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Epilepsy is one of the most wide spread neurological pathologies, which is characterized by localized or generalized brain dysfunction due to abnormal or excessive paroxysmal electrical discharges. These discharges lead to neuronal hyperactivities causing prolonged and involuntary muscle contractions or periods of loss or altered consciousness. A patient's quality of life could be greatly improved with an effective alarm system able to predict future crises. This article presents a fully specified model for automated seizure prediction based on autoregressive multivariate modeling and stability state analysis from clinical and simulated electroencephalography (EEG) data. This model allows the calculation of a stability index whose analysis in content makes it possible to predict crises. This approach is validated on 29 crises recorded for 8 patients from a database available in free access and 14 simulated subjects also called virtual patients generated by neuro-computer platform TVB (The Virtual Brain:www.thevirtualbrain.org) using Epileptor as mass neural model for gray matter and "john Doe" matrix as white matter. Our preliminary results exhibit a detection accuracy of 97.87%, a sensitivity of 100% and an average prediction time for the eight real patients of 237.21s and a detection accuracy of 100%, a sensitivity of 93% and an average prediction time of 4.427s for the simulated subjects.

Introduction

Epilepsy is a complex neurological disorder recognized by presence of spontaneous and recurrent attacks reflecting abrupt and transient disturbance in electrical activity of brain. According to the latest reports from the World Health Organization (WHO), epilepsy affects around 50 million people in the world's population with around 2.4 million people suffering from it every year [START_REF] Tzimourta | Epileptic seizures classification based on long-term EEG signal wavelet analysis[END_REF]. A third of these people suffer from drug-resistant epilepsy, which is defined by persistence of epileptic seizures despite adequate and well-managed pharmacological treatments. In this case, brain surgery is an alternative solution that attempts to remove area from which the crisis begins. However, surgery is not always possible in view of significant risk and need for precise location of the epileptogenic focus and in many cases epilepsy is driven by a network, epileptic areas and propagating zones. Therefore, early anticipation of seizures could be useful for taking necessary cautions such as administration of an antiepileptic drug directly into brain or stimulation of peculiar brain areas to prevent occurrence of seizures and therefore to improve quality of life of these patients [START_REF] Alotaiby | Epileptic seizure prediction using CSP and LDA for scalp EEG signals[END_REF]. Diagnosis and monitoring of seizures is done using neuroimaging and electrophysiology techniques, in particular electroencephalogram (EEG) since it is the cheapest and most recognized diagnostic tool, specifically for epilepsy, since it makes it possible to collect a significant amount of dynamic information during the crisis. This tool consists of recording brain electrical activity in real time, using a well-defined number of electrodes. There are two types of EEG: intracranial EEG (iEEG) whose electrodes are invasively placed directly on the exposed surface of brain during a surgery under general anesthesia and scalp EEG (sEEG) which are most used since electrical signals are collected using non-invasive and non-traumatic electrodes placed on scalp according to specific standards such as the international 10-20 system [START_REF] Tzimourta | Epileptic seizures classification based on long-term EEG signal wavelet analysis[END_REF]. In recent decades, the field of research on epilepsy has widened, from crises detection, which consists of classifying EEG signals into two categories: presence or absence of crises exactly as in works [START_REF] Subasi | Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing[END_REF][START_REF] Subasi | Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection[END_REF], which represent respectively two of the earliest works that used neural networks and autoregressive modeling for the automatic classification of EEG signals in order to detect epileptic seizures, to prediction of crises, where preictal phase appears a few minutes or a few hours before crises.

