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Abstract: The spread of COVID-19 has motivated a wide interest in visualization tools to represent the pandemic’s
spatio-temporal evolution. This tools usually rely on dashboard environments which depict COVID-19 data as temporal
series related to different indicators (number of cases, deaths) calculated for several spatial entities at different scales
(countries or regions). In these tools, diagrams (line charts or histograms) display the temporal component of data, and
2D cartographic representations display the spatial distribution of data at one moment in time. In this paper, we aim at
proposing novel visualization designs in order to help medical experts to detect spatio-temporal structures such as clusters
of cases and spatial axes of propagation of the epidemic, through a visual analysis of detailed COVID-19 event data. In
this context, we investigate and revisit two visualizations, one based on the Growth Ring Map technique and the other
based on the space-time cube applied on a spatial hexagonal grid. We assess the potential of these visualizations for
the visual analysis of COVID-19 event data, through two proofs of concept using synthetic cases data and web-based
prototypes. The Grow Ring Map visualization appears to facilitate the identification of clusters and propagation axes in
the cases distribution, while the space-time cube appears to be suited for the identification of local temporal trends.

Keywords: spatio-temporal visualization; epidemic visualization; spatio-temporal structures; exploratory analysis; 3D
visualization

1. Introduction

The spread of COVID-19 has quickly motivated creating
and sharing diverse visualizations to represent the spatio-
temporal evolution of the pandemic for various purposes of
communication, analysis and decision-making (Müller and
Louwsma, 2021). A lot of these visualizations propose to
explore the distribution of COVID-19-related events, such
as cases’ occurrences and deaths along time and space, into
multi-view “dashboard” environments where the temporal
and spatial components of the data are visualized in dedi-
cated synchronized windows (Kraak and Ormeling, 2011),
such as the John Hopkins dashboard1 or the World Health
Organization dashboard tracker2. In most cases, the repre-
sented data are temporal series related to indicators (num-
ber of new or accumulated cases, deaths, basic reproduc-
tion number) calculated for different spatial entities such
as countries, administrative regions or cities.

The temporal component of COVID-19 data is visualized
in these environments through one (or several) temporal di-
agram(s): representation of the linear evolution of cases at
a global scale through a linear curve or a histogram3; rep-
resentation of the linear evolution of the number of cases at
different spatial locations through a collection of temporal
diagrams4; branching time representations5, highlighting
decisive events corresponding to the birth of new versions
of the virus. The spatial component of the data is mainly
tackled by simple 2D maps, representing the data related
to the corresponding spatial entities for a selected timestep

1https://coronavirus.jhu.edu/map.html
2https://covid19.who.int/
3https://hgis.uw.edu/virus/
4https://boogheta.github.io/coronavirus-countries/
5https://nextstrain.org/ncov/global

or temporal range6, such as a representation of the num-
ber of cases by country, occurring at or until a certain date,
selected by the user using a dynamic temporal representa-
tion. In order to transcribe the dynamics of the phenomena,
some environments propose animation techniques7, allow-
ing the user to successively visualize the spatial component
of data for different timesteps.

The understanding of the dynamics of spatio-temporal phe-
nomena, such as the COVID-19 pandemic, would benefit
from visualization environments allowing the visual explo-
ration of the spatio-temporal distribution of event data, de-
scribing the date and place of each new event such as a new
COVID-19 case. Spatial or spatio-temporal analysis has
been often used to find clusters of epidemic cases (concen-
tration of cases in space and time) (Delmelle et al., 2014,
Kirby et al., 2017), in particular when a precise location of
cases is available (Piarroux, 2019). Such analyses are al-
ready used to study the propagation of the COVID-19 pan-
demic (Desjardins et al., 2020, Liu et al., 2020, Purwanto
et al., 2021). The structures highlighted with these analy-
sis, such as clusters, axes of propagation and local trends,
can then be depicted graphically through visualizations.

Some dashboard exploratory analysis environments such
as Persee (Swedberg and Peuquet, 2017), Timewave (Li,
2010) or GrAPHiST (Gautier et al., 2020) propose to vi-
sualize the entire spatio-temporal distribution of event data
at once, through different approaches such as small mul-
tiples and/or representing the temporal component of data
by visual variables in a map, in order to identify structures
with a visual analysis. Specific designs allow the user to
identify global structures from an overall visualization of

6https://www.arcorama.fr/2020/03/un-tableau-de-bord-arcgis-
toujours-plus.html

7https://ourworldindata.org/coronavirus
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the spatio-temporal distribution of event data. Interaction
functionalities allow then to navigate in the data in order to
perform a more precise analysis of the observed structures.

