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P- and T-Wave Delineation in ECG Signals Using
a Bayesian Approach and a Partially Collapsed

Gibbs Sampler
Chao Lin*, Student Member, IEEE, Corinne Mailhes, Member, IEEE,

and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—Detection and delineation of P- and T-waves are im-
portant issues in the analysis and interpretation of electrocardio-
gram (ECG) signals. This paper addresses this problem by using
Bayesian inference to represent a priori relationships among ECG
wave components. Based on the recently introduced partially col-
lapsed Gibbs sampler principle, the wave delineation and estima-
tion are conducted simultaneously by using a Bayesian algorithm
combined with a Markov chain Monte Carlo method. This method
exploits the strong local dependency of ECG signals. The proposed
strategy is evaluated on the annotated QT database and compared
to other classical algorithms. An important feature of this paper is
that it allows not only for the detection of P- and T-wave peaks and
boundaries, but also for the accurate estimation of waveforms for
each analysis window. This can be useful for some ECG analysis
that require wave morphology information.

Index Terms—Bayesian analysis, electrocardiogram, Markov
chain Monte Carlo method.

I. INTRODUCTION

THE ANALYSIS of electrocardiograms (ECGs) has re-
ceived increasing attention because of its vital role in many

cardiac disease diagnoses. Most of the clinically useful infor-
mation in ECGs can be obtained from the intervals, amplitudes,
or wave morphology of the ECGs. Therefore, the development
of efficient and robust methods for automatic ECG delineation
is a subject of major importance. The QRS complex is the most
characteristic waveform of the ECG signal. Its high amplitude
makes QRS detection easier than other waves. Thus, it is gener-
ally used as a reference within the cardiac cycle. Algorithms for
P- and T-wave detection and delineation (determination of peaks
and limits of the individual P and T waves) usually begin with
QRS detection. Search windows are then defined before and
after the QRS location to seek for the other waves. Finally, an
appropriate strategy is used to enhance the distinctive features
of each wave in order to find its peaks and limits.

Digital Object Identifier 10.1109/TBME.2010.2076809

One can find in the literature many different P- and T-wave
delineation approaches [1]–[19]. A first class of algorithms is
based on filtering techniques, such as adaptive filtering [1], low-
pass differentiation (LPD) [2], and nested median filtering [3].
A second class of methods applies a basis expansion technique
to the ECG signal and uses the resulting coefficients for de-
tecting P- and T-waves. The different basis functions that have
been considered in the literature include discrete Fourier trans-
form [4], discrete cosine transform [5], and wavelet transform
(WT) [6], [7]. A third class of approaches considers classifica-
tion and pattern recognition methods, such as fuzzy theory [8],
artificial neural networks [9], pattern grammars [10], and hid-
den Markov models [11]. Delineation can also be based on the
concept of fitting a realistic model to the ECG and extract-
ing parameters from the model to determine waveform onsets
and offsets. Particular attention has been devoted to Gaussian
mixture models whose parameters can be estimated with non-
linear gradient descent [12] or Kalman filters (KFs) [13], [14].
Finally, we would like to mention other delineation strategies
based on length transformation [15], uniform thresholding [16],
approximating function theory [17], and characterization of TU
complexes [18]. Note that some of these methods can only be
used to obtain a subset of P- and T-wave characteristic points.
Due to the low slope and low magnitude of P- and T-waves and
due to the lack of a universal rule to locate the beginning and
the end of wave components, P- and T-wave delineation remains
a complicated task. Furthermore, in addition to the estimation
of wave peaks and limits, an accurate waveform estimation is
certainly relevant for some medical diagnoses (such as T-wave
alternans (TWA) detection [20]) or pathology analysis (such as
arrhythmia detection [21]).

In this paper, we introduce a novel hierarchical Bayesian
model that simultaneously solves the P- and T-wave delin-
eation task and the pointwise waveform-estimation problems.
This model takes into account appropriate prior distributions
for the unknown parameters (wave locations and amplitudes,
and waveform coefficients). These prior distributions are com-
bined with the likelihood of the observed data to provide the
posterior distribution of the unknown parameters. The poste-
rior distribution depends on hyperparameters that can be fixed
a priori or estimated from the observed data. This paper will
consider both possibilities depending on the available informa-
tion regarding these hyperparameters. To alleviate numerical
problems related to the posterior associated to the P- and
T-wave delineation, we propose to resort to Markov chain Monte



Carlo (MCMC) methods [22]. MCMC is a powerful sampling
strategy, appropriate to solve complex Bayesian inference prob-
lems. This paper concentrates on a particular MCMC method
referred to as partially collapsed Gibbs sampler (PCGS) whose
convergence properties have been studied in [23]. The PCGS has
shown interesting properties for electromyography (EMG) [24]
and optical coherence tomography (OCT) [25], [26]. However,
to the best of our knowledge, this is the first application of PCGS
to P- and T-wave delineation of ECG signals. The ECG state
sequence is Markovian, since the current state (P-wave, QRS
complex, and T-wave) only depends on the previous state. This
property motivates our study of a PCGS imposing a strong local
dependency on the wave locations. The local dependency im-
proves the convergence and the computational efficiency of the
sampler.

