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Abstract 

Atomically-precise gold nanoclusters (AuNCs) belong to a relevant area offering useful 

templates with tunable properties towards functional nanostructures. In this work, we 

explored the feasible incorporation of N-heterocyclic carbenes (NHCs), as part of the 

protecting-ligand shell in AuNCs. Our results based on the substitution of phosphine ligands 

in experimentally characterized AuNCs by NHCs in various 8-electron superatoms Au13 and 

M4Au9 (M = Cu, Ag) indicate similar electronic structure and stability, but somewhat 

different optical properties. These findings support the feasible obtention of novel targets for 

explorative synthetic efforts featuring NHC-ligands on medium-sized species based on the 

recurrent Au13 icosahedral core. The hypothetical species appear to be interesting templates 

for building blocks in nanostructured materials with tuned properties, which encourage 

experimental exploration of ligand-versatility in homo and heterometallic superatomic 

clusters. 
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1. Introduction 

Atomically precise gold nanoclusters (AuNCs) have been the subject of intense research over 

the past decade
1–6

 owing to their potential use in emerging technological applications.
7–15

 

Their unique molecule-like and size-dependent properties, as well as their rich structural 

diversity,
1,16–23

 provide the opportunity to design new species, opening new opportunities for 

tailorable applications.
8,24,33–37,25–32

  The AuNC structures are generally composed of a central 

metallic core, protected (passivated) by various ligands.
29,38–41

 The Au13-centered icosahedron 

is one of the most recurrent core motifs. It was first characterized in [Au13(PPhMe2)10Cl2]
3+

 

by Mingos and coworkers,
42

 and later in the extensive research on [Au25(SR)18]
- 
species.

37,43–

46
 

The central metallic core exhibits particular electronic and structural features accounting 

for the stability of the overall cluster,
47–52

 with a specific number of bonding cluster electrons 

(ce), i.e., electrons provided by the 6s(Au) orbitals. For example, the Au13
5+ 

core of 

[Au13(PPhMe2)10Cl2]
3+ 

is an 8-ce species with a 1S
2 

1P
6
 electronic structure according to the 

superatom model.
29,53,54

 The highest occupied and lowest unoccupied molecular orbitals 

(HOMO and LUMO) correspond to the 1P
6
 and 1D

0
 shells, respectively.

29,53,54
  Furthermore, 

different synthetic strategies allow further exploration of the versatility of the cluster stability 

and properties by varying the number and nature of its attached ligands. For example, the 

classical [Au13(dppe)5Cl2]
3+

 (dppe = 1,2-bis(diphenylphosphino)ethane) possesses enhanced 

optical, luminescent, and singlet-oxygen sensitization capabilities, as reported by Konishi and 

Li.
55,56

  Whereas this cluster is decorated with two Cl atoms, the number of chlorides can be 

increased to three or four.
56

 In addition, the Au13Cl4 species has been shown to have related 

Au13Br4 and Au13I4 counterparts.
57 

Moreover, the recent incorporation of N-heterocyclic carbenes (NHC) as neutral ligands of 

gold AuNCs,
58

 as reported for the related [Au13(NHC)9Cl3]
2+

 cluster by Crudden and 

coworkers,
59

 and which displays a high emission quantum yield, allows further development 

of more versatile ligands owing to the central role of NHC ligands in organometallic 

chemistry.
60–66

 Hence, their evaluation and comparison to phosphines may encourage further 

ligand engineering efforts and synthetic exploration of such species,
67,68,77–80,69–76

 offering the 

opportunity of tuning nanocluster properties. 

We have recently shown from density functional theory (DFT) calculations that NHCs are 

at least as efficient as phosphines for stabilizing AuNCs of small size and that they should 

exhibit somewhat related optical properties.
81

 In this work, we extend our investigations to the 
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substitution of phosphine ligands by NHCs in a wide series of experimentally characterized 

halogen/phosphine-protected 8-ce superatomic Au13 and MnAu13-n clusters (M = Cu, Ag, Pd). 