Automatic epileptic seizure prediction systems have been developed (Table1), majority of which follow a procedure which generally comprises two main phases. In the first phase (characteristic extraction phase), a set of descriptors or characteristics is calculated from raw, preprocessed and windowed EEG signals using techniques recognized in literature such as wavelet transform [START_REF] Truong | Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram[END_REF][START_REF] Subasi | Epileptic seizure detection using hybrid machine learning methods[END_REF], empirical mode decomposition (EMD) [START_REF] Alickovic | Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction[END_REF][START_REF] Hassan | Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise[END_REF], principal components analysis and independent components analysis (ICA) [START_REF] Subasi | EEG signal classification using PCA, ICA, LDA and support vector machines[END_REF]. These extracted characteristics can be linear such as spectral parameters (density and spectral power) and statistical characteristics (variance, mean, asymmetry and flattening) and non-linear such as entropy [START_REF] Chisci | Real-time epileptic seizure prediction using AR models and support vector machines[END_REF] and Liapounov's exponents [START_REF] Iqbal | Nonlinear analysis of EEG for seizure prediction[END_REF]. The most representative characteristics obtained will be used in the second phase, which consists of a classification to differentiate preictal and interictal states using intelligent systems such as neural networks [START_REF] Truong | Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram[END_REF][START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals[END_REF][START_REF] Chandani | EEG signal processing for epileptic seizure prediction by using MLPNN and SVM classifiers[END_REF], learning machines [START_REF] Zhang | Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power[END_REF][START_REF] Mohammadpoory | Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy[END_REF], in particular support vector machines (SVM) [START_REF] Subasi | Epileptic seizure detection using hybrid machine learning methods[END_REF][START_REF] Sharma | Computer-Aided Diagnosis of Epilepsy Using Bispectrum of EEG Signals[END_REF], which have proven to be one of the most popular machine learning techniques used in the prediction of epileptic seizures, and deep learning techniques [START_REF] Park | Epileptic seizure detection for multi-channel EEG with deep convolutional neural network[END_REF][START_REF] Sharma | Seizures classification based on higher order statistics and deep neural network[END_REF][START_REF] Borhade | Modified Atom Search Optimization-based Deep Recurrent Neural Network for epileptic seizure prediction using electroencephalogram signals[END_REF][START_REF] Usman | Epileptic seizure prediction using scalp electroencephalogram signals[END_REF]. Most of these methodologies have been tested on EEG recordings from different international databases.

Predicting seizures remains a difficult problem regarding non-stationarity of EEG signals and its variability from one crisis to another, from electrode to electrode and from patient to another patient. We propose through this work to study non-deterministic time series and to use a mathematical model capable of giving a good approximation of behavior of signal observed during crisis, to report on evolution of the signal. It is for this reason that multivariate autoregressive modeling (MVAR) was chosen in this study to analyze phenomenon of change in dynamics of EEG signals with crises, evaluating a stability index capable of detecting as early as possible an advent of a crisis with minimum of false alarms compared to other works in literature, based on sensitivity and accuracy as evaluation criteria. Our methodology will be tested on the one hand on real data from the most used "CHB-MIT EEG database" and on the other hand we generate, in addition to clinical data, simulated electroencephalography (EEG) data with Epilepor model as neural mass model for gray matter and basic john Doe matrix for white matter in the free access neuroinformatic platform TVB [START_REF] Jirsa | On the nature of seizure dynamics[END_REF].

In this paper we report an original method of crises prediction based on MVAR modeling. Moreover, we present in following section our selected methodology. We begin by detailing the technique of filtering EEG signal and then studying state of stability. We explain the choice of order of MVAR model and a way to reduce estimation errors with Kalman filter. We finish by formulating the calculation of stability index. The third section is dedicated to the presentation of a real database and the summary data. Then we report our results and we present a discussion and conclusion section. 

Methodology

Synchronizations between different neural structures often play an essential role in creation of a dynamic system and therefore in a proper functioning of brain. However, those that are unusual or excessive cause disturbances as serious as epilepsy. The in-depth understanding of the dynamics of these synchronizations can be improved by analysis EEG signals because they often allow extraction of phenomena invisible to clinicians. During epileptic seizures, the course of the oscillations of the EEG signals varies over time from a stable state to an unstable state which reflects the onset of an attack (seizure). The study of this state of stability is then an essential step for the prediction of crises.

In order to ensure an early detection of first signs of crises we have used a methodology based firstly on a preprocessing stage, during which EEG signal goes through a certain filtering process to get rid of different type artifacts. The second step consists in applying the Multivariate Auto Regressive Modeling (MVAR) combined with Kalman filter to filter EEG signals and to generate autoregressive parameters (AR) versus time. This last step consists in extracting eigenvalues from the estimated MVAR system. The statistical behavior of these values provides information on possible epileptic electrical discharge signatures.

EEG signal filtering

EEG data are still contaminated with different type artifacts classified according to their sources as physiological artifacts or external artifacts. Detecting and eliminating different type of artifacts from different sources is therefore a critical step in analyzing EEG signals and obtaining relevant clinical information. For this work, we combined two filtering methods, Wavelet transform to eliminate interference beyond the frequency band of the EEG signal (0.5-32 Hz); the main wavelet used is "db5" which is similar to the EEG signal in the time domain [START_REF] Cao | Epileptic seizure auto-detection using deep learning method[END_REF] and Independent Component Analysis (ICA) [START_REF] Sun | Independent component analysis of EEG signals[END_REF]: to eliminate muscular and ocular artifacts that cannot be removed by conventional filters since they overlap spectrally with the EEG.

