Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au-13 Superatomic Clusters

Jianyu Wei, Samia Kahlal, Jean-François Halet, Jean-Yves Saillard, Alvaro Munoz-Castro

To cite this version:
Jianyu Wei, Samia Kahlal, Jean-François Halet, Jean-Yves Saillard, Alvaro Munoz-Castro. Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au-13 Superatomic Clusters. Journal of Physical Chemistry A, 2022, 126 (4), pp.536-545. 10.1021/acs.jpca.1c09084. hal-03553251

HAL Id: hal-03553251
https://hal.science/hal-03553251
Submitted on 25 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Insight into the Stability, Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine Protected Au$_{13}$ Superatomic Clusters

Jianyu Wei, a Samia Kahlal, a Jean-François Halet, b,* Jean-Yves Saillard a,* and Alvaro Muñoz-Castro c,*

a Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) – UMR 6226, F-35000 Rennes, France
b CNRS–Saint-Gobain–NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
c Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile

Abstract

Atomically-precise gold nanoclusters (AuNCs) belong to a relevant area offering useful templates with tunable properties towards functional nanostructures. In this work, we explored the feasible incorporation of N-heterocyclic carbenes (NHCs), as part of the protecting-ligand shell in AuNCs. Our results based on the substitution of phosphine ligands in experimentally characterized AuNCs by NHCs in various 8-electron superatoms Au$_{13}$ and M$_{4}$Au$_{9}$ (M = Cu, Ag) indicate similar electronic structure and stability, but somewhat different optical properties. These findings support the feasible obtention of novel targets for explorative synthetic efforts featuring NHC-ligands on medium-sized species based on the recurrent Au$_{13}$ icosahedral core. The hypothetical species appear to be interesting templates for building blocks in nanostructured materials with tuned properties, which encourage experimental exploration of ligand-versatility in homo and heterometallic superatomic clusters.

* Dedicated to our colleague and friend Professor Didier Astruc on the occasion of his 75th birthday.

Emails:
Jean-Francois.Halet@univ-rennes1.fr
saillard@univ-rennes1.fr
alvaro.munoz@uautonoma.cl
1. Introduction

Atomically precise gold nanoclusters (AuNCs) have been the subject of intense research over the past decade1–6 owing to their potential use in emerging technological applications.7–15 Their unique molecule-like and size-dependent properties, as well as their rich structural diversity,1,16–23 provide the opportunity to design new species, opening new opportunities for tailororable applications.8,24,33–37,25–32 The AuNC structures are generally composed of a central metallic core, protected (passivated) by various ligands.29,38–41 The Au\textsubscript{13}-centered icosahedron is one of the most recurrent core motifs. It was first characterized in [Au\textsubscript{13}(PPhMe\textsubscript{2})\textsubscript{10}Cl\textsubscript{2}]3+ by Mingos and coworkers,42 and later in the extensive research on [Au\textsubscript{25}(SR)\textsubscript{18}]− species.37,43–46

The central metallic core exhibits particular electronic and structural features accounting for the stability of the overall cluster,47–52 with a specific number of bonding cluster electrons (ce), \textit{i.e.}, electrons provided by the 6s(Au) orbitals. For example, the Au\textsubscript{13}5+ core of [Au\textsubscript{13}(PPhMe\textsubscript{2})\textsubscript{10}Cl\textsubscript{2}]3+ is an 8-\textit{ce} species with a 1S2 1P6 electronic structure according to the \textit{superatom} model.29,53,54 The highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) correspond to the 1P6 and 1D0 shells, respectively.29,53,54 Furthermore, different synthetic strategies allow further exploration of the versatility of the cluster stability and properties by varying the number and nature of its attached ligands. For example, the classical [Au\textsubscript{13}(dppe)\textsubscript{3}Cl\textsubscript{2}]3+ (dppe = 1,2-bis(diphenylphosphino)ethane) possesses enhanced optical, luminescent, and singlet-oxygen sensitization capabilities, as reported by Konishi and Li.55,56 Whereas this cluster is decorated with two Cl atoms, the number of chlorides can be increased to three or four.56 In addition, the Au\textsubscript{13}Cl\textsubscript{4} species has been shown to have related Au\textsubscript{13}Br\textsubscript{4} and Au\textsubscript{13}I\textsubscript{4} counterparts.57

Moreover, the recent incorporation of N-heterocyclic carbenes (NHC) as neutral ligands of gold AuNCs,58 as reported for the related [Au\textsubscript{13}(NHC)\textsubscript{9}Cl\textsubscript{3}]2+ cluster by Crudden and coworkers,59 and which displays a high emission quantum yield, allows further development of more versatile ligands owing to the central role of NHC ligands in organometallic chemistry.60–66 Hence, their evaluation and comparison to phosphines may encourage further ligand engineering efforts and synthetic exploration of such species,67,68,77–80,69–76 offering the opportunity of tuning nanocluster properties.