This work mainly focuses on the substitution-induced change of the stability, electronic 

structure, and optical (including emissive) properties. Meanwhile, the influence of changing 

of the type and number of halogen ligands is also investigated for both the phosphine- and 

NHC-protected analogues. The considered halogen/phosphine-protected Au13 series are 

composed of the experimentally characterized compounds as follows, [Au13(PPhMe2)10Cl2]
3+ 

(Au13Cl2-P’),
42

 [Au13(dppe)5Cl2]
3+ 

(Au13Cl2-P’e),
56

 [Au13(PMePh2)9Cl3]
2+ 

(Au13Cl3-P’),
57

 

[Au13(PMePh2)8Cl4]
+ 

(Au13Cl4-P’),
82

 [Au13(dppp)4Cl4]
+ 

(Au13Cl4-P’p),
83,84

 

[Cu4Au9(PMePh2)8Cl4]
+ 

(Cu4Au9Cl4-P’),
82

 [Ag4Au9(PMePh2)8Cl4]
+ 

(Ag4Au9Cl4-P’),
82

 

[PdAu12(dppe)(PPh3)6Cl4] (PdAu12Cl4-P’/P’e),
44

 [Au13(PMePh2)8Br4]
+
 (Au13Br4-P’),

57
 and 

[Au13(PMePh2)8I4]
+ 

(Au13I4-P’) (dppp = 1,3-bis(diphenylphosphino)propane).
57

 To better 

understand the role of the halogen ligands, the homoleptic non-halogenated [Au13(dppm)6]
5+

 

(Au13-P’m) (dppm = 1,1-bis(diphenylphosphino)methane)
85,86

 clusters was also included for 

comparison. All the investigated compounds are 8-ce superatoms. Some of them contain di-

phosphines (P’m, P’e, P’p), whereas others have simple phosphines (P’). Nevertheless, the 

X-ray and optical data are available for most of them. The hypothetical NHC homologues 

were designed by replacing the mono-phosphines by the mono-carbene N,N-

diisopropylimidazolidene ligands (denoted as NHC’ in the following), taken from the 

literature.
58,87

 The dppm, dppe, and dppp ligands were substituted by NHC counterparts, 

namely 1,3-bis(N-isopropylimidazolidenyl)methane (di-NHC’m), 1,3-bis(N-

isopropylimidazolidenyl)ethane (di-NHC’e) and 1,3-bis(N-isopropylimidazolidenyl)propane 

(di-NHC’p), respectively (see Scheme 1). These carbenes are representative of standard 

NHCs and exhibit realistic steric volumes. Thus, the computed hypothetical NHC clusters are 

[Au13(di-NHC’m)6]
5+

 (Au13-C’m), [Au13(NHC’)10Cl2]
3+ 

(Au13Cl2-C’), [Au13(di-

NHC’e)5Cl2]
3+ 

(Au13Cl2-C’e), [Au13(NHC’)9Cl3]
2+ 

(Au13Cl3-C’), [Au13(NHC’)8Cl4]
+ 

(Au13Cl4-C’), [Au13(di-NHC’p)4Cl4]
+ 

(Au13Cl4-C’p), [Cu4Au9(NHC’)8Cl4]
+ 

(Cu4Au9Cl4-C’), 

[Ag4Au9(NHC’)8Cl4]
+ 

(Ag4Au9Cl4-C’), [PdAu12(di-NHC’e)(NHC’)6Cl4] (PdAu12Cl4-C’/C’e), 

[Au13(NHC’)8Br4]
+
 (Au13Br4-C’) and [Au13(NHC’)8I4]

+ 
(Au13I4-C’). See Table S1 

(Supplementary Materials) for the full formula list of the investigated compounds and their 

corresponding abbreviations. 
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Scheme 1. The NHC ligands considered in this paper. 

 

2. Computational Details  

Geometry optimizations were performed at the DFT level using the Gaussian 16 package.
88

 

The Becke-Perdew exchange-correlation functional (BP86),
89,90

 together with the Def2-SVP 

basis set,
91

 which includes effective core potentials accounting for scalar relativistic effects, 

were used. Grimme’s D3 empirical corrections
92

 were included in order to take into account 

dispersion effects. All the optimized singlet ground states structures were confirmed as 

genuine minima on their potential energy surface by vibrational frequency calculations. The 

natural atomic orbital (NAO) populations and Wiberg bond indices (WBIs) were calculated 

using the NBO 6.0 program,
93 

with the help of Amsterdam Density Functional code 

(ADF2017).
94,95

 UV-vis optical transitions were computed using the time-dependent DFT 

(TD-DFT) method, at the B3LYP
96

/Def2-SVP level, which provided a good quantitative 

agreement with the experimental spectra, the deviations between the computed transitions and 

their corresponding experimental values being always less than 80 nm. The UV-vis spectra 

were simulated from the computed TD-DFT transition energies and their oscillator strengths 

by using the SWizard program,
97

 with each transition being associated with a Gaussian 

function of half-height width equal to 2000 cm
-1

. All the computed UV-vis transition 

wavelengths reported below correspond to individual computed transitions. To calculate the 

fluorescence emission wavelengths, the geometry of the excited singlet states were optimized 

by TD-DFT at the PBE0
98

/Def2-SVP level with the Gaussian16 program. To calculate the 

phosphorescence emission wavelengths, the triplet state geometries were firstly optimized by 