In this paper, we aim at proposing novel visualization de-
signs of COVID-19 event data inspired by these environ-
ments, representing each case occurrence, dedicated to the
expectations of medical experts in order to help them better
understand the pandemic’s spreading through visual anal-
ysis. Medical experts are especially interested in detect-
ing spatio-temporal structures such as local clusters, prop-
agation axes and local trends. Identifying such structures
would help them better interpret and understand the virus
transmission mechanisms. To achieve this goal, we pro-
pose to integrate both the spatial and temporal components
of the COVID-19 cases into the same graphic representa-
tion, as to help users relate spatial and temporal structures.

In order to perform a visual identification of COVID-19
clusters, we experiment two strategies to visually repre-
sent the spatio-temporal distribution of cases in spatial rep-
resentations. The remaining of the paper is organized as
follows. First, we review existing work related to spatio-
temporal visualizations. Second, we detail the design of
the two approaches considered, the first one based on the
Growth Ring Map visualization and the second one based
on the space-time cube. Finally, we discuss the potential
of both visualizations through the exploration of synthetic
COVID-19 data, and highlight their current limitations.

2. Related Work

2.1 The role of map design for the visual identification
of structures in event data distribution

Visualizing spatio-temporal data may be addressed by the
following approaches (Gautier et al., 2020): (1) the repre-
sentation of data temporal components on graphic objects
into a spatial representation, through visual variables such
as shape or color value/hue (Saint-Marc et al., 2014); (2)
the use of temporal diagrams integrated into a map and re-
lated to spatial features (Huang et al., 2008); (3) the use of
small multiples, a collection of spatial representations re-
lated to different timesteps or a collection of diagrams re-
lated to different spatial locations (Tufte, 1983, Davoine et
al., 2015); (4) the use of the vertical dimension of 3D rep-
resentations to represent the time through the space-time
cube proposition (Gatalsky et al., 2004); and (5) the use of
animation (Harrower et al., 2008). Furthermore, the choice
of the time structures to represent can affect the choice of
graphic designs in these different approaches. Consider-
ing the use of visual variables, the evolution of color value
can represent the linear evolution of time, but the use of
the evolution of color hue can be more suited to represent
a cyclical evolution of time (Gautier et al., 2020). Further-
more, considering the use of integrated temporal diagrams
in maps, the use of circular timewheel-based diagrams in-
stead of timeline-based diagrams can be more suited to rep-
resent cyclic phenomena (Auer et al., 2011).

When visualizing a massive amount of event data, all of
these approaches might suffer from visual clutter. Previous
works propose map designs based on a spatial aggregation
of event data and the graphic representation of these ag-
gregates, to alleviate this problem. (Delort, 2010, Meier,
2016). This aggregation can be performed according to