Study of stability

Generally, Autoregressive Modeling is applied on stationary processes then decomposition in temporal segments of short duration using a sliding window. This treatment is the solution to face the problem of non-stationarity of EEG signals. The time length of the window used to segment signals is 2 seconds and window moves continuously at each step without repetition and each segment is thus represented by a series of state variables as it is presented by the equation (1). Moreover as two windows are needed, the first one is used to express data on the second one, no crossover exists between these two windows.

(𝑌 𝑛 ) 𝑛=1 𝑁 = ( 𝑦 1 (𝑛) ⋯ 𝑦 𝑑 (𝑛) ⋮ ⋱ ⋮ 𝑦 1 (𝑛) ⋯ 𝑦 𝑑 (𝑛) ) 𝑛=1 𝑁 (1)
With: n € {1, ..., N}is time parameter and d is electrode number.

All autoregressive parameters are estimated by applying MVAR modeling which was chosen for its high sensitivity not only for detection of crises but also for exhibit of inter-electrodes relationships as well as influence of each one on the others. The multivariate autoregressive model of order p of each segment𝑌 𝑛 estimates each sample as a weighted sum of the p previous samples as shown in equation [START_REF] Alotaiby | Epileptic seizure prediction using CSP and LDA for scalp EEG signals[END_REF].

𝑌 𝑛 = ∑ 𝐴 𝑟 (𝑛)𝑌 𝑛-𝑟 + 𝑊 𝑟 (𝑛) 𝑝 𝑟=1 (2)
With: 𝑌 𝑛 is the time series estimated with a sum of linear combination of previous EEG signals, 𝑊 𝑟 (𝑛) = [𝑤 1 (𝑛), … , 𝑤 𝑟 (𝑛)] 𝑇 is a white noise with a null average, r ∈ {1, ..., p}, p is optimal order of our model𝐴 𝑟 (𝑛)∈𝑅 𝑑×𝑑 is the autoregressive matrix built with estimated parameters. The coefficients 𝐴 𝑟 (𝑛)from MVAR model are estimated by Yules Walker's equations [START_REF] Thara | Epileptic seizure detection and prediction using stacked bidirectional long short term memory[END_REF].

Choice of MVAR model order

Complexity of EEG signal results in an optimal order of AR model. The selection of optimal order p attempts to minimize error between temporal variation of real signal and that of estimated signal and therefore to represent real signal as adequately as possible. Choosing a low order value leads to a smoothing of the spectrum. However, a very high order leads to secondary peaks. The Baysian Shwartz criterion (SBC) is applied in this study for selection of orders whose formula is presented by equation [START_REF] Subasi | Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing[END_REF]. Since order of the model varies according to patient and number of leads used, the SBC criterion must be calculated for each patient over several time windows and the order corresponding to the minimum SBC value must be selected as the optimal order of our autoregressive model.

𝑆𝐵𝐶 = log 𝜎 ̂2(𝑝) + 𝑝 𝑙𝑜𝑔𝑁 𝑁 (3) 
With:𝜎 ̂2is the variance of the prediction error, p is the order of AR process and N size of the sample.

Reduction of estimation error with Kalman filter

The AR parameter vectors generated have coefficients varying over time. Reliability of this estimation of these instantaneous coefficients from past noisy EEG signals depends on complexity of each EEG segment. We propose to update AR system parameters with an adaptive filter to reduce estimation error. In order to effectively reduce reconstruction errors of EEG signals from these variable AR parameters over time Kalman filter is applied. This adaptation step with Kalman filter does not modify number and values of the parameters generated by the MVAR model [START_REF] Thara | Epileptic seizure detection and prediction using stacked bidirectional long short term memory[END_REF]. The general model of the Kalman filter is defined as follows:

𝑄 𝑛 = 𝐺 𝑛-1 𝑄 𝑛-1 + 𝑉 𝑛 (4) 𝑂 𝑛 = 𝐻 𝑛 𝑄 𝑛 + 𝑊 𝑛 (5)
Where, O n is the EEG signal to be treated. The first equation is the state process 𝑄 𝑛 by using a transition matrix 𝐺 𝑛 and an additive noise matrix V 𝑛 . The second is the observation which connects the state process matrix 𝑄 𝑛 via a transitionmatrixH n and a second additive noise matrix 𝑊 𝑛 . In order to obtain the whole MVAR method, following definitions are necessary:

𝑄 𝑛 = [ 𝐴 1 (𝑛) 𝑇 ⋮ 𝐴 𝑃 (𝑛) 𝑇 ] ( 6 
)
𝑂 𝑛 = ( 𝑦 1 (1) ⋯ 𝑦 𝑑 (1) ⋮ ⋱ ⋮ 𝑦 1 (𝑁) ⋯ 𝑦 𝑑 (𝑁) ) = 𝑌 𝑛 (7) 
𝐺 𝑛-1 = 𝐼 𝑑𝑝 ( 8)

𝐻 𝑛 = (𝑂 𝑛-1 … 𝑂 𝑛-𝑃 ) (9) 
After initialization, it is possible to use the conventional steps of calculating a Kalman filter to estimate the state process𝑄 𝑛 (AR parameters) recursively as follows:

To specifyO P = 0, W p = I d , 𝑃 𝑝 =𝐼 𝑑𝑝 et n=p+1:N and repeat the following steps : 

𝑆 𝑛 =
With: tr for matrix trace.

Calculus of stability index

All the state variables generated will be used for early detection of epileptic seizures. This detection is based on changes over time in stability properties of our mathematical system. We propose in this section to calculate a stability Index of a neural population system based on extraction of eigenvalues from MVAR matrices [START_REF] Hocepied | Stability analysis of epileptic EEG signals[END_REF]. First, we extract eigenvalues by representation of system in state variables. Then a new representation of system equation of state is given by equation [START_REF] Sharma | Computer-Aided Diagnosis of Epilepsy Using Bispectrum of EEG Signals[END_REF].

𝑌 𝑛 ̂= 𝐽. 𝑌 𝑛-1 ̂+ 𝑊 ̂(n) (16) 
With:𝑌 𝑛 ̂= [𝑌 𝑛 𝑇 , 𝑌 𝑛-1 𝑇 , … , 𝑌 𝑛-𝑝+1 𝑇 ] 𝑇 ∈𝑅 𝑑𝑝×1 is a state vector,𝑊 ̂(𝑛) = [𝑊(𝑛) 𝑇 , 0, … ,0] 𝑇 ∈𝑅 𝑑𝑝×1 is a noise matrix and J is an expression of the state system [START_REF] Park | Epileptic seizure detection for multi-channel EEG with deep convolutional neural network[END_REF].

𝐽 = [ 𝐴 1 𝐴 2 … 𝐼 0 0 𝐴 𝑝 0 0 𝐼 0 0 0 𝐼 0 0 ] ∈ 𝑅 𝑑𝑝×𝑑𝑝 (17) 
Matrix system J could be written as:

𝐽 = 𝑉𝐿𝑉 -1 (18) 
Where, columns of V∈𝑅 𝑑𝑝×𝑑𝑝 are independent eigenvectors 𝑉 𝑗 and L is a diagonal matrix made with eigenvalues.

𝐿 = [ 𝜆 1 0 0 0 𝜆 2 0 0 0 𝜆 3 0 0 0 0 0 0 0 0 0 0 0 0 ⋯ 0 0 𝜆 𝑑𝑝] ∈ 𝑅 𝑑𝑝×𝑑𝑝 ( 19 
)
An eigenvalue𝜆is a complex number written as follow:

𝜆 = 𝑟. 𝑒 𝑗𝑤 (20) 
With: 𝑟 is a damping factor and 𝑤is a frequency.

Modules of maximum eigenvalues calculated for each segment will be considered. These eigenvalues give information on stability of system described and therefore form a variable stability index over time. This index then goes through a smoothing step using a moving average filter.

Early detection of crises

Based on the literature [START_REF] Lütkepohl | Stable vector autoregressive processes[END_REF], the behavior of an autoregressive (var) model is determined by the eigenvalues extracted from the autoregressive (AR) matrix and the stability of a VAR model is verified when the maximum of the eigenvalues 𝜆 𝑚𝑎𝑥 is lower than 1.

So, in our case, knowing that the stability index is composed of the maximums of the eigenvalues: If 𝜆 𝑚𝑎𝑥 < 1, the system is considered stable, so there are no epileptic seizures. If𝜆 𝑚𝑎𝑥 > 1, the system is considered unstable, hence the detection of an epileptic seizure.