DFT calculations at the BP86/Def2-SVP level, and their energies, as well as those of their 

corresponding singlets, were recalculated by single point calculations at the PBE0
98

/Def2-

SVP level, which delivers better agreement to the experimentally available phosphorescence 

data. 
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Assuming that M designates any metal, Y any halogen ligand and X the whole neutral 

ligand (phosphine or NHC) shell, EPrep and EBond energies discussed below are defined as 

follows: EPrep. is the energy cost afforded by the bare 8-electron [M13]
x+

 metal core to go from 

its equilibrium structure to that it adopts in the equilibrium structure of the ligated M13-X or 

M13Yn-X clusters. EBond is calculated according to the following equations in which all of the 

considered (frozen) fragment structures are taken from the M13-X and M13Yn-X optimized 

geometries. EBond = E(M13-X) - E([M13]
x+

) - E(X) or EBond = E(M13Yn-X) - E([M13Yn]
(x-n)+

) - 

E(X).  

 

3. Results and Discussion 

Figure 1. Optimized structures of M13Yn-X (M = Au, Cu, Ag, Pd; Y = Cl, Br, I; n = 0, 2-4; X 

= P, C). The golden, green, reddish brown, light grey, dark blue, brown and purple spheres 

are Au, Cl, Cu, Ag, Pd, Br and I atoms, respectively. 

 

The optimized geometries of the phosphine-protected clusters and of their NHC analogues 

are shown in Figure 1, where for sake of simplicity, M13 denotes both monometallic Au13 and 

heterometallic cluster cores. The atomic bond distances of the M13-P were found to be in 

good agreement with their corresponding X-ray structure data (Tables S2-S8). All the 
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calculated compounds are isoelectronic, with a closed shell 8-ce 1S
2 

1P
6
 superatom 

configuration. The HOMO-LUMO gaps of the M13-P series are found in the range of 1.4–2.2 

eV (Tables S1-S7), which is consistent with the chemical stability of this kind of compound. 

Interestingly, the M13-C compounds show HOMO-LUMO gaps that are slightly larger than 

that of their M13-P counterparts, indicating rather similar stability. The Kohn-Sham frontier 

molecular orbital diagrams of both M13-P and M13-C series are shown in Figure 2. The 

HOMO and LUMO levels are all of 1P and 1D nature, respectively. They are plotted in 

Figure S1-S11. Unsurprisingly, the frontier orbitals of both the M13-P (Figure 2a) and M13-C 

species (Figure 2b) are shifted up in energy when the cluster cationic charge decreases from 

+5 (M13-X) to 0 (PdAu12Cl4-X’/X’e). As a consequence, this energy upshift follows the 

increase of the number of chloride ligands. As a whole, the related electronic structures along 

with the series, suggest that the hypothetic NHC species should have similar properties as 

their phosphine relatives, allowing further experimental exploration. 

 

Figure 2. Kohn-Sham frontier molecular orbital diagrams of a) M13Yn-P and b) M13Yn-C (Y 

= Cl, Br, I; n = 0, 2-4). The grey boxes represent the 5d(Au)-block, the red and blue levels 

correspond to the superatomic 1P and 1D orbitals, respectively. 
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Thus, the energies of the HOMOs and LUMOs can be tuned by varying the composition of 

the ligand shell and/or that of the metal core. This capability enables to include such well-

defined molecular devices into heterojunction, with more positive or more negative frontier 

orbital energies with respect to that of the valence band of a semiconductor in a 

heterojunction array,
99

 allowing the control of the location of both electrons and holes in 

charge transfer mechanisms.  

