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ABSTRACT

Dust grains play a major role in many astrophysical contexts. They affect the chemical, magnetic, dynamical, and optical properties of
their environment, from galaxies down to the interstellar medium, star-forming regions, and protoplanetary disks. Their coagulation
leads to shifts in their size distribution and ultimately to the formation of planets. However, although the coagulation process is rea-
sonably uncomplicated to numerically implement by itself, it is difficult to couple it with multidimensional hydrodynamics numerical
simulations because of its high computational cost. We propose here a simple method for tracking the coagulation of grains at far
lower cost. Given an initial grain size distribution, the state of the distribution at time t is solely determined by the value of a single
variable integrated along the trajectory, independently of the specific path taken by the grains. Although this method cannot account
for processes other than coagulation, it is mathematically exact, fast, inexpensive, and can be used to evaluate the effect of grain
coagulation in most astrophysical contexts. It is applicable to all coagulation kernels in which local physical conditions and grain
properties can be separated. We also describe another method for calculating the average electric charge of grains and the density of
ions and electrons in environments that are shielded from radiation fields, given the density and temperature of the gas, the cosmic-ray
ionization rate, and the average mass of the ions. The equations we provide are fast to integrate numerically and can be used in mul-
tidimensional numerical simulations to self-consistently calculate on the fly the local resistivities that are required to model nonideal
magnetohydrodynamics.

Key words. methods: analytical – dust, extinction – astrochemistry – magnetohydrodynamics (MHD)

1. Introduction

Grains are a fundamental component of the universe. These
molecular aggregates represent 1% of the mass of the inter-
stellar medium (ISM; Mathis et al. 1977; Weingartner & Draine
2001) and play a major role in the chemistry, dynamics, and ther-
modynamics of their environment in the ISM and during star
and planet formation. Grain surfaces catalyze chemical reactions
of gaseous species (Hocuk & Cazaux 2015), and they can hold
several electric charges (Draine & Sutin 1987). They therefore
affect the chemical and ionization equilibrium of the gas and
the nature of the ionized species, which control the resisitivi-
ties producing nonideal magnetohydrodynamics (MHD) effects
(Marchand et al. 2016) and the regulation of angular momentum
during star formation (Zhao et al. 2016, 2018; Marchand et al.
2020). In protostellar environments, grains are the main source
of opacity and significantly affect the thermal properties of pro-
toplanetary disks (Schmitt et al. 1997) that lead to the forma-
tion of the first hydrostatic core (Larson 1969). Additionally,
their optical properties, including their absorption of infrared
radiation, is a major factor to account for in observations
(Semenov et al. 2003).

In the diffuse ISM, the dust grain population is well des-
cribed by the Mathis-Rumpl-Nordsieck (MRN) size distribution

(Mathis et al. 1977). This distribution is often assumed to be
preserved in the denser parts of the ISM, although it can in prin-
ciple evolve with time as grains grow by accretion or by stick-
ing together through collisions: coagulation (Tielens & Hagen
1982; Rossi et al. 1991; Chokshi et al. 1993; Ormel et al. 2009;
Dzyurkevich et al. 2017). These effects can reduce or remove
smaller size grains in the densest regions of the ISM, which
is consistent with observational evidence (Cardelli et al. 1989;
Vrba et al. 1993). In star-forming contexts, grains lying in pro-
toplanetary disks coagulate at a faster rate than in the ISM and
grow from submicron sizes to micrometer and millimeter sizes.
Eventually, these grains become the seeds of planet formation.

Modeling and observing accurate dust size distributions,
however, is a difficult challenge. Several studies have accounted
for the coagulation of grains and its astrophysical implica-
tions (Ormel et al. 2009; Hirashita & Harada 2017; Guillet et al.
2020), often using complex chemical or microphysics codes to
compute accurate results (Chokshi et al. 1993; Poppe & Blum
1997; Dominik & Tielens 1997), or assuming a size dis-
tribution that emulates the coagulation (Zhao et al. 2016;
Tsukamoto et al. 2020; Marchand et al. 2020). Here we propose
a new method for simulating the coagulation of grains when
the grain velocity only depends on the local physical condi-
tions (density, temperature, magnetic field, etc.). We apply this to
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the commonly used collision kernel derived by Ormel & Cuzzi
(2007), and find a new expression of the well-known Smolu-
chowski coagulation equation (Smoluchowski 1916). The coag-
ulated distribution is solely determined by an initial size
distribution and the value of a quantity χ, which is an integral
of physical conditions along the path of the grains. The coagu-
lation process is therefore reduced to a 1D problem because the
evolution of the size distribution only depends on χ and not on
the specific path taken. Promising methods have been developed
to accelerate the solving of the Smoluchowski equation, such as
implicit and semi-implicit integration schemes (Estrada & Cuzzi
2008) or Garlekin schemes (Lombart & Laibe 2021). However,
the main advantage of our method is that the Smoluchowski
equation does not have to be solved during hydrodynamical
simulations.