We have recently shown from density functional theory (DFT) calculations that NHCs are at least as efficient as phosphines for stabilizing AuNCs of small size and that they should exhibit somewhat related optical properties.81 In this work, we extend our investigations to the
substitution of phosphine ligands by NHCs in a wide series of experimentally characterized halogen/phosphine-protected 8-ce superatomic Au$_{13}$ and M$_n$Au$_{13-n}$ clusters (M = Cu, Ag, Pd). This work mainly focuses on the substitution-induced change of the stability, electronic structure, and optical (including emissive) properties. Meanwhile, the influence of changing the type and number of halogen ligands is also investigated for both the phosphine- and NHC-protected analogues. The considered halogen/phosphine-protected Au$_{13}$ series are composed of the experimentally characterized compounds as follows, [Au$_{13}$(PPhMe$_2$)$_{10}$Cl$_2$]$^{3+}$ (Au$_{13}$Cl$_2$-P”),42 [Au$_{13}$(dppe)$_5$Cl$_2$]$^{3+}$ (Au$_{13}$Cl$_2$-P’e),56 [Au$_{13}$(PMePh$_2$)$_9$Cl$_3$]$^{2+}$ (Au$_{13}$Cl$_3$-P”),57 [Au$_{13}$(PMePh$_2$)$_8$Cl$_4$]$^+$ (Au$_{13}$Cl$_4$-P”),82 [Au$_{13}$(dppp)$_4$Cl$_4$]$^+$ (Au$_{13}$Cl$_4$-P’p),83,84 [Cu$_4$Au$_9$(PMePh$_2$)$_8$Cl$_4$]$^+$ (Cu$_4$Au$_9$Cl$_4$-P”),82 [Ag$_4$Au$_9$(PMePh$_2$)$_8$Cl$_4$]$^+$ (Ag$_4$Au$_9$Cl$_4$-P’),82 [Pd$_4$Au$_{12}$(dppe)(PPh$_3$)$_6$Cl$_4$] (PdAu$_{12}$Cl$_4$-P’/P’e),44 [Au$_{13}$(PMePh$_2$)$_8$Br$_4$]$^+$ (Au$_{13}$Br$_4$-P’),57 and [Au$_{13}$(PMePh$_2$)$_8$I$_4$] (Au$_{13}$I$_4$-P’).57 To better understand the role of the halogen ligands, the homoleptic non-halogenated [Au$_{13}$(dppm)$_6$]$^{5+}$ (Au$_{13}$-P’m) (dppm = 1,1-bis(diphenylphosphino)propane)85,86 clusters was also included for comparison. All the investigated compounds are 8-ce superatoms. Some of them contain di-phosphines (P’m, P’e, P’p), whereas others have simple phosphines (P”). Nevertheless, the X-ray and optical data are available for most of them. The hypothetical NHC homologues were designed by replacing the mono-phosphines by the mono-carbene N,N-diisopropylimidazolidene ligands (denoted as NHC’ in the following), taken from the literature.58,87 The dppm, dppe, and dppp ligands were substituted by NHC counterparts, namely 1,3-bis(N-isopropylimidazolidenyl)methane (di-NHC’m), 1,3-bis(N-isopropylimidazolidenyl)ethane (di-NHC’e) and 1,3-bis(N-isopropylimidazolidenyl)propane (di-NHC’p), respectively (see Scheme 1). These carbenes are representative of standard NHCs and exhibit realistic steric volumes. Thus, the computed hypothetical NHC clusters are [Au$_{13}$(di-NHC’m)$_6$]$^{5+}$ (Au$_{13}$-C’m), [Au$_{13}$(NHC’)$_{10}$Cl$_2$]$^{3+}$ (Au$_{13}$Cl$_2$-C’), [Au$_{13}$(di-NHC’e)$_9$Cl$_2$]$^{3+}$ (Au$_{13}$Cl$_2$-C’e), [Au$_{13}$(NHC’)$_9$Cl$_3$]$^{2+}$ (Au$_{13}$Cl$_3$-C’), [Au$_{13}$(NHC’)$_8$Cl$_4$]$^+$ (Au$_{13}$Cl$_4$-C’), [Au$_{13}$(di-NHC’p)$_8$Cl$_4$]$^+$ (Au$_{13}$Cl$_4$-C’p), [Cu$_4$Au$_9$(NHC’)$_8$Cl$_4$]$^+$ (Cu$_4$Au$_9$Cl$_4$-C’), [Ag$_4$Au$_9$(NHC’)$_8$Cl$_4$]$^+$ (Ag$_4$Au$_9$Cl$_4$-C’), [PdAu$_{12}$(di-NHC’e)(NHC’)$_8$Cl$_4$] (PdAu$_{12}$Cl$_4$-C’/C’e), [Au$_{13}$(NHC’)$_8$Br$_4$]$^+$ (Au$_{13}$Br$_4$-C’) and [Au$_{13}$(NHC’)$_8$I$_4$]$^+$ (Au$_{13}$I$_4$-C’). See Table S1 (Supplementary Materials) for the full formula list of the investigated compounds and their corresponding abbreviations.
Scheme 1. The NHC ligands considered in this paper.