In order to evaluate the stabilizing role of the different ligand shells in the M13-P and M13-

C series, a bonding energy analysis was carried out, not only for the comparison of the 

energies of interaction between the ligands and metal core, but also for an evaluation of the 

energy cost associated with the distortion afforded by the metal core upon ligand 

complexation. To this end, the corresponding bare metal cores were optimized. The energy 

cost afforded by the bare metal cores to prepare their structure to bond with the ligands (EPrep, 

see Computational Details) is given in Table 1. The computed EPrep values range between 

0.10–0.33 eV, for the gold-halide cores and tend to increase for the doped M4Au9Cl4-X’ (M = 

Cu, Ag) species. It is clear that the evaluated EPrep in the M13-C series is smaller than those of 

M13-P, which means that the metal cores in M13-C species cost less energy to reach their 

equilibrium states, suggesting that NHC-derivatives exhibit a less rigid ligand-shell, 

introducing more flexibility to the resulting cluster. This can be useful for studies on cluster 

core fluxionality, as explored for Au25(SR)18 and Au38(SR)24 species group.
100,101

 

The ligand-core interaction energies for the series evaluated by the computed bonding 

energies (EBond, see Computational Details) for the neutral phosphine and NHC ligand shell 

(Table 1) show that NHCs are slightly more strongly bonded than the phosphine analogues in 

all the investigated cases, suggesting that NHC-protected gold and gold-rich M13 clusters 

should exhibit a somewhat enhanced thermodynamic stability, which can be useful as ligand-

engineering strategy to achieve more stable building-blocks. Interestingly, the M13-C cluster 

cores bear more positive charges than their M13-P counterparts (Table 1), as the result of the 

enhanced core-ligand back-bonding.
102

 This is in line with the fact that the frontier orbital 

energies of the former species are slightly higher than that of the latter (Figure 2). On the 

other hand, no clear relationship between the core charges and the number of chloride ligands 

could be traced. 
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Table 1. Energetic data associated with cluster bonding denoting the cluster core preparation 

energy (EPrep) and ligand-core interaction (EBond) (values in eV), and the natural bond order 

(NBO) charges of the M13 core (q core, in a.u). 

Compound 

Corresponding 

optimized bare 

metal core
 

X = P 

EPrep 

X = C 

EPrep 

X = P 

EBond 

X = C 

EBond 

X = P 

q core 

X = C 

q core 

Au13-X’m 

[Au13]
5+ 

(Ih) 

0.19 0.16 -57.79 -62.78 1.35 2.35 

Au13Cl2-X’ 0.20 0.10 -39.48 -45.44 1.22 2.34 

Au13Cl2-X’e 0.32 0.19 -40.50 -44.87 1.47 2.21 

Au13Cl3-X’ 0.24 0.14 -33.26 -38.61 1.49 2.25 

Au13Cl4-X’ 0.32 0.21 -27.75 -32.02 1.33 2.21 

Au13Cl4-X’p 0.33 0.18 -27.82 -30.87 1.58 2.19 

Au13Br4-X’ 0.33 0.19 -27.54 -31.58 1.34 2.10 

Au13I4-X’ 0.31 0.16 -27.13 -30.93 1.11 1.99 

Cu4Au9Cl4-X’ 
[Cu4Au9]

5+ 

(C2v) 
0.41 0.21 -27.45 -30.80 

1.96 2.77 

Ag4Au9Cl4-X’ 
[Ag4Au9]

5+ 

(C2v) 
0.51 0.40 -27.76 -31.65 

1.75 2.59 

PdAu12Cl4-X’/X’e [PdAu12]
4+ 

(Ih) 0.28 0.09 -23.36 -27.44 1.45 1.90 

 

The optical properties of AuNCs have been widely explored, owing to their potential use 

as optical devices,
4,103

 which can be tuned by involving different ligands.
48,104–107

 In this sense, 

the variation of the optical properties of the investigated compounds was evaluated with 

respect to the nature of the cluster core and the different ligand shell. The TD-DFT simulated 

UV-vis spectra of M13-P and M13-C series are gathered in Figure 3, and the major computed 

electronic transition energies associated with them are given in Table 2, together with the 

corresponding experimental λmax values taken from the literature, where available.  

The shapes of the computed UV-vis spectra for the M13-P series were found to have a 

good match with that of the available experimental spectra. In all the cases, the lowest energy 

band is associated with a transition of mostly (but not exclusively) HOMO → LUMO nature, 

and in any case is of 1P → 1D metal-to-metal charge transfer (MMCT) nature (see Figures 

S1-S11). Figure S12 illustrates the energy shift of the lowest energy transition wavelength 

when going from the phosphine species to their NHC homologues. 
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Figure 3. Simulated UV-vis absorption spectra for the computed phosphine derivatives (solid 

line) and NHC derivatives (dotted line) clusters. 