This paper is organized as follows. The ECG preprocessing
considered in this paper is presented in Section II. Section III
describes the different elements of the hierarchical Bayesian
model that will be used to solve the P- and T-wave delineation
problems. Section IV studies a PCGS that generates samples dis-
tributed according to the posterior of the proposed hierarchical
Bayesian model. The generated samples will be used to esti-
mate the unknown model parameters and hyperparameters. The
wave detection and delineation criteria based on the posterior
distributions are also presented. Simulation results performed
on the standard annotated QT database (QTDB) [27] as well
as a comparison with other algorithms are given in Section V.
Finally, conclusion is reported in Section VI.

II. PREPROCESSING

It is common to view ECGs as the combination of two el-
ements, namely, QRS complexes and non-QRS regions. The
interval between each successive pair of QRS offset and the
subsequent QRS onset constitutes a non-QRS region. Due to the
nonstationary nature of ECGs, detection and estimation must in-
volve a limited set of consecutive beats. In the proposed method,
we first detect QRS complexes that are the most prominent com-
ponents of the ECG signal, and then we shift a nonoverlapping
D-beat processing window to cover the whole signal. In the
processing window, detected QRS complexes become a refer-
ence for detecting P- and T-waves. We define a T-search and
a P-search regions for each beat, relative to the QRS complex
boundaries depending on a recursively computed RR interval.
The T- and P-search regions within the processing window are
then extracted individually to form T- and P-wave search blocks.
The preprocessing procedure can be summarized as follows.

1) QRS detection: QRS complexes are detected using the
algorithm of Pan et al. [28] based on digital analysis of the
slope, amplitude, and width. The filtering that is done prior to
this algorithm is found to be satisfactory. Thus, no additional
filtering is required before the delineation of P- and T-waves.
Note, however, that any other QRS detection algorithm could
be used in this preprocessing step.

2) Removal of baseline drift: In the proposed algorithm,
waveform coefficients are estimated simultaneously with the
wave locations. Baseline drift causes inaccurate waveform-

Fig. 1. Preprocessing procedure within the D-beat processing window: (a)
Located QRS complexes. (b) T-wave search block. (c) P-wave search block.
RRI is the interval from a QRS offset to the next QRS onset, and RRI/2 is half
of RRI, here we set NT = NP =RRI/2.

estimation results. For this reason, we employ the method pro-
posed in [29] to remove baseline drift in each RR interval. Note,
however, that any other baseline-removal technique could be
used in this preprocessing step.

3) Construction of P- and T-wave search blocks: As shown
in Fig. 1, in the D-beat processing window, D successive right-
hand neighborhoods of QRS offsets can be extracted to form a
T-wave search block. Suppose that koff denotes a QRS offset
location, then a T-wave indicator can only appear in the right-
hand neighborhood of koff , which can be denoted as JT (koff ) =
(koff + 1, . . . , koff + NT ), where NT denotes the T-wave search
region width. Similarly, D left-hand neighborhoods of QRS
onsets can be extracted to form a P-wave search block. The
length of each search region is fixed according to the current
estimated RR interval (denoted by RRI). Thus, it will differ
from one beat to another.

The proposed algorithm processes two search blocks (one
for T-wave delineation and the other for P-wave delineation)
individually using the same Bayesian inference. Section III in-
troduces the Bayesian model applied to T-wave search blocks,
while it should be noted that this model is compatible with minor
modifications for P-wave search blocks as well.