the spatial distance between data (two events are aggre-
gated together if the distance between their locations or the
graphic distance between their representations on the map
is below a specific threshold), or according to a spatial grid
(all events covered by a grid’s cell are aggregated together).
Furthermore, specific designs applied to the representation
of the events aggregates can also be used to enhance the
visual identification of spatio-temporal structures such as
clusters or local trends in events’ distribution (Seebacher
et al., 2018, Choi et al., 2018, Gautier et al., 2020).
These approaches could be used to co-visualize the spa-
tial distribution of event data, enabling the identification of
structures. For example, some of them have already been
used specifically for COVID-19 data, such as glyph-based
representations (Beecham et al., 2021, Lan et al., 2021)
and 3D representations (Lan et al., 2021). However, tem-
poral animation is not considered as the best option for
the visual exploration of spatio-temporal data (Harrower
et al., 2008), and the use of small multiples or integrated
diagrams in 2D representations can be problematic in case
of a high number of timesteps or spatial locations to co-
visualize (Davoine et al., 2015). Therefore, we review
more in detail the use of space-time cubes and time rep-
resentation by visual variables to visualize the distribution
of COVID-19-related event data in space and time, and to
identify clusters, propagation axes, and local trends.
2.2 Representation of time by visual variables
Different semiologic rules have been edicted to project on
graphic objects, with the visual variables defined by Jacques
Bertin (Bertin, 1973), different temporalities such as the
moment of appearance, the duration or the frequency of
events (Dukaczewski, 2005, Cauvin et al., 2010) in 2D or
3D representations. The use of dynamic variables using
animation, such as the use of blinking features, to repre-
sent temporalities has also been described (Green, 1998,
MacEachren, 2004). Of course, the application of such
rules is still ambiguous and depends on how the tempo-
ral component of a data is interpreted as a variable (Saint-
Marc et al., 2014): the moment of appearance of events can
be used to distinguish events occurring during different pe-
riods (and be treated as a qualitative variable represented
by the color hue), or to describe an order of appearance
between events (and be treated as a ordinal variable repre-
sented by the color value).
The Growth Ring Map proposition explores the possibil-
ity to enhance the visual identification of structures in the
spatio-temporal distribution of events, through specific de-
signs applied to the graphic representation of events ag-
gregates, and the use of visual variables to represent the
temporal component of data (Bak et al., 2009, Andrienko
et al., 2011, Aigner et al., 2011). This proposition uses
both color hue and value to represent event data according
to their cyclic and linear moment of appearance: events
appearing during the same season are represented with the
same hue, events appearing the same year with the same
value. Each event is represented by a pixel bearing the cor-
responding color, spatially closed events forming aggre-
gates of pixels. In each aggregate, the pixels representing
events appearing during the same season are grouped to-
gether into concentrated rings of the same color hue. Then,
inside each colored ring, concentric sub-rings bearing dif-
ferent values of the color represent events appearing dur-
ing the same year. Such representation allows identifying
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Figure 1. Representation of the spatio-temporal distribu-
tion of event data through a Growth Ring Map visualiza-
tion (Bak et al., 2009, Andrienko et al., 2011, Aigner et al.,
2011)

structures like spatio-temporal clusters: concentrations of
events appearing at the same place each year during the
same season (Fig.1-A), or at the same place during one
season of one specific year (Fig.1-D).

2.3 3D representations as Space-Time Cube
The space-time cube (STC) is a 3D visualization technique
that maps geographical positions in the x and y coordinates
and time vertically (Hägerstraand et al., 1970). The space-
time cube has been used to visualize trajectories (Kraak,
2008, Gonçalves et al., 2016), discrete events such as earth-
quakes (Gatalsky et al., 2004), crime events and disease
data (Kraak, 2008, , n.d.), and in particular to visualize
COVID data (Lan et al., 2021). Because plotting many
events might result in occlusion, some approaches explore
aggregating them spatially or temporally and using an al-
ternative representation such as density-based representa-
tions (Demšar et al., 2015) or helix representations (League
and Kennelly, 2019). Current techniques rely on interac-
tivity to enable users to manipulate the view, for example
to change the point of view or filter the data (Kapler and
Wright, 2005, Amini et al., 2014).

Results of empirical studies comparing 2D and 3D repre-
sentations for spatio-temporal data suggest that STC might
be more efficient for overview tasks (Gatalsky et al., 2004)
while 2D views perform better for simple and location tasks.
A user study comparing a 2D view, a STC and a com-
bination of both for trajectory visualization has been ful-
filled, suggesting that is better using a combination of both
views, rather than using them individually (Gonçalves et
al., 2016).

In summary, multiple approaches exist to depict spatio-
temporal structures in event data. Given the evidence that
2D views and 3D views might be complementary, we pro-
pose using, in parallel, a 2D view using visual variables to
represent the temporal component of data and a 3D view
using the third dimension to depict time to represent dis-
ease events. In order to reduce visual cluttering, we use ag-
gregation methods for both views and we explore various
designs to enhance the visual identification of structures in
events’ spatio-temporal distribution.

3. Complementary event data Visualization designs

We propose two complementary visualizations aiming to
ease the visual identification of structures in the spatio-
temporal distribution of COVID-19 individual case data.

We consider their design specificities, and how they can
depict and facilitate the identification of structures. The
main goals of these visualizations are the following:

• Enabling an interactive exploration of the data;
• Presenting both an overview and a detailed view of

the cases distribution;
• Emphasizing spatio-temporal structures such as clus-

ters, propagation axes and local temporal trends.