 

Table 2. Major TD-DFT-Computed UV-Vis excitation energies. Experimental values are also 

reported, when available in the literature. The Experimental values correspond to the 

phosphine protected clusters, except for Au13Cl3-C’. 

Compound 

Absorption (nm) Major 

character of the 

low-energy 

band (X = P, 

C) 

Exp.
 

X = P X = C 

Au13-X’m 
700, 440, 300-

350(multiple)
a
 

625, 387, 304 
561(sh


), 434, 363, 

328, 278 
1P1D 

Au13Cl2-X’ 428, 338, 296
b
 460, 387, 335, 303 540, 409, 352, 319 1P1D 

Au13Cl2-X’e 493, 359, 304 (sh

)

c
 

507, 402, 342, 299 

(sh

) 

462, 366, 314, 288 1P1D 

Au13Cl3-X’ 
490, 420, 330 

(X = C)
d
 

469, 411, 328 480, 386, 310, 271 1P1D 

Au13Cl4-X’ 440, 350, 290 (sh

)

e
 480, 393, 324 534, 422, 367, 295 1P1D 

Au13Cl4-X’p 430, 340
f
 591, 406, 332 495, 380, 311, 280 1P1D 

Cu4Au9Cl4-X’ 450, 355, 325 (sh

)

e
 431, 334 497, 408, 362, 294 1P1D 

Ag4Au9Cl4-X’ 420, 330, 285 (sh

)

e
 414, 327, 304 (sh


) 

531, 403, 357, 296, 

271(sh

) 

1P1D 

PdAu12Cl4-X’/X’e – 
558, 460, 404 

(sh

), 357, 314 

540, 411, 354, 

327(sh

), 308(sh


) 

287 

1P1D 

Au13Br4-X’ 425, 340, 296 (sh

)

g
 483, 409, 355, 318 540, 423, 371, 289 1P1D 

Au13I4-X’ – 492, 413, 354, 325 546, 436, 374, 292 1P1D 

Experimental data taken from reference: a) 
86

; b) 
42

; c) 
56

; d) 
59

; e) 
82

; f) 
84

; g) 
57

.  
sh = shoulder. 
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For the homometallic chlorinated Au13Cln-P series, the lowest energy band is red-shifted 

when increasing the number of Cl atoms from 2 to 4 in both the mono-phosphine (Au13Cl2-P’, 

Au13Cl3-P’, Au13Cl4-P’) (Figure 3a) and di-phosphine (Au13Cl2-P’e, Au13Cl4-P’p) (Figure 

3b) Au13Cln-P series. The same trend is also found for the Au13Cln-C species (Au13Cl3-C’, 

Au13Cl4-C’, Au13Cl2-C’e, Au13Cl4-C’p), except in the case of Au13Cl2-C’. When switching 

the ligands from mono-phosphines to di-phosphines, the lowest energy band is red-shifted in 

the Au13Cln-P (n = 2, 4) series, but blue-shifted in the Au13Cln-C (n = 2, 4) series (Figure 3b).  

When going from the mono-phosphine-protected Au13Cln-P (Au13Cl3-P’, Au13Cl4-P’) to the 

mono-NHC-protected Au13Cln-C (Au13Cl3-C’, Au13Cl4-C’), the lowest energy band is 

slightly red-shifted, whereas the highest energy band shows a blue-shift tendency (Figure 3a), 

except in the case of Au13Cl2-X’ (X = P, C), in which the whole UV-vis spectra is red-shifted. 

This trend was also found for the other two halide Au13Y4-X’ (Y = Br, I; X = P, C) (Figure 3d) 

and alloyed M4Au9-X’ (M = Cu, Ag; X = P, C) series, but not for the case of the palladium-

doped species (PdAu12-P’/P’e and PdAu12-C’/C’e), where the whole UV-vis spectra are 

blue-shifted (Figure 3c). From the di-phosphine-protected Au13Cln-P (Au13Cl2-P’e, Au13Cl4-

P’p) to the di-NHC-protected Au13Cln-C (Au13Cl2-C’e, Au13Cl4-C’p), the whole UV-vis 

spectrum exhibits a systematic blue-shift tendency, and the same trend is also found for the 

homoleptic [Au13(dppm)6]
5+

 (Au13-P’m) clusters (Figure 3b). Such features depict the 

possibility to achieve a fine-tuning of optical absorption properties of the isoelectronic species. 