III. HIERARCHICAL BAYESIAN MODEL FOR T-WAVES

Deconvolution models have been widely used in many signal-
processing applications including signal segmentation [30],
layer detection [25], and EMG signal analysis [31]. Fol-
lowing these ideas, signals in T-wave search blocks are as-
sumed to be the convolution of an unknown impulse response
h = [h0 , . . . , hL ]T with an unknown input pulse sequence
u = [u1 , . . . , uM ]T such that

xk =
L∑

l=0

hluk−l + nk (1)

with k ∈ {1, . . . , K}, K = M + L is the block length, xk is
the observed ECG signal, and nk denotes the additive Gaussian



Fig. 2. Modeling of T-wave parts within the T-wave search block.

noise with zero mean and variance σ2
n . Here, we adopt a zero

boundary condition, i.e., the unknown sequence um is assumed
to vanish for all m /∈ {1, . . . , M}. In matrix form, (1) can be
written as follows:

x = Fu + n (2)

where x = [x1 , . . . , xK ]T , n = [n1 , . . . , nK ]T , and F is the
Toeplitz matrix K × M with first row [h0 0M −1 ] and first col-

umn
[
hT 0M −1

]T
(0M −1 is a (M − 1) × 1 vector of zeros).

The sequence u can be further decomposed as a binary se-
quence bm ∈ {0, 1} ,m = 1, . . . , M indicating the T-wave ex-
istence multiplied by weight factors a = [a1 , . . . , aM ]T repre-
senting the T-wave amplitudes, as illustrated in Fig. 2. Note that
the impulse response h is supposed to be unique for D T-wave
search regions within the processing window, whereas the am-
plitudes in a vary from one region to another. Consequently, (2)
can be written as follows:

x = FBa + n (3)

where B denotes the M × M diagonal matrix diag (b) and
b = [b1 , . . . , bM ]T .

The unknown parameter vector resulting from this reparam-
eterization is θ =

[
bT ,aT ,hT , σ2

n

]T
. This paper proposes to

estimate the parameter vector θ by using Bayesian estimation
theory. Bayesian inference on θ is based on the posterior distri-
bution p (θ|x) ∝ p (x|θ) p (θ) (where ∝ means “proportional
to”), which is related to the likelihood of the observations and
the prior of the parameters. The likelihood p (x|θ) and the prior
p (θ) for the T-wave delineation problem are given below.

A. Likelihood

Using (3), the likelihood of the observed data vector x can be
expressed as follows:

p (x|θ) =
1

(2π)
K
2 σK

n

exp
[
− 1

2σ2
n

‖x − FBa‖2
]

(4)

where ‖x‖ =
(
xT x

) 1
2 denotes the Euclidean norm.

B. Prior Distributions

We propose to model the unknown sequence uk = akbk as a
Bernoulli–Gaussian (BG) sequence

bk ∼ Be (λ) ak |bk = 1 ∼ N
(
0, σ2

a

)
(5)

whereBe (λ) is the Bernoulli distribution with parameter λ such
that p [bk = 1] = λ. In order to handle both positive and negative
wave amplitudes, ak |bk = 1 is distributed according to a zero

mean Gaussian distribution with variance σ2
a , whereas ak is not

sampled when bk = 0.
Because of the Markov property of ECG, successive T-waves

can only appear in search regions located in the right-hand
neighborhoods of each QRS offset (whereas P-waves are located
to the left-hand neighborhoods of each QRS onset). Thus, the
T-wave indicator vector b cannot have two elements bk = 1 and
bk ′ = 1 closer than a minimum-distance constraint d, where d
depends on the RR interval length. Consequently, the T-wave
detection problem can be seen as a BG blind deconvolution
problem with deterministic local constraints, as in [25] and [26].
The prior of b can then be defined as the product of a minimum-
distance constraint indicator function IC (b) and the likelihood
of independent Bernoulli random variables

p (b) ∝
(

K∏
k=1

p (bk )

)
IC (b)

where IC (b) enforces the minimum-distance constraint b ∈ C,
i.e., IC (b) = 1 if b ∈ C and IC (b) = 0, if b /∈ C.

Since there is no relation between the noise, the impulse re-
sponse, and the BG sequence σ2

n , h and (b,a) are assigned a pri-
ori independent priors such that p (θ) = p (b,a) p (h) p

(
σ2

n

)
.

The impulse response h, and noise n are assigned Gaussian pri-
ors: p (h) = N

(
0, σ2

hIL+1
)
; and p (n) = N

(
0, σ2

nIK

)
, where

IN denotes the identity matrix of size N × N . Choosing con-
jugate Gaussian priors for a and h considerably simplifies the
algorithm, since the resulting conditional distributions are also
Gaussian. Here, σ2

a and σ2
h are fixed hyperparameters. The im-

pulse response is normalized to avoid scale ambiguity (different
values of amplitude and impulse response could provide the
same convolution results) such that σ2

h = 1. Moreover, the pro-
posed algorithm normalizes the ECG signals with different am-
plitude resolutions by their maximum R-peak amplitude such
that σ2

a = 1 can cover all possible amplitude values. Conversely,
the noise variance σ2

n is estimated together with the other un-
known parameters using a hierarchical Bayesian model. For the
prior of σ2

n , we use an inverse gamma distribution IG (ξ, η)
as suggested in [30], where ξ and η are fixed hyperparameters
providing a vague prior.