First, a 2D view, based on the Growth Ring Map, depict-
ing spatio-temporal evolutions through the use of visual
variables representing time on graphic objects and specific
map designs allowing the visual identification of structures
in the distribution of event data. Second, a 3D view based
on a space-time cube, and providing a global view of the
data by using the third dimension to depict time. Because
both visualizations suffer from clutter when displaying many
events, we propose different aggregation methods for each
visualization.

3.1 Data

Because of privacy issues, we did not have access to the
data for individual cases. Thus, as a case study for our
proof of concept, we generated synthetic data. We ac-
knowledge there are more accurate simulations of epidemics’
spreading. We tried yet to reproduce their basic dynamics
to assess our visualizations’ potential. In order to generate
structures similar to the ones usually present in epidemic’s
data, we set the following criteria to generate event data,
where each event corresponds to a case of the disease:

• At the start of the epidemic, the position of each case
is random.

• Each case remains active for a fixed number of days.
Each active case can generate new cases, with a higher
probability in its neighborhood than elsewhere.

• Each case has a fixed and constant probability of gen-
erating new cases.

Following our criteria, each case is described by its spatial
coordinates, and its dates of infection, end of incubation
period, and end of contagious period. We consider that a
case is active between the end of its incubation period and
the end of its contagious period. We consider than a case
is spatially static and doesn’t change of location.

The criteria we chose to determine the creation process of
our data are inspired from the information given by the
French ministry of Health8. The incubation period’s length
is mainly between 3 and 5 days but can reach 14 days; the
contagious period is mainly around 8 days after the first
symptoms. We retain the main values for each period’s
length and consider that the incubation period’s length is
between 3 to 5 days, and contagious period’s length is be-
tween 7 to 9 days. We considered that during each day
of its active period, a case has 17.5 percent of chance to
generate one new case. This percentage has been defined
empirically, to obtain around 10 000 cases from our ini-
tial set of cases after 100 days. Combined with an average
contagious period of 8 days, this percentage corresponds

8https://www.gouvernement.fr/info-coronavirus/comprendre-la-
covid-19

Proceedings of the International Cartographic Association, 4, 2021.  
30th International Cartographic Conference (ICC 2021), 14–18 December 2021, Florence, Italy. This contribution underwent 
single-blind peer review based on submitted abstracts. https://doi.org/10.5194/ica-proc-4-37-2021 | © Author(s) 2021. CC BY 4.0 License.

3 of 8



Figure 2. Temporal distribution of synthetic data

Figure 3. Construction of a glyph representing an aggre-
gate of points

to a constant basic reproduction number (R0) of 1.4 (each
infected case generating an average number of 1.4 new
cases). As a comparison, such a value for the COVID-19’s
R0 was reached in France during the second wave’s peak,
the 13/10/20209. Thus, we can consider that our dataset
shows a realistic spread of the disease over time.

For the final dataset, we set the generation to start with 20
events, occurring through three days between the 19/03/2020
and the 22/03/2020 in Paris. Each new case has 20 per-
cent of chance to be inside a circular area of 500 meters
around the case of origin, 30 percent inside an area of 1000
meters, 30 percent inside an area of 2500 meters, and 20
percent inside an area of 5000 meters. These percentages
have been defined empirically to generate visible spatio-
temporal structures in the data. For each new case, the
duration of the incubation and contagious periods is ran-
domly chosen respectively between 3, 4 and 5 days, and 7,
8 and 9 days. For the first 100 days after the 19/03/2020,
we obtain a dataset of 11 853 cases occurrences cover-
ing the region of Paris between the 19/03/2020 and the
27/06/2020 (Fig.2).

3.2 Growth Ring Map Visualization

The first visualization is based on the Growth Ring Map
proposition (Bak et al., 2009, Andrienko et al., 2011). As
in the previous proposition, we use the color to represent
the temporal moment of appearance of the COVID-19 cases.
As we said before, we focus our proposition on the visu-
alization of linear temporal structures in our data. Color
value is then used to represent the linear order of appear-
ance of our cases. We determine a color scale covering the
temporal extent represented on the map, each color rep-
resenting a regular, or irregular, sub-interval of time. As
the color hue is not used to represent any other component
of the data, we can use the evolution of hue to enhance
the distinction of the different represented temporal inter-

9https://www.gouvernement.fr/info-coronavirus/carte-et-donnees

Figure 4. Visualization of the spatio-temporal distribution
of the COVID-19 synthetic data, using a) a multi-hue se-
quential color scale of 4 colors, b) a multi-hue sequential
color scale of 9 colors, c) a diverging color scale of 9 colors

vals, though the use of multi-hue sequential color-scales
(Brewer, 1994).