2. Computational Details

Geometry optimizations were performed at the DFT level using the Gaussian 16 package. The Becke-Perdew exchange-correlation functional (BP86), together with the Def2-SVP basis set, which includes effective core potentials accounting for scalar relativistic effects, were used. Grimme’s D3 empirical corrections were included in order to take into account dispersion effects. All the optimized singlet ground states structures were confirmed as genuine minima on their potential energy surface by vibrational frequency calculations. The natural atomic orbital (NAO) populations and Wiberg bond indices (WBIs) were calculated using the NBO 6.0 program, with the help of Amsterdam Density Functional code (ADF2017). UV-vis optical transitions were computed using the time-dependent DFT (TD-DFT) method, at the B3LYP/Def2-SVP level, which provided a good quantitative agreement with the experimental spectra, the deviations between the computed transitions and their corresponding experimental values being always less than 80 nm. The UV-vis spectra were simulated from the computed TD-DFT transition energies and their oscillator strengths by using the SWizard program, with each transition being associated with a Gaussian function of half-height width equal to 2000 cm$^{-1}$. All the computed UV-vis transition wavelengths reported below correspond to individual computed transitions. To calculate the fluorescence emission wavelengths, the geometry of the excited singlet states were optimized by TD-DFT at the PBE0/Def2-SVP level with the Gaussian16 program. To calculate the phosphorescence emission wavelengths, the triplet state geometries were firstly optimized by DFT calculations at the BP86/Def2-SVP level, and their energies, as well as those of their corresponding singlets, were recalculated by single point calculations at the PBE0/Def2-SVP level, which delivers better agreement to the experimentally available phosphorescence data.
Assuming that M designates any metal, Y any halogen ligand and X the whole neutral ligand (phosphine or NHC) shell, E_{Prep} and E_{Bond} energies discussed below are defined as follows: E_{Prep} is the energy cost afforded by the bare 8-electron $[M_{13}]^{x+}$ metal core to go from its equilibrium structure to that it adopts in the equilibrium structure of the ligated $M_{13}-X$ or $M_{13}Y_n-X$ clusters. E_{Bond} is calculated according to the following equations in which all of the considered (frozen) fragment structures are taken from the $M_{13}-X$ and $M_{13}Y_n-X$ optimized geometries. $E_{\text{Bond}} = E(M_{13}-X) - E([M_{13}]^{x+}) - E(X)$ or $E_{\text{Bond}} = E(M_{13}Y_n-X) - E([M_{13}Y_n]^{(x-n)+}) - E(X)$.

3. Results and Discussion

![Figure 1. Optimized structures of $M_{13}Y_n-X$ (M = Au, Cu, Ag, Pd; Y = Cl, Br, I; n = 0, 2-4; X = P, C). The golden, green, reddish brown, light grey, dark blue, brown and purple spheres are Au, Cl, Cu, Ag, Pd, Br and I atoms, respectively.](image)

The optimized geometries of the phosphine-protected clusters and of their NHC analogues are shown in Figure 1, where for sake of simplicity, M_{13} denotes both monometallic Au$_{13}$ and heterometallic cluster cores. The atomic bond distances of the $M_{13}-P$ were found to be in good agreement with their corresponding X-ray structure data (Tables S2-S8). All the
calculated compounds are isoelectronic, with a closed shell $8\text{-}ce\ 1S^2\ 1P^6$ superatom configuration. The HOMO-LUMO gaps of the $\text{M}_{13}\text{-P}$ series are found in the range of 1.4–2.2 eV (Tables S1-S7), which is consistent with the chemical stability of this kind of compound. Interestingly, the $\text{M}_{13}\text{-C}$ compounds show HOMO-LUMO gaps that are slightly larger than that of their $\text{M}_{13}\text{-P}$ counterparts, indicating rather similar stability. The Kohn-Sham frontier molecular orbital diagrams of both $\text{M}_{13}\text{-P}$ and $\text{M}_{13}\text{-C}$ series are shown in Figure 2. The HOMO and LUMO levels are all of 1P and 1D nature, respectively. They are plotted in Figure S1-S11. Unsurprisingly, the frontier orbitals of both the $\text{M}_{13}\text{-P}$ (Figure 2a) and $\text{M}_{13}\text{-C}$ species (Figure 2b) are shifted up in energy when the cluster cationic charge decreases from $+5\ (\text{M}_{13}\text{-X})$ to 0 ($\text{PdAu}_{12}\text{Cl}_4\text{-X'/X'e}$). As a consequence, this energy upshift follows the increase of the number of chloride ligands. As a whole, the related electronic structures along with the series, suggest that the hypothetic NHC species should have similar properties as their phosphine relatives, allowing further experimental exploration.

Figure 2. Kohn-Sham frontier molecular orbital diagrams of a) $\text{M}_{13}\text{Y}_{n}\text{-P}$ and b) $\text{M}_{13}\text{Y}_{n}\text{-C}$ ($Y = \text{Cl, Br, I};\ n = 0, 2-4$). The grey boxes represent the 5d(Au)-block, the red and blue levels correspond to the superatomic 1P and 1D orbitals, respectively.
Thus, the energies of the HOMOs and LUMOs can be tuned by varying the composition of the ligand shell and/or that of the metal core. This capability enables to include such well-defined molecular devices into heterojunction, with more positive or more negative frontier orbital energies with respect to that of the valence band of a semiconductor in a heterojunction array, allowing the control of the location of both electrons and holes in charge transfer mechanisms.

In order to evaluate the stabilizing role of the different ligand shells in the M_{13}-P and M_{13}-C series, a bonding energy analysis was carried out, not only for the comparison of the energies of interaction between the ligands and metal core, but also for an evaluation of the energy cost associated with the distortion afforded by the metal core upon ligand complexation. To this end, the corresponding bare metal cores were optimized. The energy cost afforded by the bare metal cores to prepare their structure to bond with the ligands (E_{Prep}, see Computational Details) is given in Table 1. The computed E_{Prep} values range between 0.10–0.33 eV, for the gold-halide cores and tend to increase for the doped M_{4}Au_{9}Cl_{4}-X' (M = Cu, Ag) species. It is clear that the evaluated E_{Prep} in the M_{13}-C series is smaller than those of M_{13}-P, which means that the metal cores in M_{13}-C species cost less energy to reach their equilibrium states, suggesting that NHC-derivatives exhibit a less rigid ligand-shell, introducing more flexibility to the resulting cluster. This can be useful for studies on cluster core fluxionality, as explored for Au_{25}(SR)_{18} and Au_{38}(SR)_{24} species group.