Nonideal MHD effects play a major role in the regulation of
the angular momentum and the magnetic flux during star for-
mation (Machida et al. 2006; Mellon & Li 2009; Tomida et al.
2015; Wurster et al. 2016; Marchand et al. 2020), but comput-
ing the resistivities usually requires intensive computations
by specialized chemistry codes (Kunz & Mouschovias 2009;
Marchand et al. 2016; Wurster 2016; Koga et al. 2019). We pro-
pose here a fast and mathematically accurate method based on
the model of Draine & Sutin (1987) to compute the density of
ions, electrons, and the average electric charge of grains, know-
ing the average ion mass, the density, the temperature, the ion-
ization rate from cosmic rays (CR) for an arbitrary grain size
distribution.

Both methods can be used in conjunction to simply and
rapidly calculate the dust size distribution and magnetic resis-
tivities in a self-consistent way. They can be implemented in
nonideal magnetohydrodynamical simulations from the scales of
molecular clouds down to collapsing protostellar cores.

Our next papers will detail some applications of these meth-
ods, while this paper focuses on their derivation. In Sect. 2 we
derive the new form of the Smoluchowski equation, and we
detail the calculation of the ionization in Sect. 3. Caveats are
discussed in Sect. 4, and conclusions are given in Sect. 5.

2. Grain coagulation

The time evolution of the distribution of coagulating grains is
classically described by the Smoluchowski (1916) equation (also
see Mizuno et al. 1988). In an environment with varying density,
the change in time t of the mass density ρ(m, t) of grains with
mass m is

dρ(m, t)
dt

= −

∫ ∞

0
mK(m,m′)n(m, t)n(m′, t)dm′

+
1
2

∫ m

0
mK(m − m′,m′)n(m − m′, t)n(m′, t)dm′

+
ρ(m, t)

nH

dnH

dt
, (1)

with K(m,m′) the coagulation kernel between grains of mass m
and m′, n(m, t) the number density of grains of mass m at time t,
and nH the number density of gas.

2.1. General form

We assume a kernel in the form

K(m,m′) = Cglocalh(m,m′), (2)

where C is a constant, glocal is a function of local physical condi-
tions (nH, T , B, etc.), and h(m,m′)1 a function depending only on
the grains properties. The Smoluchowski equation can be rewrit-
ten using the functions just defined as

dρ(m, t)
dt

= mCglocal

[
−

∫ ∞

0
h(m,m′)n(m, t)n(m′, t)dm′

+
1
2

∫ m

0
h(m − m′,m′)n(m − m′, t)n(m′, t)dm′

]
+
ρ(m, t)

nH

dnH

dt
. (3)

If X(a, t) is the fraction of grains2 of size a in the gas at time t,
we have n(a) = nHX(a, t), and ρ(m, t) = mnHX(a, t). Hence

dρ(m, t)
dt

= m
[
nH

dX(a, t)
dt

+ X(a, t)
dnH

dt

]
. (4)

The second term is equivalent to the last term of the Smolu-
chowski equation (ρ(m, t)/nH)(dnH/dt), so they cancel out.
Equation (3) thus becomes

dX(a, t)
dt

= CglocalnHI(a, X, t), (5)

where

I(a, X, t) = −

∫ ∞

0
h(m,m′)X(m, t)X(m′, t)dm′

+
1
2

∫ m

0
h(m − m′,m′)X(m − m′, t)X(m′, t)dm′ (6)

is a function of the whole size distribution. We introduce the new
variable,

dχ = glocalnHdt. (7)

We then have

dX(a, χ)
dχ

= CI(a, X, χ). (8)

χ captures the history of the grains, so that it can be used as a
sole tracker of the evolution of the distribution. At a constant χ,
the state of the distribution is therefore independent of the path
taken for a given initial distribution. Equation (8) then needs to
be integrated only once. This method can be simply included
in hydrodynamics simulations by tracking the evolution of the
function χ, and the associated distribution that would have been
precalculated can be listed in a table. It is impossible to use it in
conjunction with other processes modifying the grain size distri-
bution, however. We detail this caveat in Sect. 4.