We represent the COVID-19 cases occurrences (referred as
”events” in the remaining of the paper) by a cloud of punc-
tual features. In order to reduce visual cluttering and high-
light spatial concentrations of events, the spatially close
ones are aggregated and represented by a unique punctual
feature whose area represents the number of aggregated
events. A unique event is then represented by a point bear-
ing a color corresponding to the temporal interval during
which the event occurs. An aggregate of events, instead,
is represented by a punctual circular glyph composed of
concentric rings of different color, each representing the
proportion of aggregated events appearing during the cor-
responding temporal interval represented in the color scale
(Fig.3). For each ring, the proportion of the correspond-
ing events in the aggregate is represented by the area of the
glyph covered by the ring surface. The different concentric
rings are disposed according to the order of appearance of
the corresponding intervals, with the older intervals rep-
resented by the inner rings and the latest intervals repre-
sented by the outer rings (this order can also be reversed).

The color scales we use can present different granulari-
ties. Scales with a low number of colors are easier to use
(Fig.4-a), the distinction between colors being easier than
with color scales using more colors (Fig.4-b). However,
the represented temporal intervals being wider with a low
number of colors, these scales would not be the best suited
for the identification of clusters with a smaller temporal ex-
tent than the ones represented by each color. We propose
to use diverging color scales (Fig.4-c), in order to represent
smaller temporal intervals with each color, and still being
able to distinguish, inside an aggregate of points, at least
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Figure 5. Spatio-temporal 3D visualization representing
each event as a point: (a) horizontal view (b) vertical view

events appearing during the newest, latest, and intermedi-
ate temporal intervals represented by the color scale. To
enhance the perception of the different colors in the map,
we use a basemap using dark grey and black colors, which
would be less confusing with the color scale.

Users are able to navigate in the representation through pan
and zoom functionalities, and to dynamically change the
represented temporal extent, the color scale and the corre-
sponding temporal intervals, the range of the spatial aggre-
gation and the general size of the glyphs. The events’ ag-
gregation is dynamic and depends on the zoom level cho-
sen by the user. Two aggregated events can be represented
as separate at a lower scale.

We implemented our proposition in a Leaflet-based map,
using the markerclustergroup10 plugin for the aggregation
of spatially closed events. The glyphs representing each
aggregate of events are dynamically created in SVG.

3.3 Space-time cube

The second visualization we chose to explore is based on
the space-time cube. As in existing applications (Gatalsky
et al., 2004), we represent time vertically. Each event is
represented with a cubic punctual feature, and thus clusters
can be identified by searching for points that are close to
each other. However, this results in a cluttered view, as
depicted in Figure 5. To partially alleviate this problem,
we enable users to filter the visible events by restricting
the temporal interval. The visualization also relies on user
interaction to enable users to change the point of view, and
explore the data.

In order to reduce visual clutter, we aggregate individual
events spatially and temporally. First, we spatially aggre-
gate the events according to an hexagonal grid. Hexagons
have the advantage of being more visually appealing and
provide a more accurate representation than square grids
(Carr et al., 1992). The number of hexagons in the grid
changes interactively, as the user zooms in the visualiza-
tion. This enables users to have an overview, and zoom in
to get a more detailed view of each region. Furthermore,
we aggregate events temporally by grouping them accord-
ing to regular day intervals. Thus, each aggregate corre-
sponds to one spatial hexagonal cell and a regular temporal
interval, and is depicted as a 3D volume, whose horizon-
tal area is proportional to the number of aggregated cases
and the height represents the duration of the temporal in-
terval. This results in a series of stacked hexagons for each
region. We represent the interval length through the 3D

10https://github.com/Leaflet/Leaflet.markercluster

hexagon height. Finally, to facilitate the comparison be-
tween 3D hexagons, we also use a color scale to encode
the number of cases for each volume.