The ligand-core interaction energies for the series evaluated by the computed bonding energies (E_{Bond}, see Computational Details) for the neutral phosphine and NHC ligand shell (Table 1) show that NHCs are slightly more strongly bonded than the phosphine analogues in all the investigated cases, suggesting that NHC-protected gold and gold-rich M_{13} clusters should exhibit a somewhat enhanced thermodynamic stability, which can be useful as ligand-engineering strategy to achieve more stable building-blocks. Interestingly, the M_{13}-C cluster cores bear more positive charges than their M_{13}-P counterparts (Table 1), as the result of the enhanced core-ligand back-bonding. This is in line with the fact that the frontier orbital energies of the former species are slightly higher than that of the latter (Figure 2). On the other hand, no clear relationship between the core charges and the number of chloride ligands could be traced.
Table 1. Energetic data associated with cluster bonding denoting the cluster core preparation energy (E_{Prep}) and ligand-core interaction (E_{Bond}) (values in eV), and the natural bond order (NBO) charges of the M$_{13}$ core (q_{core}, in a.u).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Corresponding optimized bare metal core</th>
<th>$X = P$ E_{Prep}</th>
<th>$X = C$ E_{Prep}</th>
<th>$X = P$ E_{Bond}</th>
<th>$X = C$ E_{Bond}</th>
<th>$X = P$ q_{core}</th>
<th>$X = C$ q_{core}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au$_{13}$X'm</td>
<td>[Au$_{13}$]$^{5+}$ (I_6)</td>
<td>0.19</td>
<td>0.16</td>
<td>-57.79</td>
<td>-62.78</td>
<td>1.35</td>
<td>2.35</td>
</tr>
<tr>
<td>Au$_{13}$Cl$_2$-X'</td>
<td></td>
<td>0.20</td>
<td>0.10</td>
<td>-39.48</td>
<td>-45.44</td>
<td>1.22</td>
<td>2.34</td>
</tr>
<tr>
<td>Au$_{13}$Cl$_2$-X'e</td>
<td></td>
<td>0.32</td>
<td>0.19</td>
<td>-40.50</td>
<td>-44.87</td>
<td>1.47</td>
<td>2.21</td>
</tr>
<tr>
<td>Au$_{13}$Cl$_3$-X'</td>
<td></td>
<td>0.24</td>
<td>0.14</td>
<td>-33.26</td>
<td>-38.61</td>
<td>1.49</td>
<td>2.25</td>
</tr>
<tr>
<td>Au$_{13}$Cl$_4$-X'</td>
<td></td>
<td>0.32</td>
<td>0.21</td>
<td>-27.75</td>
<td>-32.02</td>
<td>1.33</td>
<td>2.21</td>
</tr>
<tr>
<td>Au$_{13}$Cl$_4$-X'p</td>
<td></td>
<td>0.33</td>
<td>0.18</td>
<td>-27.82</td>
<td>-30.87</td>
<td>1.58</td>
<td>2.19</td>
</tr>
<tr>
<td>Au$_{13}$Br$_4$-X'</td>
<td></td>
<td>0.33</td>
<td>0.19</td>
<td>-27.54</td>
<td>-31.58</td>
<td>1.34</td>
<td>2.10</td>
</tr>
<tr>
<td>Au$_{13}$I$_4$-X'</td>
<td></td>
<td>0.31</td>
<td>0.16</td>
<td>-27.13</td>
<td>-30.93</td>
<td>1.11</td>
<td>1.99</td>
</tr>
<tr>
<td>Cu$_4$Au$_8$Cl$_4$-X'</td>
<td>[Cu$_4$Au8]$^{3+}$ ($C{2v}$)</td>
<td>0.41</td>
<td>0.21</td>
<td>-27.45</td>
<td>-30.80</td>
<td>1.96</td>
<td>2.77</td>
</tr>
<tr>
<td>Ag$_4$Au$_8$Cl$_4$-X'</td>
<td>[Ag$_4$Au8]$^{3+}$ ($C{2v}$)</td>
<td>0.51</td>
<td>0.40</td>
<td>-27.76</td>
<td>-31.65</td>
<td>1.75</td>
<td>2.59</td>
</tr>
<tr>
<td>PdAu$_{12}$Cl$_4$-X'/X'e</td>
<td>[PdAu$_{12}$]$^{4+}$ (I_6)</td>
<td>0.28</td>
<td>0.09</td>
<td>-23.36</td>
<td>-27.44</td>
<td>1.45</td>
<td>1.90</td>
</tr>
</tbody>
</table>

The optical properties of AuNCs have been widely explored, owing to their potential use as optical devices, which can be tuned by involving different ligands. In this sense, the variation of the optical properties of the investigated compounds was evaluated with respect to the nature of the cluster core and the different ligand shell. The TD-DFT simulated UV-vis spectra of M$_{13}$-P and M$_{13}$-C series are gathered in Figure 3, and the major computed electronic transition energies associated with them are given in Table 2, together with the corresponding experimental λ_{max} values taken from the literature, where available.

The shapes of the computed UV-vis spectra for the M$_{13}$-P series were found to have a good match with that of the available experimental spectra. In all the cases, the lowest energy band is associated with a transition of mostly (but not exclusively) HOMO \rightarrow LUMO nature, and in any case is of 1P \rightarrow 1D metal-to-metal charge transfer (MMCT) nature (see Figures S1-S11). Figure S12 illustrates the energy shift of the lowest energy transition wavelength when going from the phosphine species to their NHC homologues.
Figure 3. Simulated UV-vis absorption spectra for the computed phosphine derivatives (solid line) and NHC derivatives (dotted line) clusters.