C. Posterior Distribution

The posterior distribution of the unknown parameters can be
computed from the following hierarchical structure:

p (θ|x) ∝ p (x|θ) p (a|b) p (b) p (h) p
(
σ2

n

)
. (6)

The usual Bayesian estimators related to this posterior are
the minimum mean square error (MMSE) estimator and the
maximum a posteriori (MAP) estimator [32]. Due to the com-
plexity of the posterior distribution given by (6), it is difficult to
obtain closed-form expressions for these estimators. As a con-
sequence, we propose to study an MCMC method, which gener-
ates samples asymptotically distributed according to the target
distribution. The MMSE or MAP estimators of the unknown
parameters are then computed using the generated samples. The
main principles of MCMC methods can be found in [22]. The



PCGS generates samples distributed according to (6) and its
procedure is given in detail in the next section.

IV. PCGS FOR WAVE EXTRACTION

A. Standard GS

To obtain samples from p
(
b,a,h, σ2

n |x
)
, the stan-

dard Gibbs sampler (GS) iteratively generates samples
from p

(
b|a,h, σ2

n ,x
)
, p

(
a|b,h, σ2

n ,x
)
, p

(
h|a,b, σ2

n ,x
)
, and

p
(
σ2

n |a,b,h,x
)
. However, as pointed out in [26], this GS is

poorly suited to problems with local constraints because a con-
straint that excludes parts of the hypothesis space may inhibit
convergence to p

(
b,a,h, σ2

n |x
)
.

B. Partially Collapsed GS

In our case, the unknown parameter vector θ is split into
two parts, i.e., (b,a) that contains the constrained parameters
and

(
h, σ2

n

)
that contains the unconstrained parameters. To

accelerate the convergence of the GS, we propose a PCGS
that takes into consideration the local constraints affecting b
and a. More precisely, denote as Jd (k), a right-hand neigh-
borhood of k with length d, i.e., Jd (k) = {k, . . . , k + d − 1}.
Divide the wave indicator vector b and the wave ampli-
tude vector a into two parts bJd (k) = [bk , . . . , bk+d−1 ]

T ,

b∼Jd (k) = [b1 , . . . , bk−1 , bk+d , . . . , bK ]T , and aJd (k) =
[ak , . . . , ak+d−1 ]

T , a∼Jd (k) = [a1 , . . . , ak−1 , ak+d , . . . , aK ]T

[where the notation b∼Jd (k) denotes b without the com-
ponents belonging to Jd (k)]. The proposed PCGS
iteratively generates bk and ak according to the condi-
tional distributions p

(
bk |b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)

and
p

(
ak |bk ,b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)
. The resulting algorithm

is summarized in Algorithm 1, and is detailed in what follows,
whereas the different conditional distributions are derived in the
Appendix and in [33]. Note that the convergence of this sampler
to the target distribution (6) directly results from [23] (see
also [24] and [25] for applications of the PCGS). The reader
is invited to consult [33] for interesting results showing a faster
convergence of the PCGS when compared to the usual GS.

Indicators. The sampling distribution for bk is a con-
ditional distribution associated with the joint posterior
p

(
b,a,h, σ2

n |x
)

marginalized with respect to the remain-

ing parameters in the neighborhood Jd (k) \ k = {k + 1, . . . ,
k + d − 1}. Thus, bJd (k) is not contained in the condition
for bk . The marginalization of the joint posterior cannot be
analytically obtained with respect to bJd (k)\k = [bk+1 , . . . ,
bk+d−1 ]T . Indeed, this conditional distribution can be
calculated as p

(
bk |b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)

=
∑

bJ d (k ) \k

p(bJd (k) |b∼Jd (k) ,a∼Jd (k) ,h, σ2
n ,x). Thus, we propose to sam-

ple bJd (k) from p
(
bJd (k) |b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)

and then
use the bk contained in the sample. Therefore, the sampling
distribution for wave indicators is

p
(
bJd (k) |b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)
∝ σ1 exp

(
|μ1 |2

2σ2
1

)
p (b)

with

σ2
1 =

(∥∥FJd (k)bJd (k)
∥∥2

σ2
n

+
1
σ2

a

)−1

μ1 =
σ2

1b
T
Jd (k)F

T
Jd (k)

(
x − F∼Jd (k)B∼Jd (k)a∼Jd (k)

)
σ2

n

where FJd (k) denotes the columns of F indexed by Jd (k),
F∼Jd (k) denotes F without those columns, and B∼Jd (k) denotes
the diagonal matrix diag

(
b∼Jd (k)

)
(see Appendix).