Algorithm

Algorithm 

Databases

Clinical cases

Clinical data consist of an open access database on "PhysioNet.org" containing long-term continuous multichannel EEG recordings of 24 patients, recorded at the Children's Hospital in Boston. These recordings were made on pediatric subjects with seizures (5 men, aged 3 to 22 years; 17 women, aged 1.5 to 19 years and 1 subject without information on age and sex) for purpose of assess their suitability to surgery. EEG signals were recorded according to the international electrode positioning system 10-20 with a sampling frequency of 256 and a resolution of 16 bits.

Simulated data

This database was generated with TVB based on the Epileptor model which was developed by Jirsa et al [START_REF] Jirsa | On the nature of seizure dynamics[END_REF] and which makes it possible to model phenomenology and dynamics of epilepsy attacks [START_REF] Tsiouris | A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals[END_REF]. This exploited model is basic, in order to complete this model, white matter connectivity is expressed with the matrix "John Doe". Epileptor is affected to gray matter, and is based on five state variables and it is composed of two subsystems: a subsystem (Equation 22) with two state variables responsible for generation of fast discharges and another subsystem (Equation 23) with two state variables generating SWE events (sharp wave events) as well as a slow state variable z (Equation 24).

{ 𝑥 1 ̇= 𝑦 1 -𝑓 1 (𝑥 1 , 𝑥 2 ) -𝑧 + 𝐼 𝑟𝑒𝑠𝑡1 𝑦 1 ̇= 𝑦 0 -5𝑥 1 2 -𝑦 1 (22) 
{ 𝑥 2 ̇= -𝑦 2 + 𝑥 2 -𝑥 2 3 + 𝐼 𝑟𝑒𝑠𝑡2 + 0.002𝑔 -0.3(𝑧 -3.5) 𝑦 2 ̇= (-𝑦 2 + 𝑓 2 (𝑥 2 ))/𝜏 2 [START_REF] Zhang | Epilepsy prediction through optimized multidimensional sample entropy and Bi-LSTM[END_REF] 𝑧̇= { 𝑟(4(𝑥 1 -𝑥 0 ) -𝑧 -0.1𝑧 7 ) 𝑖𝑓𝑧 < 0 𝑟(4(𝑥 1 -𝑥 0 ) -𝑧) 𝑖𝑓𝑧 ≥ 0 ( 24)

With:𝑓 1 (𝑥 1 , 𝑥 2 ) = { 𝑥 1 3 -3𝑥 1 2 𝑖𝑓𝑥 1 < 0 (𝑥 2 -0.6(𝑧 -4) 2 𝑥 1 𝑖𝑓 𝑥 1 ≥ 0 .
,𝑓 2 (𝑥 2 ) = { 0 𝑖𝑓𝑥 2 < -0.25 6(𝑥 2 + 0.25)𝑖𝑓𝑥 2 ≥ -0.25

Andg(x 1 ) = ∫ e -γ(t-τ) x 1 (τ)dτ t t0
.

The virtual brain model used for white matter is a basic matrix which is called "John Doe" and it is divided into 76 brain zones (regions of interest), more precisely 38 on each hemisphere: right and left, as shown in Table 2. The localization of epileptogenic zones (EZs) has been the subject of numerous research studies in the literature, notably [START_REF] Sharma | A NEW TECHNIQUE for CLASSIFICATION of FOCAL and NONFOCAL EEG SIGNALS[END_REF][START_REF] Sharma | Automated focal EEG signal detection based on third order cumulant function[END_REF] due to the importance of this process in the treatment of epilepsy through surgical interventions. In the case of epileptic seizure prediction, knowing the epileptogenic zone and therefore the type of epilepsy in advance makes it possible to choose the most sensitive electrodes to be used, which is perfectly feasible with Epileptor.

Our objective was to generate a diversified database of several epileptic patients, each having a single epileptic area and an epileptogenic network (same white matter) and therefore a different type of epilepsy from the others.

To answer our problem, several types of parameters of Epileptor model must be adapted, starting with epileptogenicity coefficient x0 which, for each epileptic area, must be set at -1.6 as an epileptogenic zone and at -2.4 for others. Moreover, to simplify our model, no propagating zone had been applied (x0=-1.8). Values of various other parameters are presented in Table 3. All simulations are carried out with linear multiplicative Gaussian white noise of zero mean and constant variance, of the order of 0.000001 and based on the Euler-Maruyama method. These virtual patients are generated by assigning an epileptic coefficient x0: -1.6 to one following area listed on the table 4.