Table 2. Major TD-DFT-Computed UV-Vis excitation energies. Experimental values are also reported, when available in the literature. The Experimental values correspond to the phosphine protected clusters, except for $\text{Au}_{13}\text{Cl}_{4}$-C'.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Exp.</th>
<th>Absorption (nm)</th>
<th>Major character of the low-energy band (X = P, C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au_{13}-X'm</td>
<td>700, 440, 300-350 (multiple)<sup>b</sup></td>
<td>625, 387, 304</td>
<td>$561(\text{sh}), 434, 363, 328, 278$</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{Cl}{2}$-X'<sup>b</sup></td>
<td>428, 338, 296<sup>b</sup></td>
<td>460, 387, 335, 303</td>
<td>540, 409, 352, 319</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{Cl}{2}$-X'e</td>
<td>493, 359, 304 (sh<sup>1</sup>)<sup>c</sup></td>
<td>507, 402, 342, 299 (sh<sup>1</sup>)</td>
<td>462, 366, 314, 288</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{Cl}{2}$-X'</td>
<td>490, 420, 330 (X = C)<sup>d</sup></td>
<td>469, 411, 328</td>
<td>480, 386, 310, 271</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{Cl}{2}$-X'<sup>c</sup></td>
<td>440, 350, 290 (sh<sup>1</sup>)<sup>g</sup></td>
<td>480, 393, 324</td>
<td>534, 422, 367, 295</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{Cl}{2}$-X'p</td>
<td>430, 340<sup>e</sup></td>
<td>591, 406, 332</td>
<td>495, 380, 311, 280</td>
</tr>
<tr>
<td>$\text{Cu}{4}\text{Au}{9}\text{Cl}_{4}$-X'</td>
<td>450, 355, 325 (sh<sup>1</sup>)<sup>e</sup></td>
<td>431, 334</td>
<td>497, 408, 362, 294</td>
</tr>
<tr>
<td>$\text{Ag}{4}\text{Au}{9}\text{Cl}_{4}$-X'</td>
<td>420, 330, 285 (sh<sup>1</sup>)<sup>e</sup></td>
<td>414, 327, 304 (sh<sup>1</sup>)</td>
<td>531, 403, 357, 296, 271 (sh<sup>1</sup>)</td>
</tr>
<tr>
<td>$\text{PdAu}{12}\text{Cl}{2}$-X'/X'e</td>
<td>–</td>
<td>558, 460, 404 (sh<sup>1</sup>), 357, 314</td>
<td>540, 411, 354, 327 (sh<sup>1</sup>), 308 (sh<sup>1</sup>) 287</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{Br}{4}$-X'</td>
<td>425, 340, 296 (sh<sup>1</sup>)<sup>f</sup></td>
<td>483, 409, 355, 318</td>
<td>540, 423, 371, 289</td>
</tr>
<tr>
<td>$\text{Au}{13}\text{I}{4}$-X'</td>
<td>–</td>
<td>492, 413, 354, 325</td>
<td>546, 436, 374, 292</td>
</tr>
</tbody>
</table>