Users are able to freely navigate in the visualization using
common 3D navigation controls: zooming, panning and
rotating. Furthermore, they can select an hexagon to dis-
play its precise information (number of cases and time in-
terval), and to highlight all the hexagons corresponding to
the selected region. We defined three different aggregate
representations: going from an hexagon radius of 200 me-
ters to 50 meters, and from a temporal aggregation of 4
days to 1. We defined these values and the corresponding
zoom levels empirically, in order to allow going from an
overview of the data to a detailed view. While zooming
in, the users goes automatically from one aggregate level
to the next one, the last level being a point cloud repre-
sentation of every event. The three aggregation levels are
depicted in Figure 6. Furthermore, users can also adjust
the temporal scale.

The 3D visualization is implemented using Three.js, d3.js
and OpenLayers.

4. Results and Discussion

We designed two visualizations to facilitate spatio-temporal
structures detection through visual analysis of the distribu-
tion of spatio-temporal event data such as COVID-19 cases
datasets. To assess the potential uses of the two proposed
designs, we analyzed the spatio-temporal distribution of
our synthesized data.

4.1 2D representation advantages: identification of clus-
ters and propagation axes

We analyzed the data through the Growth Ring Map vi-
sualization, first on their entire temporal extent (19/03 to
27/06) using a blue-red diverging color scale representing
11 regular temporal intervals (Fig.7-a and Fig.7-c, top),
then on a reduced period (19/03 to 16/05) using a blue-
red diverging color scale representing 9 regular temporal
intervals (Fig.7-b and Fig.7-c, bottom). On both these vi-
sualizations, the blue color represents the latest events.

The analysis of the data on their entire temporal extent al-
lowed us to identify the areas where the oldest events are
concentrated, by observing the location of glyphs present-
ing a high proportion of dark red color (white frames on
Fig.7-a), and the areas where the newest events are con-
centrated, by observing the location of glyphs presenting a
high proportion of dark blue color (green frames on Fig.7-
a). The identification of concentration of oldest and newest
events is also possible through the analysis of the data on
the reduced period (19/03 to 16/05) (white and green frames
in Fig.7-b). Also, in both analyses, it is possible to lo-
cate concentrations of events occurring during intermedi-
ate temporal intervals, by observing the location of glyphs
presenting a high proportion of white, or light red/blue
colors (purple frames in Fig.7-a and Fig.7-b). The corre-
sponding clusters can be identified especially through the
analysis on the reduced temporal extent, because the events
corresponding to these intervals are less outnumbered by
the newest events (Fig.7-c, bottom). The use of a broadcast
aggregation of the events allows the analysis of structures
at different spatial scales, enabling for instance to make
a first overview analysis of the data distribution to identify
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Figure 6. The three used levels of aggregation (a) Hexagons of 100m radius, grouped by 5 days, (b) hexagons of 50m
radius, grouped by 2 days, (c) hexagons of 25m radius, by individual days

Figure 7. Identification of clusters in the Growth Ring Map visualization

Figure 8. Analysis of clusters at different spatial scales

structures such as clusters (Fig.8, left), and then to perform
successive zooms into the map (Fig.8, center and right), in
order to define more precisely the spatial shape of these
structures at a larger scale. Interaction functions giving the
possibility to dynamically change the visualized temporal
extent and the used color scale allows then defining more
precisely the temporal shape of the observed structures.

For both these analyses, this representation allows the iden-
tification of spatio-temporal clusters in the distribution of
events. Identifying the location of clusters corresponding
to successive intervals allows then to interpret the axes
of the overall propagation of cases: for instance, in the
bottom-half of Fig.7-b, we observe the epidemic’ spread
along an east-west direction, by observing the location of
clusters related to old (east), intermediate (west) and recent
(far-west) intervals.

4.2 3D Representation advantages: identification of
local trends

Identifying spatio-temporal clusters using the 3D visual-
ization might be more difficult than identifying them with
the Growth Ring Map representation, because users have
to compare both regions across the x and y axis, and 3D

volumes vertically along the z axis, in order to look for
clusters both spatially and temporally. Furthermore, com-
paring areas in 3D is perceptually more difficult that com-
paring areas in 2D because of occlusion and depth percep-
tion (Munzner, 2014). In addition, in the higher zoom lev-
els, the aggregation into hexagons might make it difficult
to find clusters that are inside a cell. Finally, the temporal
and spatial aggregation might separate clusters that over-
lap different time and space aggregation intervals. How-
ever, when looking for temporal trends in specific regions,
we might hypothesize that the 3D representation will better
support users. To analyze the temporal evolution of a spe-
cific region, the Growth Ring Map representation requires
comparing colors and arc areas, while the 3D representa-
tion requires comparing aligned areas. Furthermore, the
hexagonal aggregation enables users to focus on a specific
region, while the Growth Ring Map automatically cluster
points close to each other.