Amplitudes. Since p (a) is a conjugate prior, we obtain

p
(
ak |bk = 1,b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)

= N
(
μ1 , σ

2
1
)
.

Note that the amplitude ak is sampled only when bk = 1, i.e.,
when a wave has been detected.

Waveform coefficients. Because h is a priori Gaussian,
straightforward computations lead to

p
(
h|b,a, σ2

n ,x
)

= N (μ2 ,Σ2)

with

μ2 =
σ2

2U
T x

σ2
n

Σ2 =
(

UT U
σ2

n

+
IL+1

σ2
h

)−1

where U is the Toeplitz matrix of size K × (L + 1) with first

row [u1 0L ] and first column
[
uT 0L

]T
. Note that Uh is equiv-

alent to FBa. Thus, (3) can be represented as x = Uh + n.
As mentioned in Section III-A, scale ambiguity inherent to the
convolution model is resolved by normalizing h every iteration.

Noise variance. The conditional distribution of the noise vari-
ance is the following inverse gamma distribution:

p
(
σ2

n |b,a,h,x
)

= IG

(
ξ +

K

2
, η +

1
2
‖x − FBa‖2

)
.

C. P- and T-Wave Detection and Delineation Criteria

P- and T-wave detection and delineation are based on the esti-
mated joint posterior distribution of wave indicators, wave am-
plitudes, and waveform coefficients. This posterior is computed
from the histograms of the samples generated by the PCGS.

1) P- and T-Wave Detection: Unlike most of the approaches
found in the literature, no rigid amplitude threshold is used to de-
termine whether waves are representative or not. The posterior
distribution of wave indicators carries information regarding the



probability of having a P- or T-wave at a given location. Thus,
the detection results b̂ can be obtained with various degrees
of certainty by using a local MAP strategy. Since there are at
most one T-wave (P-wave) in each T-searching neighborhood
(P-searching neighborhood), the proposed algorithm compares
the highest estimated posterior probability from each neighbor-
hood to a given probability threshold (γP for P-wave and γT for
T-wave) in order to decide whether it is representative or not.1

If the local MAP is higher than the threshold, the correspond-
ing indicator location can be seen as the estimate wave location
in this searching neighborhood. Note that the estimated indica-
tor posterior probability at position k is defined as follows (the
probability of having bk = 1 equal to E [bk ], where E [·] is the
mathematical expectation since bk is a binary random variable)

b̂k ,MMSE =
1

Nr

Nr∑
t=1

b
(Nb i +t)
k (7)

where b
(t)
k denotes the indicator at position k generated at it-

eration t, while Nr is the number of iterations and Nbi is the
number of burn-in2 iterations.

2) Estimation of Wave Amplitudes, Waveforms, and Noise
Variance: For estimating, the wave amplitude ak corresponding
to a position k, where a P- or T-wave has been detected, we use
the MMSE estimator of ak conditionally upon bk = 1

âk ,MMSE =
1

|Tk |
∑
t∈Tk

a
(Nb i +t)
k (8)

where a
(t)
k denotes the kth entry of the amplitude vector a

generated by the Markov chain at iteration t, Tk is the set of
indices t of all iterations satisfying b

(t)
k = 1 excluding burn-in

iterations. Note that âk ,MMSE is calculated only when a P- or
T-wave has been detected.

The MMSE estimators of the waveform coefficients h and
the noise variance σ2

n are defined as

ĥMMSE =
1

Nr

Nr∑
t=1

h(Nb i +t) (9)

σ̂2
n MMSE =

1
Nr

Nr∑
t=1

(
σ2

n

)(Nb i +t)
(10)

whereh(t) and
(
σ2

n

)(t)
denote the samples ofh andσ2

n generated
at iteration t.

3) P- and T-Wave Delineation: Since the estimated wave-
form ĥMMSE carries information about the wave morphology,
we propose a delineation criterion that is based on the waveform
estimate of each processing window. The waveform onset and
end are estimated as either the first value of ĥMMSE below the
threshold (ζPon and ζPoff for P waves, and ζTon and ζToff for
T waves, see left part of Fig. 3) or the first local minimum of
ĥMMSE (see right part of Fig. 3). Since there is no universal rule
to locate onsets and ends of waves, the delineation thresholds

1The reader can consult [33] for details about threshold determination.
2The burn-in period corresponds to the first iterations of the sampler that are

not used for estimating the unknown parameters.

