [6] to the group acting
on the considered hyperbolic model (e.g., Poincaré Disk D, Poincaré Half-Plane
H2, etc.), therefore generalizing spherical CNN. We do not focus here on the
details underlying the building of such neural networks (see for instance [20]
for details regarding SU(1, 1) Neural Networks for signals on D), but we rather
provide a generic framework for Fish-Eye image processing through the combini-
nation of hyperbolic geometry and equivariance mechanisms, with corresponding
projection formulas and associated group actions.

We emphasize here that leveraging on hyperbolic projections to cope with
Fish-Eye image distortion effects has also been considered in [1] for building
deformable convolution kernels through hyperbolic graph embedding techniques.
Although anchoring in similar theoretical grounds, the approach we propose
here is conceptually different and goes one step further by allowing processing
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the Fish-Eye images with equivariant architectures in the 2D hyperbolic space,
hence preserving the native geometric dependencies.

Fig. 2. Link between the Hemisphere model (green), the Poincaré Disk model (red)
and the Poincaré Half-Plane model (blue), plotted using the sagemanifolds package
https://sagemanifolds.obspm.fr/index.html.

2 Hyperbolic Plane Models and Projections

There are several models that are commonly used in practice for representing
the 2-dimensional hyperbolic space, including in particular the Hemisphere, the
Poincaré Half-Plane and the Poincaré Disk models - see [5] for more details.

The Hemisphere S 1
2 model is part of the Riemann Sphere C∞ and makes

use of its upper half defined by the equation x2 + y2 + z2 = 1, for z > 0. The
Poincaré Disk D model relies on the open unitary complex disk containing the
elements z = x + iy ∈ C for which x2 + y2 < 1. Finally, the Half-Plane model
H2 relies on the upper part of the complex plane consisting in the elements
z = x + iy ∈ C with y > 0. The Poincaré Disk D can be obtained through the
stereographic projection πD of S 1

2 from the south pole of C∞, i.e. the point of
Cartesian coordinates (0, 0,−1), onto the plane z = 0. Similarly, the Half-Plane
H2 is obtained through the stereographic projection πH2

of S 1
2 from the point

(−1, 0, 0) of C∞ onto the plane x = 1. These 3 different models are represented
in Figure 2.

We assume here that the input native Fish-Eye images are given as signals
on the hemisphere S 1

2 , so that a RGB image will be represented by a function
f : S 1

2 → R3 , where each component represents one channel. Considering the
above formalism, the Fish-Eye image f can be projected onto a signal supported
by D (resp.H2) by considering fD = f ◦ πD (resp. fH2

= f ◦ πH2
). Figures 3

https://sagemanifolds.obspm.fr/index.html
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and 4 show an example of the several representations of the same image when
considered with support in S 1

2 , H2 and D.

Fig. 3. Lenna picture mapped onto S
1
2 by projection into a well chosen tangent plane

and then embedded into the 3D Euclidean space R3

3 Group Action and Equivariance

3.1 Homogeneous Spaces

The Poincaré Half-Plane and Disk are both homogeneous spaces in the sense
that they can be written as a quotient space G/H between a given group G and
one of its stabilizer subgroup H. More precisely, we have

H2 = SL(2,R)/ SO(2) and D = SU(1, 1)/U(1) (1)

where we have made use of the following Lie groups, with the matrix multipli-
cation as internal composition law:

SU(1, 1) =

{
gα,β =

[
α β
β̄ ᾱ

]
, |α|2 − |β|2 = 1, α, β ∈ C

}
(2)

SL(2,R) =

{
ga,b =

[
a b
c d

]
, ad− bc = 1, a, b, c, d ∈ R

}
(3)

U(1) =

{[
α
|α| 0

0 ᾱ
|α|

]
, α ∈ C

}
(4)

SU(1, 1) (resp. SL(2,R)) has a transitives action ◦D (resp. ◦H2
) a on D (resp. H2)

given by:

∀x ∈ D, gα,β ◦D x =
αx+ β

β̄x+ ᾱ
and ∀y ∈ H2, ga,b ◦H2 y =

ay + b

cy + d
(5)
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For the action ◦D, U(1) is a stabilizer subgroup fixing the Poincaré Disk center
OD ∈ D while SO(2) stabilizes the element i ∈ H2 for ◦H2

.

Fig. 4. Projection of the hemispherical Lenna image represented in Figure 3 onto the
Poincaré Half-Plane H2 (left) and the Poincaré Disk D (right).