2.2. Application to a turbulent kernel

The collision kernel derived by Ormel & Cuzzi (2007) assumes
that grains are accelerated by the gas turbulence and couple
to eddies at different scales, introducing a differential velocity
between grains of different sizes. The coagulation kernel reads

K(m,m′) =

√
8

3π
σ∆V, (9)

1 Since m corresponds to a unique a and vice versa, we do not distin-
guish between them in function arguments.
2 Or equivalently, the dust-to-gas ratio as a function of size.
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with ∆V the differential velocity between the two grains, σ =
π(a + a′)2 the collision cross section of the two grains, and a
and a′ their respective radius. Here we assume that a > a′. We
assume the intermediate-coupling regime, in which the stopping
time of the grain τs exceeds the dissipation timescale of the tur-
bulence τη , but is shorter than the turbulence-forcing timescale
τL. We detail the environments in which this assumption is valid
in Sect. 4. The velocity drift is (Ormel & Cuzzi 2007)

∆V =

[
3
2

c2
s z

(
τ′s
τL

)
τs

τL

]1/2

, (10)

with cs the sound speed and z(x) a function that we assume to
be equal to a constant z0 = 2.97. Assuming the injection scale
of the turbulence is equal to the Jeans length LJ, as expected
in star-forming regions (e.g., Ibáñez-Mejía et al. 2016), the for-
cing timescale for the turbulent cascade would be (Ormel et al.
2009)

τL =
LJ

cs
=

1
2

√
π

Gρ
, (11)

with G the gravitational constant. The stopping time of grains is
given by (Epstein 1924)

τs =
ρsa

µmHnHvth
, (12)

with ρs the bulk density of grains, µ the average atomic weight,
mH the mass of the hydrogen atom, vth = (8kBT/πµmH)1/2 the
thermal velocity of the grains, kB the Boltzmann constant, and T
the temperature.

We define

C2 =

(
3
√

8
z0[kBG]1/2 γρs

µmH

) 1
2

, (13)

with γ the adiabatic index of the gas. This is time invariant so
long as the grain and gas compositions do not change. After
some algebra, we can show that

∆V = C2n−
1
4

H T−
1
4 a

1
2 , (14)

or alternatively, assuming γ = 5/3, ρs = 2.3 g cm−3 and
µ = 2.3,

∆V = (1.74 × 102 cm s−1)
( nH

104 cm−3

)− 1
4
( T
10 K

)− 1
4
( a
10 nm

) 1
2
.

(15)

As assumed in Sect. 2.1, the coagulation kernel can thus be writ-
ten

K(m,m′) = Cglocal(nH,T )h(a, a′), (16)

where

glocal(nH,T ) = n−
1
4

H T−
1
4 , (17)

h(a, a′) = (a + a′)2a1/2, (18)

C = (8π/3)1/2C2. (19)

We therefore have
dX(a, χ)

dχ
= CI(a, X, χ), (20)

with

dχ = n
3
4
HT−

1
4 dt. (21)

Table 1. Test coagulation environments.

Case nH (cm−3) T (K) Time (yr)

Sim 1.4 × 106–2.4 × 1012 10–70 3.26 × 104

nH0 100 105 4.58 × 1011

nH4 104 10 4.58 × 107

nH8 108 10 4.58 × 104

2.3. Tests

2.3.1. Methods

To test the validity of our derivation, we compared the state of
a size distribution at a given χ in different contexts. We used
our new code Ishinisan, a coagulation algorithm inspired by the
Dustdap code (Guillet et al. 2007), that we make public with
the publication of this paper. We emphasize that Ishinisan com-
putes the (discrete version of) Smoluchowski Eq. (1) and not the
derived Eq. (8). The code is able to reproduce the coagulation of
grains using the constant and additive kernels for which analyt-
ical solutions exist. The aim of these tests is to show the valid-
ity of our derivation that the coagulated size distribution only
depends on the value of χ. Appendix B details the methods we
used that are implemented in the code.

We took an MRN distribution with amin = 5 nm and amax =
250 nm as our initial condition. The number density of grains is
determined by the slope of the distribution

dn
da

= Ka−3.5, (22)

with K a constant that is constrained by the total mass of grains
(the dust-to-gas ratio d), and the minimum and maximum sizes
of the distribution (see Appendix B for the calculation). We took
the usual value d = 0.01, and we again assumed ρs = 2.3 g cm−3,
µ = 2.3, and γ = 5/3.