Moreover, for the chloride/phosphine protected alloy clusters M4Au9Cl4-P’ (M = Au, Cu, Ag), 

the magnitude of the lowest energy band blue-shift follows the order Ag4Au9Cl4-P’ < 

Cu4Au9Cl4-P’ < Au13Cl4-P’, whereas the order within the NHC analogues, Ag4Au9Cl4-C’ 

and Cu4Au9Cl4-C’, is inverted (Figure 3c).  

Finally, for the three different halogen protected Au13Y4-X’ (Y = Cl, Br, I; X = P, C) 

species, the lowest energy band shows a small systematic red-shift from Cl to Br to I for both 

phosphine and NHC analogues, which is consistent with the previous experimental 

observation on [Au13(dppe5)Y2]
3+

 (Y = Cl, Br, I) clusters.
108

 Thus, it could be assumed that 

this red-shift in the lowest energy band is turned to occur in any halogen-protected Au13 

superatomic cluster system, independently from the number of halogenide ligands.  

In a subsequent step, owing to the relevant photoluminescent properties of 

[Au13(dppe)5Cl2]
3+

,
55,56

 ascribed to a phosphorescent emission originating from the T1→S0 

decay,
55

 we have also explored the potential phosphorescent emission of all the investigated 

species. The T1→S0 emission
55

 exhibits a mixed 1P→1D and 5d(Au)→1D character, thus 

mainly centered on the metal core. The reported emission for [Au13(dppe)5Cl2]
3+

 is observed 
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at 1.26 eV (982 nm),
55

 which is calculated at 1.47 eV (Table 3). Along with the phosphine-

protected series, the calculated values range from 0.67 eV (1850 nm) to 1.61 eV (770 nm), in 

the Au13Yn species, and from 1.31 eV (946 nm) to 1.53 eV (810 nm) in the doped clusters. In 

the case of their NHC counterparts, the emission is, in general, blue-shifted, with marked 

exceptions given by alloyed species and the Br- and I-ligated clusters (Au13Br4 and Au13I4 

cores). 

In the Au13Y4-P’ series (Y = Cl, Br, I), a blue-shift is suggested from 1.12 eV (1107 nm) to 

1.61 eV (770 nm) when phosphine ligands are involved, and a red-shift for carbene species, 

from 1.22 eV (1016 nm) to 1.09 eV (1137 nm) (Table 3). Thus, the effect of ligand 

replacement may be evaluated for each species, suggesting that despite being isolobal 

ligands,
109

 fine modifications and variations can be found between phosphine- and carbene-

protected clusters. For the homometallic clusters, a blue-shift of the emission is observed 

when phosphine-based ligands are replaced by carbenes. However, a red-shift is generally 

found for the doped species (M4Au9Cl4 cores, M = Cu and Ag). Figure S13 illustrates the shift 

of the phosphorescence emission wavelength when going from the phosphine species to their 

NHC homologues. 

The fluorescence emission of these phosphine- and NHC- species were also investigated 

(Table 4). For both series, the computed fluorescence emission energies are in the near-

infrared region. The NHC series shows comparable emission wavelengths with their 

phosphine derivatives, except the Au13-P’m, Au13Cl2-P’ and Au13Cl4-P’p. For the di-

phosphine protected Au13-P’m and Au13Cl2-P’ clusters, an obvious blue-shift of the emission 

wavelength is observed when replacing phosphines by NHCs. However, a big red-shift of the 

emission wavelength was found when going from Au13Cl2-P’ to Au13Cl2-C’. In the Au13Y4-P’ 

series (Y = Cl, Br, I), a blue-shift of the fluorescence emission was found when going from Cl 

to Br to I, but their corresponding NHC species show an opposite trend. Figure S14 illustrates 

the shift of the fluorescence emission wavelength when going from the phosphine species to 

their NHC homologues. 
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Table 3. DFT-computed hypothetical phosphorescence emissions. 