Tableau 4 : virtual patients Our basic connectivity is « John Doe » as only one area is epileptic (x0=-1,6) , the global coupling was changed but as we searched for the most sensitive electrodes and also sensitivity of stability index , it was found that the most sensitive electrodes for EEG signals are the closest to the epileptic area, then the global coupling is set to a maximum value (a=1) for all virtual patients. Moreover, as it is a basic model without propagating zones or networks, the only connectivity was John Doe matrices of weight and track_lenght, this latter does not play any role in stability index before seizure, it affects the dynamics after the onset of the crisis.

RESULTS

One of the objectives of this work is to study spatiotemporal evolution of an epilepsy crisis and predict its occurrence. This objective is based on monitoring variation in stability index calculated using specific electrodes adapted to each patient. These electrodes are chosen by an expert and they are respectively the most sensitive electrodes for clinical data and these closest electrodes to the epileptogenic zone for simulation data. For each patient three values are extracted: the time of onset of the crisis, the time of detection of the crisis by our approach and the delay which is the difference between these two.

The performance of this applied method was studied using standard statistical evaluation criteria which are sensitivity and accuracy, defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁) * 100% (25) 

DISCUSSION

The problematic addressed by this study relates to proposal of a methodology which makes it possible to study the dynamics of an epileptic crisis as well as the automatic prediction of its advent. To do this, we applied multivariate autoregressive modeling to calculate a stability index allowing early detection of the occurrence of epileptic seizures. Continuous analysis of the variation in this stability index has made it possible to provide information on moments of onset of crises. This approach has been validated on two types of recordings, real recordings of 8 patients from a database available in free access, 29 crises with triggering times are listed, and virtual recordings generated with the Epileptor model, which allowed us to vary localization of the epileptogenic focus, the amplitude and the nature of the crises. The objective is to use these virtual subjects as a complement to real patients, to know in advance the most influential electrodes in the calculation of the stability index according to the simulated foci and to define a propagation path of the epileptic flow and minimize the number of the most sensitive electrodes.

With our approach, we succeeded in early detection of crises with accuracy equal to 100% and sensitivity equal to 93% for the simulated subjects. The average prediction time for these subjects is 4.427s. Our accuracy for real patients is around 97.87% and the sensitivity is 100% with an average of the prediction time equal to 237.21s. The sensitivity and accuracy values obtained with our method using the "CHB-MIT EEG database" are significantly higher than those reported by previous works that have tested their approaches on the same database summarized in Table 8. The average time to predict epileptic seizures in real patients is greater than that of TVB subjects for two reasons: first is that duration of EEG recordings of real patients, which varies from 1 hour to 4 hours, is more longer than simulated TVB subjects, which is of order of 30 seconds; second reason is that EEG signal of an actual epileptic patient undergoes certain modifications resulting in a very rapid discharge in the few minutes preceding an attack, one or more large peaks during attack and a more or less prolonged slowing of tracing after the crisis, which facilitates prediction, whereas for simulated subjects, dynamics of EEG signals vary only during crises or in the few milliseconds because it's pure phenomenological mathematics signals. These results suggest to reproduce deeper each real patient in order to find biological marker of crises prediction. It could be possible by measuring MRI and fMRI for each real patient in order to perform with Freesurfer: first area parcellation for gray matter and extract epileptor nodes and applied MRtrix to design weight matrix and track_lenght matrix for reproducing white matter. These deeper studies could be done in our next works. The difference between EEG signals from patients and EEG signals model for these same patients will lead to exhibit new markers.

We also tested our approach on non-epileptic patients and found that the stability index is lower than 1 (Figure 1). This index becomes greater than 1 closer to and at the time of seizures for patients with epilepsy (Figure2).

Figure1: stability index for a normal subject Figure2: stability index for an epileptic patient.

CONCLUSION

Our approach allows the prediction of crises with an accuracy which varies from 97.87% to 100% and a sensitivity which varies from 93% to 100% according to the type of subject treated. These values are higher than that reported by previous works published on the same base. In the following, our work evolves in two directions, the first consists in adapting the methodology each patient and optimizing the choice of electrodes carrying useful information, and the second is to use artificial intelligence techniques to consolidate our results. Moreover, virtual patients exhibit a prediction time much lower by a factor more than 20, than real patients, which show that epileptor is a very good phenomenological model of the epileptic crisis, but some biological behavior before seizure are not considered. This study suggests performing white matter matrices by doing MRI and fMRI for each real patient, model epileptic behavior as precise as possible and extracting these biological new markers of epileptic behavior.