3.2 Equivariance and Geometric Deep Learning

Let’s first introduce the formal definition of equivariance by considering an op-
erator F : X → Y , where X and Y are two spaces endowed with the actions
◦X and ◦Y of a given group G. The operator F is said to be equivariant with
respect to the action of G if

∀g ∈ G, ∀x ∈ X, F (g ◦X x) = g ◦Y F (x) (6)

Equivariance is key for Machine Learning applications as highlighted by the suc-
cess of Convolutional Neural Networks (CNN) for image processing tasks [22],
which in particular achieve equivariance with respect to translations through
the use of the 2D planar convolution operator. Building Machine Learning ar-
chitectures achiving more generic equivariance mechanisms and more generally,
making use of the native geometry of the inputs data, is an active field of research
referred to as Geometric Deep Learning (GDL) [4,12]. More precisely, GDL is
getting more and more traction because of its successful application to a wide
range of domains [2,11,21]. In this context, Equivariant Neural Networks (ENN)
have been shown to be superior to conventional Deep Learning approaches from
both accuracy and robustness standpoints and appear as a natural alternative
to data augmentation techniques to achieve geometrical robustness with respect
to semantically preserving transforms such as isometries. ENN were initially
introduced in [6] for image classification by leveraging on group-based equiv-
ariant convolution operators and are now achieving state-of-the-art accuracies
for a wide range of applications, including for Computer Vision, Graph and
Point Cloud processing, Simulation and Trajectory prediction, in Reinforcement
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Learning and for Time Series Analysis. Furthermore, ENN are also very appeal-
ing from a safety standpoint as achieving robustness-by-design, making them
generally promising for Defense related applications [19].

For Fish-Eye image processing, the projection mechanisms onto D and H2

and associated group actions previously introduced motivate the use of ENN
achieving equivariance with respect to SU(1, 1) or SL(2,R). In this context, the
approach introduced in [20] can be applied directly for the case of SU(1, 1) by
projecting the initial Fish-Eye data f to fD as mentioned in Section 2 . Lever-
aging on the formalism of [20], further work will investigate the possibility of
building SL(2,R) ENN to handle the projection onto H2, while other techniques
than group-based convolution such as the use of Differential Invariant Theory
as in [18] will also be considered in this context.

4 Practical Considerations

In order to project the hemispherical view of a Fish-Eye lens onto the plane, each
lens has a projection formula describing the relationship between the incident
angle and the position on the projected image. The choice of the distortion being
a degree of freedom, several projection formulas exist (see Figure 4 of [3]), with
for example rd = fθ (equidistant), rd = 2f sin

(
θ
2

)
(equisolid), rd = f sin (θ)

(orthographic) and rd = 2f tan
(
θ
2

)
(stereographic). In terms of notations, θ

refers here to the angle of incidence measured from the optical axis, f to the
focal length and rd to the distance to the focal plane measured from the optical
axis, as shown in the Figure 2 of [16].

We consider in the following that the distortion formula used by the consid-
ered lens is specific to it (manufacturer’s data or empirical estimate) and that it
is given by the following equation:

rf,θd = D (f, θ) (7)

where D is a deterministic function such that φ : θ → D (f, θ) is invertible for
a given focal lengthf . In order to apply the projection techniques described in
Section 2, we first need to map the input signal back to the hemisphere through
the computation of θ = φ−1

(
rf,θd

)
.

It should be noted here that in the case where the Fish-Eye lens uses a
stereographic distortion, this step only consists in a scaling of the native signal by
a factor of 1/(2f), in order to bring the projection back into the equatorial plane.
These lenses are therefore of particular interest in the context of our approach,
although they are not very usual. The Samyang 8 mm f/3.5 and Samyang 8 mm
f/2.8 lenses appear to be concrete examples of such lenses3.

5 Conclusions and Further Work

We have introduced in this paper an approach for Fish-Eye image processing
coupling hyperbolic projection techniques and equivariance mechanisms, by in
3 https://en.wikipedia.org/wiki/Fisheye_lens

https://en.wikipedia.org/wiki/Fisheye_lens
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particular considering the transitive action of SU(1, 1) on the Poincaré disk D
and that of SL(2,R) on the Poincaré upper Half-Plane H2.

Further work will include implementing and evaluating corresponding equiv-
ariant neural networks from both accuracy and robustness standpoints, and to
conduct some benchmarking with more conventional approaches such as distor-
tion learning through augmentation, transfer learning techniques and the use of
deformable kernels.
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