Compound Eemission Compound Eemission 

Au13-P’m 0.92 eV (1347 nm) Au13-C’m 1.72 eV (721 nm) 

Au13Cl2-P’ 1.33 eV (932 nm) Au13Cl2-C’ 1.54 eV (805 nm) 

Au13Cl2-P’e 1.47 eV (843 nm) Au13Cl2-C’e 1.43 eV (867 nm) 

Au13Cl3-P’ 1.39 eV (892 nm) Au13Cl3-C’ 1.79 eV (693 nm) 

Au13Cl4-P’ 1.12 eV (1107 nm) Au13Cl4-C’ 1.22 eV (1016 nm) 

Au13Cl4-P’p 0.67 eV (1850 nm) Au13Cl4-C’p 1.26 eV (984 nm) 

Cu4Au9Cl4-P’ 1.53 eV (810 nm) Cu4Au9Cl4-C’ 1.14 eV (1087 nm) 

Ag4Au9Cl4-P’ 1.37 eV (905 nm) Ag4Au9Cl4-C’ 1.34 eV (925 nm) 

PdAu12Cl4-P 1.31 eV (946 nm) PdAu12Cl4-C 1.13 eV (1097 nm) 

Au13Br4-P’ 1.56 eV (795 nm) Au13Br4-C’ 1.17 eV (1059 nm) 

Au13I4-P’ 1.61 eV (770 nm) Au13I4-C’ 1.09 eV (1137 nm) 

 

Table 4. DFT-computed hypothetical fluorescence emissions. 

Compound Eemission Compound Eemission 

Au13-P’m 0.89 eV (1387 nm) Au13-C’m 1.25 eV (988 nm) 

Au13Cl2-P’ 1.52eV (814 nm) Au13Cl2-C’ 0.98 eV (1258 nm) 

Au13Cl2-P’e 1.44eV (863 nm) Au13Cl2-C’e 1.60eV (773 nm) 

Au13Cl3-P’ 1.72 eV (720 nm) Au13Cl3-C’ 1.59eV (779 nm) 

Au13Cl4-P’ 1.15 eV (1075 nm) Au13Cl4-C’ 1.16 eV (1069 nm) 

Au13Cl4-P’p 0.86 eV (1444 nm) Au13Cl4-C’p 1.27 eV (974 nm) 

Cu4Au9Cl4-P’ 1.53 eV (807 nm) Cu4Au9Cl4-C’ 1.36 eV (911 nm) 

Ag4Au9Cl4-P’ 1.24 eV (996 nm) Ag4Au9Cl4-C’ 1.30 eV (954 nm) 

PdAu12Cl4-P 1.25 eV (989 nm) PdAu12Cl4-C 1.55 eV (798 nm) 

Au13Br4-P’ 1.29 eV (959 nm) Au13Br4-C’ 1.09 eV (1128 nm) 

Au13I4-P’ 1.55 eV (802 nm) Au13I4-C’ 1.03 eV (1208 nm) 

 

Conclusions 

The similar bonding features of phosphines and N-heterocyclic carbene (NHC) ligands in 

atomically precise gold nanoclusters (AuNCs) allow to further estimate their role in the 

modification of the molecular properties of different cluster cores. Based on a wide range of 

experimentally characterized 8-ce superatoms, with Au13 and M4Au9 cores (M = Cu, Ag) 

decorated with phosphine or halogen and phosphine ligands, the substitution of phosphines by 

NHCs only marginally perturb the electronic structure, leading to roughly similar optical and 

luminescent properties, but with interesting modifications. For example, with monodentate 

ligands, the lowest energy absorption wavelength is red-shifted when going from phosphines 

to NHCs (see Figure S12). This is the consequence of a lesser HOMO → LUMO contribution 

to this 1P → 1D transition in the NHC series. With bidentate ligands, the opposite effect, i.e., 

a blue shift occurs when going from phosphines to NHCs, which is related to the stronger 
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chelating (distorting) effect of diphosphines on the metal core. These UV-vis wavelength 

shifts are retained for the chelated species in the emission wavelengths (Figures S13 and S14), 

but somewhat blurred in the case of the non-chelated ones. 

Our results allow us to propose medium-sized species based on gold or gold-rich M13 

icosahedral core, supporting the feasible obtention of novel targets for explorative synthetic 

efforts featuring NHC-ligands. Moreover, the addition of successive halogen ligands to the 

cluster core, leads to a more electron-deficient core, enabling further modification of the 

frontier orbital energies useful in the design of devices in heterojunction arrays. 
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