Experimental data taken from reference: a) ⁵⁶; b) ⁴²; c) ⁵⁶; d) ⁵⁹; e) ⁸⁴; f) ⁸⁴; g) ⁵⁷. sh = shoulder.
For the homometallic chlorinated \(\text{Au}_{13} \text{Cl}_n \text{P} \) series, the lowest energy band is red-shifted when increasing the number of Cl atoms from 2 to 4 in both the mono-phosphine (\(\text{Au}_{13} \text{Cl}_2 \text{P}' \), \(\text{Au}_{13} \text{Cl}_3 \text{P}' \), \(\text{Au}_{13} \text{Cl}_4 \text{P}' \)) (Figure 3a) and di-phosphine (\(\text{Au}_{13} \text{Cl}_2 \text{P}' \text{e}, \text{Au}_{13} \text{Cl}_4 \text{P}' \text{p} \)) (Figure 3b) \(\text{Au}_{13} \text{Cl}_n \text{P} \) series. The same trend is also found for the \(\text{Au}_{13} \text{Cl}_n \cdot \text{C} \) species (\(\text{Au}_{13} \text{Cl}_2 \cdot \text{C}' \), \(\text{Au}_{13} \text{Cl}_4 \cdot \text{C}' \), \(\text{Au}_{13} \text{Cl}_2 \cdot \text{C}' \text{e}, \text{Au}_{13} \text{Cl}_4 \cdot \text{C}' \text{p} \)), except in the case of \(\text{Au}_{13} \text{Cl}_2 \cdot \text{C}' \). When switching the ligands from mono-phosphines to di-phosphines, the lowest energy band is red-shifted in the \(\text{Au}_{13} \text{Cl}_n \cdot \text{P} \) \((n = 2, 4) \) series, but blue-shifted in the \(\text{Au}_{13} \text{Cl}_n \cdot \text{C} \) \((n = 2, 4) \) series (Figure 3b). When going from the mono-phosphine-protected \(\text{Au}_{13} \text{Cl}_n \cdot \text{P} \) (\(\text{Au}_{13} \text{Cl}_3 \cdot \text{P}' \), \(\text{Au}_{13} \text{Cl}_4 \cdot \text{P}' \)) to the mono-NHC-protected \(\text{Au}_{13} \text{Cl}_n \cdot \text{C} \) (\(\text{Au}_{13} \text{Cl}_2 \cdot \text{C}' \), \(\text{Au}_{13} \text{Cl}_4 \cdot \text{C}' \)), the lowest energy band is slightly red-shifted, whereas the highest energy band shows a blue-shift tendency (Figure 3a), except in the case of \(\text{Au}_{13} \text{Cl}_2 \cdot \text{X}' \) (\(X = \text{P}, \text{C} \)), in which the whole UV-vis spectra are red-shifted. This trend was also found for the other two halide \(\text{Au}_{13} \text{Y}_4 \cdot \text{X}' \) (\(Y = \text{Br}, \text{I}; X = \text{P}, \text{C} \)) (Figure 3d) and alloyed \(\text{M}_4 \text{Au}_9 \cdot \text{X}' \) (\(M = \text{Cu}, \text{Ag}; X = \text{P}, \text{C} \)) series, but not for the case of the palladium-doped species (\(\text{PdAu}_{12} \cdot \text{P}' \text{e} \) and \(\text{PdAu}_{12} \cdot \text{C}' \text{e} \)), where the whole UV-vis spectra are blue-shifted (Figure 3c). From the di-phosphine-protected \(\text{Au}_{13} \text{Cl}_n \cdot \text{P} \) (\(\text{Au}_{13} \text{Cl}_2 \cdot \text{P}' \text{e}, \text{Au}_{13} \text{Cl}_4 \cdot \text{P}' \text{p} \)) to the di-NHC-protected \(\text{Au}_{13} \text{Cl}_n \cdot \text{C} \) (\(\text{Au}_{13} \text{Cl}_2 \cdot \text{C}' \text{e}, \text{Au}_{13} \text{Cl}_4 \cdot \text{C}' \text{p} \)), the whole UV-vis spectrum exhibits a systematic blue-shift tendency, and the same trend is also found for the homoleptic \([\text{Au}_{13} \text{(dppm)}_6]^{5+} \) (\(\text{Au}_{13} \cdot \text{P}' \text{m} \)) clusters (Figure 3b). Such features depict the possibility to achieve a fine-tuning of optical absorption properties of the isoelectronic species. Moreover, for the chloride/phosphine protected alloy clusters \(\text{M}_4 \text{Au}_9 \text{Cl}_4 \cdot \text{P}' \) (\(M = \text{Au}, \text{Cu}, \text{Ag} \)), the magnitude of the lowest energy band blue-shift follows the order \(\text{Ag}_4 \text{Au}_9 \text{Cl}_4 \cdot \text{P}' < \text{Cu}_4 \text{Au}_9 \text{Cl}_4 \cdot \text{P}' < \text{Au}_{13} \text{Cl}_4 \cdot \text{P}' \), whereas the order within the NHC analogues, \(\text{Ag}_4 \text{Au}_9 \text{Cl}_4 \cdot \text{C}' \) and \(\text{Cu}_4 \text{Au}_9 \text{Cl}_4 \cdot \text{C}' \), is inverted (Figure 3c).

Finally, for the three different halogen protected \(\text{Au}_{13} \text{Y}_4 \cdot \text{X}' \) (\(Y = \text{Cl}, \text{Br}, \text{I}; X = \text{P}, \text{C} \)) species, the lowest energy band shows a small systematic red-shift from Cl to Br to I for both phosphine and NHC analogues, which is consistent with the previous experimental observation on \([\text{Au}_{13} \text{(dpp}3\text{e})_2 \text{Y}_2]^{3+} \) (\(Y = \text{Cl}, \text{Br}, \text{I} \)) clusters.\(^{108}\) Thus, it could be assumed that this red-shift in the lowest energy band is turned to occur in any halogen-protected \(\text{Au}_{13} \) superatomic cluster system, independently from the number of halogenide ligands.

In a subsequent step, owing to the relevant photoluminescent properties of \([\text{Au}_{13} \text{(dpp}3\text{e})_3 \text{Cl}_2]^{3+} \),\(^{55,56}\) ascribed to a phosphorescent emission originating from the \(\text{T}_1 \rightarrow \text{S}_0 \) decay,\(^{55}\) we have also explored the potential phosphorescent emission of all the investigated species. The \(\text{T}_1 \rightarrow \text{S}_0 \) emission\(^{55}\) exhibits a mixed \(1\text{P} \rightarrow 1\text{D} \) and \(5\text{d}(\text{Au}) \rightarrow 1\text{D} \) character, thus mainly centered on the metal core. The reported emission for \([\text{Au}_{13} \text{(dpp}3\text{e})_3 \text{Cl}_2]^{3+} \) is observed.
at 1.26 eV (982 nm),55 which is calculated at 1.47 eV (Table 3). Along with the phosphine-protected series, the calculated values range from 0.67 eV (1850 nm) to 1.61 eV (770 nm), in the Au\textsubscript{13}Y\textsubscript{n} species, and from 1.31 eV (946 nm) to 1.53 eV (810 nm) in the doped clusters. In the case of their NHC counterparts, the emission is, in general, blue-shifted, with marked exceptions given by alloyed species and the Br- and I- ligated clusters (Au\textsubscript{13}Br\textsubscript{4} and Au\textsubscript{13}I\textsubscript{4} cores).