For example, when looking at the whole visualization at
the biggest aggregation level, users might see the regions
that present the biggest number of cases, such as the Paris
region (Fig.6-a). By changing the point of view (Fig.9-
a), users can identify the regions where the cases started
early (hexagons in the smallest z coordinates, blue frame
in Fig.9-a), or later (hexagons starting at a higher posi-
tion, red frame in Fig.9-a). We see that the locations of
these regions correspond to the clusters identified using the
Growth Ring Map visualization. Continuing with the anal-
ysis, the user can select one specific hexagon to highlight
it and its corresponding region. This reduces the occlusion
problem and enables the user to get more details on the
temporal evolution of that specific region. For instance, if
he selects one region in the east of Paris (Fig.9-b-c), he
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Figure 9. Exploration of the data through the 3D visualization (a) global view, regions where the propagation starts earlier
(blue) and later (red), (b) highlight of a region where the propagation started in April, (c) highlight of a region where the
evolution started at the beginning of the period but that only increased rapidly after may.

will see that although the cases started early and globally
increased in the studied period, the daily number of cases
remained stable for approximately two thirds of the time,
and increased rapidly afterwards.

4.3 Limitations

4.3.1 Data

We synthesized our COVID-19 data because we did not
have access to the location of individual cases for privacy
issues. We acknowledge that there are methodologies to
produce more accurate epidemic’s simulations. For exam-
ple, we do not take into account the application of pub-
lic health policies or the evolution of meteorologic con-
ditions. Furthermore, we chose to focus our proposition
on the visualization of linear spatio-temporal structures in
event data and we do not consider weekly or seasonal cy-
cles. Even if this dataset is not highly realistic, we consider
that it is sufficient to present the potential uses of our vi-
sualizations to identify spatio-temporal structures in real
data. Further tests, with more accurate data and simulation
parameters would be interesting to assess more generally
the visualizations.

4.3.2 Evaluation

Our visualization propositions still need to be submitted
to a proper evaluation, in a more controlled environment.
However, the analyses we made through the visualization
environments we developed already open perspectives for
our future work, and we think that the presentation of our
first results provide us with multiple improvement possi-
bilities to enhance our propositions.

4.3.3 Design choices

For both visualizations, we chose visual encodings accord-
ing to previous studies and internal validation. However,
there are multiple alternatives for each visualization, re-
garding aggregation methods, interaction techniques and
visual encodings. For example, we might use different ag-
gregation methods, that focus on reducing visual cluttering
rather than grouping close objects. Further studies, includ-
ing more alternative designs, and evaluations with users
would help us gain insights on which designs are better for
different tasks.

5. Conclusion

We proposed two visualizations designed to facilitate find-
ing spatio-temporal structures such as clusters in detailed
COVID-19 data. The first one, based on the Growth Ring
Map proposition, aggregates spatially closed events and
uses color and specific map designs to depict the tempo-
ral composition of each aggregate of events. The events
aggregation is dynamic and depends on the map’s scale,
enabling different levels of analysis. The second one is
based on the space-time cube, and uses a 3D representation
where the time is represented vertically and events are ag-
gregated spatially through an hexagonal grid. The grid res-
olution varies according to the zoom level to enable going
from an overview to a detailed view. We analyzed synthe-
sized data to assess the potential of the proposed visualiza-
tions, and found that the Growth Ring Map seems to be bet-
ter for detecting clusters and propagation axes, while the
space-time cube seems to be more appropriate for study-
ing regional evolution. Our approach is yet limited by the
synthesized data, our design choices, and the lack of user
evaluation. As future work, we plan to test other design
alternatives through user studies to better assess the effi-
cacy of the proposed visualizations. Another perspective
would be to explore the possible combination of these two
representations for the exploratory analysis of event data,
or their combination with spatial analysis approaches per-
forming data pre-processing in order to identify clusters,
which would be explicitly visualized as spatio-temporal
structures in the graphic representation.
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