Fig. 3. Parameters of the wave delineation method.

have been obtained by minimizing the error between estimates
and published annotations. The following results have been ob-
tained for the QTDB

ζTon = 0.02max(ĥT ) ζToff = 0.1max(ĥT )

ζPon = 0.05max(ĥP ) ζPoff = 0.1max(ĥP ).

The general flowchart for the proposed algorithm including
preprocessing, PCGS, and wave delineation is shown in Fig. 4.

V. SIMULATION RESULTS

Simulations were conducted to validate the proposed algo-
rithm. First, we show some posterior distributions and esti-
mation results for one typical example. Then, graphical eval-
uations and analytical results on an entire database are pro-
vided. Usually, the validation of the ECG wave detector or
delineator is done using a manually annotated database. In this
paper, we use one of the easily available standard databases,
namely, the QTDB [27]. The QTDB includes 105 records from
the widely used MIT–BIH arrhythmia database (MITBIH), the
European ST-T database and some other well-known databases.
This database was developed with the purpose of providing a
wave-limit validation reference.

A. One Typical Example

The first simulations have been obtained by applying the pro-
posed algorithm on the dataset “sele0136” of QTDB. This ex-
ample has been chosen because signals from this data set present
rhythm changes with obvious amplitude variations. The process-
ing window length D has been set to ten beats, as in [20]. For
each P- or T-wave search block, we have generated Nr = 100
realizations according to the priors given in Section III with
σ2

a = 1, σ2
h = 1, ξ = 11, and η = 0.5 (these are fixed hyperpa-

rameters that provide a noninformative prior). The value of λ

in (5) has been fixed by dividing the number of R peaks within
the processing window by the window length K. We consid-
ered Nbi = 40 burn-in iterations and 60 iterations to compute
the estimates.3 Note that running 100 iterations of the proposed
algorithm for a ten-beat ECG block sampled at Fs = 250 Hz

3To determine the values of Nbi and Nr , we have implemented the multi-
variate potential scale reduction factor [34] (see [33] for details).



Fig. 4. General block diagram for the proposed P- and T-wave delineation algorithm.

Fig. 5. Posterior distributions of the P- and T-wave indicator locations p(bP )
(middle black) and p(bT ) (middle dotted red) of an ECG signal portion from
the QTDB “sele0136” (top), and the estimated P- and T-waveforms (bottom).

(i.e., ECG signals lasting about 10 s) takes 13 s for a MATLAB
implementation on a 3.0-GHz Pentium IV. However, these codes
can be further optimized and converted to low-level languages.

As mentioned previously, the estimates of the unknown pa-
rameters are derived from their posterior distributions. Fig. 5
(middle) shows the posterior distributions of P- and T-wave
indicator locations estimated using the last 60 Markov chain
iterations. The posterior probability is very high for most of
the actual P- and T-wave locations except for P-wave indicators
around time instant 4.45. Indeed, the algorithm seems hesitant
to locate P-wave indicators around this location. If we employ
a simple rigid threshold on the entire block, it is likely that this
wave indicator will be missed in the estimation. However, with
the local maximum posterior strategy explained in Section IV, a
relatively low value of γP can be used to ensure the detection of
low magnitude waves without increasing false positives. Fig. 7
shows that the P-wave at time instant 4.45 is properly estimated.

Once we have obtained the P- and T-wave locations, the corre-
sponding wave amplitudes can be estimated by using (8). Fig. 6
shows the posterior distributions p(a|x) and the estimates â of
P-wave amplitudes at time 1.5, 2.3040, 3.1520, and 4.4520 s.
The estimated P- and T-waveforms determined using (9) are
presented in Fig. 5 (bottom). As explained previously, P- and
T-wave delineation is based on these estimated waveform coeffi-

Fig. 6. Posterior distributions of the P-wave amplitudes p(ak |x) at time in-
stant 1.5, 2.3040, 3.1520, and 4.4520s.

Fig. 7. On the top, real ECG signal from the QTDB “sele0136” (dashed blue)
and estimated P- and T-waves (red); on the bottom, P- and T-wave delineation
results.

cients. The estimated P- and T-waves and the delineation results
of “sele0136” are illustrated in Fig. 7 (top) and Fig. 7 (bottom).