In the Au\textsubscript{13}Y\textsubscript{4}-P’ series (Y = Cl, Br, I), a blue-shift is suggested from 1.12 eV (1107 nm) to 1.61 eV (770 nm) when phosphine ligands are involved, and a red-shift for carbene species, from 1.22 eV (1016 nm) to 1.09 eV (1137 nm) (Table 3). Thus, the effect of ligand replacement may be evaluated for each species, suggesting that despite being isolobal ligands,109 fine modifications and variations can be found between phosphine- and carbene-protected clusters. For the homometallic clusters, a blue-shift of the emission is observed when phosphine-based ligands are replaced by carbenes. However, a red-shift is generally found for the doped species (M\textsubscript{4}Au\textsubscript{9}Cl\textsubscript{4} cores, M = Cu and Ag). Figure S13 illustrates the shift of the phosphorescence emission wavelength when going from the phosphine species to their NHC homologues.

The fluorescence emission of these phosphine- and NHC- species were also investigated (Table 4). For both series, the computed fluorescence emission energies are in the near-infrared region. The NHC series shows comparable emission wavelengths with their phosphine derivatives, except the Au\textsubscript{13}-P’m, Au\textsubscript{13}Cl\textsubscript{2}-P’ and Au\textsubscript{13}Cl\textsubscript{4}-P’p. For the diposophine protected Au\textsubscript{13}-P’m and Au\textsubscript{13}Cl\textsubscript{2}-P’ clusters, an obvious blue-shift of the emission wavelength is observed when replacing phosphines by NHCs. However, a big red-shift of the emission wavelength was found when going from Au\textsubscript{13}Cl\textsubscript{2}-P’ to Au\textsubscript{13}Cl\textsubscript{2}-C’. In the Au\textsubscript{13}Y\textsubscript{4}-P’ series (Y = Cl, Br, I), a blue-shift of the fluorescence emission was found when going from Cl to Br to I, but their corresponding NHC species show an opposite trend. Figure S14 illustrates the shift of the fluorescence emission wavelength when going from the phosphine species to their NHC homologues.
occurs a lesser wave length is red shifted when going from phosphines to NHCs, which is related to the stronger properties, with interesting modifications. When going from phosphines to NHCs, which is related to the stronger

Table 3. DFT-computed hypothetical phosphorescence emissions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(E_{\text{emission}}) (nm)</th>
<th>Compound</th>
<th>(E_{\text{emission}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Au}_{13}\text{-P'm})</td>
<td>0.92 eV (1347 nm)</td>
<td>(\text{Au}_{13}\text{-C'm})</td>
<td>1.72 eV (721 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_2\text{-P'})</td>
<td>1.33 eV (932 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_2\text{-C'})</td>
<td>1.54 eV (805 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_2\text{-P'e})</td>
<td>1.47 eV (843 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_2\text{-C'e})</td>
<td>1.43 eV (867 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_3\text{-P'})</td>
<td>1.39 eV (892 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_3\text{-C'})</td>
<td>1.79 eV (693 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_4\text{-P'})</td>
<td>1.12 eV (1107 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_4\text{-C'})</td>
<td>1.22 eV (1016 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_4\text{-P'p})</td>
<td>0.67 eV (1850 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_4\text{-C'p})</td>
<td>1.26 eV (984 nm)</td>
</tr>
<tr>
<td>(\text{Cu}_4\text{Au}_9\text{Cl}_4\text{-P'})</td>
<td>1.53 eV (810 nm)</td>
<td>(\text{Cu}_4\text{Au}_9\text{Cl}_4\text{-C'})</td>
<td>1.14 eV (1087 nm)</td>
</tr>
<tr>
<td>(\text{Ag}_4\text{Au}_9\text{Cl}_4\text{-P'})</td>
<td>1.37 eV (905 nm)</td>
<td>(\text{Ag}_4\text{Au}_9\text{Cl}_4\text{-C'})</td>
<td>1.34 eV (925 nm)</td>
</tr>
<tr>
<td>(\text{PdAu}_{12}\text{Cl}_4\text{-P})</td>
<td>1.31 eV (946 nm)</td>
<td>(\text{PdAu}_{12}\text{Cl}_4\text{-C})</td>
<td>1.13 eV (1097 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Br}_4\text{-P'})</td>
<td>1.56 eV (795 nm)</td>
<td>(\text{Au}_{13}\text{Br}_4\text{-C'})</td>
<td>1.17 eV (1059 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{I}_4\text{-P'})</td>
<td>1.61 eV (770 nm)</td>
<td>(\text{Au}_{13}\text{I}_4\text{-C'})</td>
<td>1.09 eV (1137 nm)</td>
</tr>
</tbody>
</table>