Table 1 : works about seizure prediction Authors (date) Methodologies Data Base

 1 

	Usman et al	Three layer Convolutional Neural Networks	CHBMIT
	(2021)[20]	and Long Short Term Memory units	
	Büyükçakır et al	Hilbert Vibration Decomposition (HVD) and	CHB-MIT
	(2020)[22]	Multi-layer Perceptron (MLP)	
	Borhade et al	Deep Recurrent Neural Network (RNN)	CHB-MIT
	(2020)[19]		
	Zhang et al	Multidimensional sample entropy(M-SampEn)	CHB-MIT
	(2020)[23]	and Bi-LSTM	
	Wei et al (2019)[24]	Long-term recurrent convolutional network	Private data base
		(LRCN) (deep learning) add to Long short-	
		term memory (LSTM)	
	Thara et al (2019)[25]	Recurrent neural network with short-term and	Bonn University
		long-term memory (LSTM)	
	Rukhsar et al	Multivariate statistical process control (MSPC)	CHB-MIT
	(2019)[26]		

Table 2 :

 2 brain's area

	Left Hemisphere			Right Hemisphere		
	1	IA1	20	IPFCDM	39	RA1	58	RPFCDM
	2	IA2	21	IPFCM	40	RA2	59	RPFCM
	3	IAMYG	22	IPFCORB	41	RAMYG	60	RPFCORB
	4	ICCA	23	IPFCPOL	42	RCCA	61	RPFCPOL
	5	ICCP	24	IPFCVL	43	RCCP	62	RPFCVL
	6	ICCR	25	IPHC	44	RCCR	63	RPHC
	7	ICCS	26	IPMCDL	45	RCCS	64	RPMCDL
	8	IFEF	27	IPMCM	46	RFEF	65	RPMCM
	9	IG	28	IPFCVL	47	RG	66	RPFCVL
	10	IHC	29	IS1	48	RHC	67	RS1
	11	IIA	30	IS2	49	RIA	68	RS2
	12	IIP	31	ITCC	50	RIP	69	RTCC
	13	IM1	32	ITCI	51	RM1	70	RTCI
	14	IPCI	33	ITCPOL	52	RPCI	71	RTCPOL
	15	IPCIP	34	ITCS	53	RPCIP	72	RTCS
	16	IPCM	35	ITCV	54	IRPCM	73	RTCV
	17	IPCS	36	IV1	55	RPCS	74	RV1
	18	IPFCCL	37	IV2	56	RPFCCL	75	RV2
	19	IPFCDL	38	ICC	57	RPFCDL	76	RCC

Table 3 :

 3 default parameters

	Parameters	Values
	Irest1	3.1
	Irest2	0.45
	R	0.0000142
	y0	1
	𝝉 𝟐	10
	𝜸	0.01
	Dt	0.05
	Longueur de simulation	50000
	Fs	1000
	a	1

  TP (number of true positive decisions): which indicates presence of a crisis and an alarm, FN (number of false negative decisions): which indicates presence of a crisis but the absence of an alarm, TN (number of true negative decisions): which indicates absence of a crisis and of an alarm and FP (number of false positive decisions): which indicates absence of a crisis and presence of an alarm. Table 5and table 6show respectively results for TVB virtual patients, and real clinical patients.

	With:			
	Virtual patients	Epileptogenic area	Abbreviations
	Patient 1	Left primary auditive cortex	IA1
	Patient 2	Left Amygdale	IAMYG
	Patient 3	Left cingulated splenialgyrus	ICCR
	Patient 4	Left hippocampus	IHC
	Patient 5	Left prefrontal dorsal cortex	IPFCDM
	Patient 6	Left somatosensorial primary Cortex	IS1
	Patient 7	Left somatosensorial secondaryCortex	IS2
	Patient 8	Left visual primary Cortex	IV1
	Patient 9	Right auditive primaire Cortex	RA1
	Patient 10	Right Amygdale	RAMYG
	Patient 11	right cingulated splenialgyrus	RCCR
	Patient 12	Right hippocampus	RHC
	Patient 13	Right primary somatosensorial cortex	RS1
	Patient 14	Right secondary somatosensorial cortex	RS2
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	𝑇𝑃 + 𝑇𝑁 (𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)	* 100%	(26)