B. P- and T-Wave Delineation for Different Wave Morphologies

The proposed method estimates the P- and T-waveform
shapes pointwise for each processing window. Therefore, it can
adapt to various wave morphologies. This section shows some
representative results obtained with the proposed method on dif-
ferent ECGs. The first example in Fig. 8(a) considers the QTDB



Fig. 8. Results of processing ECG datasets (a) “QTDB-sel808”, (b) “QTDB-
sele0607,” and (c) “MITBIH-119”. (1) Delineation results: the vertical lines
show the manual annotations by an expert and the markers show the results of
the proposed algorithm. (2) Mean (in blue) and standard deviations (in pink) of
the estimated T-waveform for 1 min of signal length. (3) Mean (in blue) and
standard deviations (in pink) of the estimated P-waveform for 1 min of signal
length.

dataset “sel808”, where T-waves are inverted. The second ex-
ample considers noisy feeble P-waves and ascending T-waves
from the QTDB dataset “sele0607”. The results presented in
Fig. 8(b) show that the proposed method provides good wave-
form estimation for noisy feeble waves. Fig. 8(c) shows an
example of signals that contain premature ventricular contrac-

tions (PVCs) from the MITBIH dataset “119”. As can be seen,
the proposed method can handle nonmonotonic morphological
abnormalities. Note in particular that the estimated T-wave of
the sixth beat has been superimposed with the estimated P-wave
of the seventh beat, which is in agreement with the presence
of a unique wave in the non-QRS region between 8 and 9 s.
Furthermore, with the help of the proposed signal model, the
sudden T-wave amplitude inversions (the first and the last beats)
have been detected, which is a nice property for the PVC de-
tection problem. Finally, the reader is invited to consult [33],
which shows delineation results obtained for other representa-
tive wave morphologies from the QTDB such as normal P- and
T-waves (“sel16539”), feeble P-waves and prominent T-waves
(“sel308”), and biphasic T-waves (“sel301”) .

C. P and T-Wave Delineation: Analytical Results

The analytical evaluation of the P- and T-wave detection can
be performed by calculating the sensitivity Se = TP/(TP +
FN) and positive predictivity P+ = TP/(TP + FP ), where
TP denotes the number of true positive detections (wave was
present and was detected), FN stands for the number of false
negative detections (wave was present but was missed), and FP
stands for the number of false positive (wave was not present but
was detected). The performance of wave delineation is measured
by the average of errors m, which stands for the time differences
between cardiologist annotations and results of the proposed
method. The average of the intrarecording standard deviations
denoted as s was also computed.

The validation results obtained with the PCGS-based delin-
eator and the three other methods of [2], [7], and [18] on the
QTDB are given in Table I.4 It should be noted that the pro-
posed algorithm requires an a priori QRS-detection step. All
ECG signals used in this paper have been preprocessed by the
QRS detection algorithm by Pan et al., with an overall QRS
detection result of Se = 99.7% and P+ = 99.6%. The beats,
where QRS complexes were not well detected were excluded
from the P- and T-wave evaluation.

The detection results on the QTDB show that the proposed
method can detect with high sensitivity the P- and T-waves
annotated by cardiologists in the ECG signals. We obtained a
sensitivity of Se = 98.93% for the P-waves and a sensitivity of
Se = 99.81% for the T-waves. These results are slightly better
than the ones obtained with the other methods. As for the positive
predictivity, we have obtained very good results since P+ =
97.40% for the P-waves, and T+ = 98.97% for the T-waves,
which clearly outperforms the other algorithms evaluated in
Table I. This is partly because the minimum-distance constraint
in Bayesian detection reduces the probability of false positive.
The delineation performance is also presented in Table I. The
proposed algorithm can delineate the annotated P- and T-waves
with mean errors m that do not exceed two samples (8 ms). The
standard deviations s are around four samples for the P-wave
and five samples for the T-wave, which is quite satisfactory.

4A comparison with the Kalman filter-based approach of [14] has also been
conducted on representative ECG signals (see [33] for more details).



TABLE I
DELINEATION AND DETECTION PERFORMANCE COMPARISON IN THE QTDB. (N/A: NOT AVAILABLE)

Fig. 9. Histograms of deviations between the results of the proposed automatic
algorithm compared to the “gold standard” of manually measured annotations
including (a) TP interval, (b) P-wave duration, (c) ST interval, and (d) QTp

interval. The vertical lines indicate the 95% (continuous red) and 99% (dashed
red) confidence intervals.