Table 4. DFT-computed hypothetical fluorescence emissions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(E_{\text{emission}}) (nm)</th>
<th>Compound</th>
<th>(E_{\text{emission}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Au}_{13}\text{-P'm})</td>
<td>0.89 eV (1387 nm)</td>
<td>(\text{Au}_{13}\text{-C'm})</td>
<td>1.25 eV (988 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_2\text{-P'})</td>
<td>1.52 eV (814 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_2\text{-C'})</td>
<td>0.98 eV (1258 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_2\text{-P'e})</td>
<td>1.44 eV (863 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_2\text{-C'e})</td>
<td>1.60 eV (773 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_3\text{-P'})</td>
<td>1.72 eV (720 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_3\text{-C'})</td>
<td>1.59 eV (779 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_4\text{-P'})</td>
<td>1.15 eV (1075 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_4\text{-C'})</td>
<td>1.16 eV (1069 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Cl}_4\text{-P'p})</td>
<td>0.86 eV (1444 nm)</td>
<td>(\text{Au}_{13}\text{Cl}_4\text{-C'p})</td>
<td>1.27 eV (974 nm)</td>
</tr>
<tr>
<td>(\text{Cu}_4\text{Au}_9\text{Cl}_4\text{-P'})</td>
<td>1.53 eV (807 nm)</td>
<td>(\text{Cu}_4\text{Au}_9\text{Cl}_4\text{-C'})</td>
<td>1.36 eV (911 nm)</td>
</tr>
<tr>
<td>(\text{Ag}_4\text{Au}_9\text{Cl}_4\text{-P'})</td>
<td>1.24 eV (996 nm)</td>
<td>(\text{Ag}_4\text{Au}_9\text{Cl}_4\text{-C'})</td>
<td>1.30 eV (954 nm)</td>
</tr>
<tr>
<td>(\text{PdAu}_{12}\text{Cl}_4\text{-P})</td>
<td>1.25 eV (989 nm)</td>
<td>(\text{PdAu}_{12}\text{Cl}_4\text{-C})</td>
<td>1.55 eV (798 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{Br}_4\text{-P'})</td>
<td>1.29 eV (959 nm)</td>
<td>(\text{Au}_{13}\text{Br}_4\text{-C'})</td>
<td>1.09 eV (1128 nm)</td>
</tr>
<tr>
<td>(\text{Au}_{13}\text{I}_4\text{-P'})</td>
<td>1.55 eV (802 nm)</td>
<td>(\text{Au}_{13}\text{I}_4\text{-C'})</td>
<td>1.03 eV (1208 nm)</td>
</tr>
</tbody>
</table>

Conclusions

The similar bonding features of phosphines and N-heterocyclic carbene (NHC) ligands in atomically precise gold nanoclusters (AuNCs) allow to further estimate their role in the modification of the molecular properties of different cluster cores. Based on a wide range of experimentally characterized 8-ce superatoms, with \(\text{Au}_{13}\) and \(\text{M}_4\text{Au}_9\) cores (M = Cu, Ag) decorated with phosphine or halogen and phosphine ligands, the substitution of phosphines by NHCs only marginally perturb the electronic structure, leading to roughly similar optical and luminescent properties, but with interesting modifications. For example, with monodentate ligands, the lowest energy absorption wavelength is red-shifted when going from phosphines to NHCs (see Figure S12). This is the consequence of a lesser HOMO \(\rightarrow\) LUMO contribution to this 1P \(\rightarrow\) 1D transition in the NHC series. With bidentate ligands, the opposite effect, \(i.e.,\) a blue shift occurs when going from phosphines to NHCs, which is related to the stronger
chelating (distorting) effect of diphosphines on the metal core. These UV-vis wavelength shifts are retained for the chelated species in the emission wavelengths (Figures S13 and S14), but somewhat blurred in the case of the non-chelated ones.

Our results allow us to propose medium-sized species based on gold or gold-rich M_{13} icosahedral core, supporting the feasible obtention of novel targets for explorative synthetic efforts featuring NHC-ligands. Moreover, the addition of successive halogen ligands to the cluster core, leads to a more electron-deficient core, enabling further modification of the frontier orbital energies useful in the design of devices in heterojunction arrays.

ASSOCIATED CONTENT
Supporting Information
Cartesian coordinates of the investigated compounds (in .xyz format). Tables of complementary computed data. Plots of the frontier orbitals. Graphical representations of the computed UV-vis and photoluminescence transition wavelengths.

AUTHOR INFORMATION

Corresponding Authors
Jean-François Halet
jean-francois.halet@univ-rennes1.fr
Jean-Yves Saillard
jean-yves.saillard@univ-rennes1.fr
Alvaro Muñoz-Castro
alvaro.munoz@uautonoma.cl

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENTS
The authors are grateful to the Chilean-French ECOS-CONYCYT program (project C18E04) and to the French-Chilean International Associated Laboratory for “Multifunctional Molecules and Materials” (LIA-CNRS N°1027). The GENCI (Grand Equipment National de Calcul Intensif) is acknowledged for HCP support (project a0010807367). J. W. thanks the
China Scholarship Council for a Ph.D. scholarship. A.M.-C. acknowledges support from Fondecyt 1180683.

References

(26) Oro, L. A.; Braunstein, P.; Raithby, P. R. *Metal Clusters in Chemistry*; Wiley-vch Weinheim, Germany, 1999; Vol. 3.

(74) Danopoulos, A. A.; Simler, T.; Braunstein, P. N-Heterocyclic Carbene Complexes of
https://doi.org/10.1021/acs.chemrev.8b00505.

https://doi.org/10.1021/acs.inorgchem.6b01095.

https://doi.org/10.1021/acs.inorgchem.5b00276.

https://doi.org/10.1021/acs.jpcc.1c02197.

https://doi.org/10.1021/acs.inorgchem.0c02219.

(97) Gorelsky, S. I. SWizard Program.

(103) Jung, J.; Kang, S.; Han, Y.-K. Ligand Effects on the Stability of Thiol-Stabilized Gold

https://doi.org/10.1021/acs.accounts.8b00364.

(107) Aikens, C. M. Geometric and Electronic Structure of \(\text{Au}_{25}(\text{SPhX})_{18} \) (\(\text{X} = \text{H}, \text{F}, \text{Cl}, \text{Br}, \text{CH}_3 \), and \(\text{OCH}_3 \)). *J. Phys. Chem. Lett.* **2010**, *1* (17), 2594–2599.
https://doi.org/10.1021/jz1009828.

https://doi.org/10.1039/D0NA00662A.

https://doi.org/10.1002/anie.198207113.