Table 5 :

 5 Results for TVB virtual patients

	Subjects	Closest Electrodes	Crisesbeginning (s)	Detection Delay(s)	Accuracy Sensitivity
	Subject 1	T3, T5	26	19.48	7.2	100%	93%
	Subject 2	FT9, F7	7.614	4.19	3.424		
	Subject 3	F3, FP1, F7	3.733	3.024	0.709		
	Subject 4	F9, FT9, F9	26.07	21.52	4.55		
	Subject 5	F3, FP1, F7	22.88	15.91	6.97		
	Subject 6	P3	12.83	7.158	5.672		
	Subject 7	P3	2.144	2.346	-0.202		
	Subject 8	O1	21.12	13.396	8.724		
	Subject 9	T4,T6	21.96	15.03	6.93		
	Subject 10	FT10, F8	9.51	4.87	4.64		
	Subject 11	F4, FP2, F8	15.51	9.078	6.432		
	Subject 12	F10, FT10, F8	5.315	4.034	1.281		
	Subject 13	P4	6.445	4.494	1.951		
	Subject 14	P4	8.743	5.166	3.577		

Table 6 :

 6 Results for real patients

	Patient/ recording	Most sensitive	Crisesbeginning	Detection	Delay	Accuracy	Sensitivity
		Electrodes	(s)		(s)		
	Patient1/Chb01_03	Fp1-F7, F3-C3	2996	2870	126	83%	100%
	Patient1/Chb01_15	Fp1-F7, F3-C3	1732	1674	58		
	Patient1/Chb01_16	Fp1-F7, F3-C3	1015	801.2	213.8		
	Patient1/Chb01_18	Fp1-F7, F3-C3	1720	1570.8	149.2		
	Patient1/Chb01_26	F3-C3, F4-C4	1862	1839.8	22.2		
	Patient2/Chb03_04	T7-P7, P7-O1	2162	1799.8	362.2	100%	100%
	Patient2/Chb03_34	T7-P7, P7-O1	1982	1864.4	117.6		
	Patient2/Chb03_35	T7-P7, P7-O1	2592	2074	518		
	Patient2/Chb03_36	T7-P7, P7-O1	1725	1558.4	166.6		
	Patient3/Chb05_06	Fp1-F7	417	320.4	96.6	100%	100%
	Patient3/Chb05_16	F3-C3, F4-C4	2317	1933.8	383.2		
	Patient3/Chb05_17	F3-C3, F4-C4	2451	1866.6	584.4		
	Patient4/Chb07_12	F8-T8	4920	4696	224	100%	100%
	Patient4/Chb07_13	F3-C3, F8-T8	3285	3112	173		
	Patient5/Chb11_92	Fp1-F3	2695	2268	427	100%	100%
	Patient5/Chb11_99	Fp1-F3	1454	941.2	512.8		
	Patient6/Chb19_28	T7-P7, P7-O1	299	240.6	58.4	100%	100%
	Patient6/Chb19_29	T7-P7, P7-O1	2964	2798	166		
	Patient6/Chb19_30	T7-P7, P7-O1	3159	3056	103		
	Patient7/Chb20_12	F3-C3, C3-P3	94	30	64	100%	100%
	Patient7/Chb20_13	F7-T7, T7-P7	Crisis1:1440	Crisis1: 1310.8	Crisis1: 129.2		
			Crisis2:2498	Crisis2: 2444	Crisis2:54		
	Patient7/Chb20_14	F7-T7, T7-P7	1971	1771.4	199.6		
	Patient7/Chb20_15	F7-T7, T7-P7	Crisis1:390	Crisis1:286	Crisis1:104		
			Crisis2:1689	Crisis2:1554	Crisis2:135		
	Patient7/Chb20_16	F7-T7, T7-P7	2226	2162	64		
	Patient7/Chb20_68	F7-T7, T7-P7	1393	1290	103		
	Patient8/Chb22_20	P8-O2, P7-O1	3367	3282	85	100%	100%
	Patient8/Chb22_38	P8-O2	1263	1053.4	209.6		
			Table 7 : recapitulative results			
		Patients	Delay(s)	Accuracy	Sensitivity		
		Real Patients	237.21	97.87%	100%		
		TVB patients	4.427	100%	93%		

Table 8 :

 8 Comparison with literature using the open CHB-MIT EEG database.

Authors (date)
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