Histograms of deviations between the results of the proposed
algorithm compared to the “gold standard” of the manually
measured annotations for TP interval (TPint = Tpeak − Ppeak),
P wave duration (Pdur = Ponset − Pend ), ST interval (STint =
Speak − Tend ), and QTp interval (QTp

int = Qpeak − Tpeak) are
presented in Fig. 9. These histograms are in agreement with the
results of [35], which indicate that typical standard deviations
for QT interval measurement are 20–30 ms. The deviations of
the PCGS-based method are also similar to those obtained with
the more recent technique studied in [14]. Smaller deviations
(mostly below 8 ms) have been obtained for detections, which
rely on peak points, i.e., TPint and QTp

int . For those detections,
which rely on peak boundaries, the deviations are also in the
acceptable range (mostly below 20 ms). Note that the proposed
method focuses on P- and T-wave analysis. Thus, deviations of
QRS locations are not considered here. Note also that due to its
sequential nature, the proposed algorithm might have problems
to handle signals containing several P- or T waves in the same
research region, which can be observed for atrial fibrillation.

VI. CONCLUSION

This paper studied a Bayesian sampling algorithm perform-
ing joint P- and T-wave delineation and waveform estimation.
Instead of deploying rigid detection and delineation criteria for
all ECG time series, we used a local detection strategy and a
flexible delineation criteria based on the estimation of P- and T
waveforms in consecutive beat-processing windows. The main
contributions of the paper as follows.

1) The introduction of a hierarchical Bayesian model for P-
and T-wave delineation. This model is based on a modi-
fied Bernoulli–Gaussian sequence with minimum distance
constraint for the wave locations and amplitudes, and ap-
propriate priors for the wave impulse responses and noise
variance.

2) The derivation of a PCGS allowing for the generation of
samples distributed according to the posterior distribution
associated to the previous hierarchical Bayesian model.
The proposed PCGS overcomes the slow convergence
problem encountered with the classical GS. To our knowl-
edge, it is the first time this kind of simulation method is
applied to ECG segmentation problems.

3) The proposed method allows for the simultaneous estima-
tion of the P- and T-wave fiducial points and the P- and
T-waveforms, which is rarely done by other ECG delin-
eation methods.

4) The PCGS method allows for the determination of con-
fidence intervals, which provide reliability information
about the estimates (e.g., see error bars in Fig. 8). This
could be useful for medical diagnosis.

The resulting algorithm was validated using the entire an-
notated QTDB. A comparison with other benchmark methods
showed that the proposed method provides a reliable detection
and an accurate delineation for a wide variety of wave mor-
phologies. The most significant improvement was found in the
P- and T-wave detection rate and the positive predictivity. In ad-
dition, the proposed method can provide accurate waveform
estimation. Note, however, that the trade-off with the good
PCGS detection and estimation performance is a higher compu-
tational cost, when compared to other more classical methods.



It is important to mention that the proposed PCGS also allows
for observation of the waveform evolution among processing
blocks. If we extract the T-wave search region on every other beat
rather than successively, the proposed method can be directly
used to perform TWA analysis. Indeed, the wave amplitude can
be used to decide the presence or absence of TWA, while the
waveform estimation can reflect the characterization of TWA
waveform. This study is currently under investigation.

APPENDIX

SAMPLING DISTRIBUTIONS

Indicators. The sampling distribution for bJd (k)

p
(
bJd (k) |b∼Jd (k) ,a∼Jd (k) ,h, σ2

n ,x
)

∝ p
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n ,x
)
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)
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∝
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)
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)
daJd (k)

]
p (b)

Using the minimum-distance constraint, there must only be one
nonzero wave indicator within the neighborhood Jd(k) , which
is denoted as k′ ∈ Jd(k) . Thus, bJd (k) can be split into two parts{

bk ′ = 1
bm = 0, m ∈ Jd (k) \ k

′

where Jd (k) \ k′ denotes the set of locations within the neigh-
borhood Jd (k) excluding k′. The conditional distribution can
be further developed by inserting all the prior distributions. By
denoting as x̃ = x − F∼Jd (k)B∼Jd (k)a∼Jd (k) , we obtain:

p
(
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where fk ′ = FJd (k)bJd (k) and μ1 , σ
2
1 are defined as follows:
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1fT
k ′ x̃
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Finally, the indicator sampling distribution is

p
(
bJd (k) |b∼Jd (k) ,a∼Jd (k) ,h, σ2
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Amplitudes. The sampling distribution for ak is

p
(
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. Consequently, straight-

forward computations (similar to those used for the indicator
conditional distribution) yield
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Waveform coefficients. The sampling distribution for h is
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from École Nationale Supérieure d’Électronique,
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