2.3.2. Comparing various environments

Our reference environment was taken from a numerical simula-
tion of a protostellar collapse using the RAMSES code (Teyssier
2002). We tracked the density and temperature history of a tracer
particle during the first phases of the collapse of a uniform
M = 1 M� sphere of gas until its arrival at the first Larson (1969)
core. The trajectory is mostly isothermal at T = 10 K, with the
temperature rising as the density reaches nH ≈ 2 × 1011 cm−3.
The initial density was nH = 1.4 × 106 cm−3, and we stopped
the simulation when the particle was well settled into the first
core at nH = 2.4 × 1012 cm−3. The integration along the path
gives χ = 8.12 × 1017 cgs. We used Ishinisan to compute the
coagulation along the trajectory of the particle and to compare
it with environments at constant temperature and density (phys-
ically realistic or not) that are summarized in Table 1. The time
in each case was chosen to yield the same value of χ.

The size distributions at χ = 8.12 × 1017 cgs are represented
in Fig. 1 in number density and mass density (left and middle
panel, respectively), with the error displayed in the right panel.
The three cases at constant density are indistinguishable and only
show a difference of a few percent from the virtual particle of the
simulation. Around a = 10 µm, the error almost reaches 100%
for one of the bins. The discrepancies are due to a minor differ-
ence between the equivalent χ of the simulation and the theo-
retical cases. The error is also exacerbated by the steepness of
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Fig. 1. Fractional abundances X(a) = n(a)/nH (left panel) and fractional mass ρ(a)/nH of grain bins for the cases listed in Table 1. The black line
represents the initial (MRN) distribution, while the other lines give the distribution at χ = 8.12 × 1017 cgs. The right panel shows the relative error
of the constant density cases nH0, nH4, and nH8 (indistinguishable to machine precision) compared to the simulation Sim.

the distribution at this location and the low density of the bin.
In the MRN and in the coagulated distribution, the small grains
dominate in number, but the large grains dominate in mass.

3. Grain ionization

We now determine the ion and electron number density, ni and
ne, and the charge Zk of each grain size, knowing the grain size
distribution, the CR ionization rate ζ, the mean atomic mass of
ions µi, and the gas density nH and temperature T . We took ak to
be the radius of grains in size bin k and nk their number density.
Draine & Sutin (1987, hereafter DS87) introduced the reduced
temperature of grains,

τk =
akkBT

e2 , (23)

with e the elemental electric charge. DS87 distinguished two
regimes: τk � 1 for high temperature and large grains, and
τk � 1 for low temperature and small grains. They calculated
the equilibrium charge distribution of grains f by equating the
flux of ions Ji and electrons Je on grains. For a given grain of
temperature τ with charge Z, we have

f (Z)Ji(τk,Z) = f (Z + 1)Je(τk,Z + 1), (24)

where

Js(τk,Z) = nsss

√
8kBT
πms

πa2 J̃(τk,Ze/qs). (25)

The subscript s stands for either ions or electrons, ss is the stick-
ing coefficient of the species s onto grains, and ms is the mass per
particle of species s (so mi = µimH). The polarization enhance-
ment factor J̃ is given by DS87 Eqs. (3.3)–(3.5) and is a function
of the ratio of the charge of the grain Ze and the charge of the
particle qs. For an attractive polarization, Ze/qs < 0. The system
is closed by the normalization∑

Z

f (Z) = 1. (26)

In the following, we assume si = 1, and we define

Θ = se(µimH/me)1/2. (27)

We assumed that the CRs are the exclusive ionization source.
The ionization rate equals the recombination rate of ions in the
gas phase (with electrons) and onto (negatively charged) grains,

ζnH = 〈σv〉ienine + nivi

∑
k

〈J̃(τk)〉nkπa2
k , (28)

where 〈σv〉ie = 2× 10−7[T/300]−1/2 is the collision rate between
ions and electrons, vi = [8kBT/(πµimH)]1/2 is the thermal veloc-
ity of ions, and 〈J̃(τk)〉 is the average polarization factor for a
grain of temperature τk. Finally, the charge neutrality condition
imposes

ni − ne +
∑

k

nkZk = 0. (29)

3.1. Large grains and high temperatures τk � 1

For high temperatures and large grains, DS87 showed that the
charge distribution is a Gaussian, whose average value is

Zk = ψτk < 0, (30)

where ψ represents the ratio between the electric potential of the
grain and the kinetic energy of electrons. It is the solution to the
equation (Spitzer 1941; DS87)

1 − ψ = Θ
ne

ni
eψ. (31)

The combination of Eq. (30) with Eq. (29) for charge neu-
trality gives

ni − ne = −ψ
∑

k

nkτk. (32)

The average enhancement factor is given by (DS87)

〈J̃(τk � 1)〉 = 1 − ψ. (33)

If we define ε = ne/ni < 1, then the ψ Eq. (31), the charge
neutrality Eq. (32) and the recombination Eq. (28) become the
following system of four equations and four unknowns:

ε =
1 − ψ
Θeψ

,
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ni = −ψ

∑
k nkτk

1 − ε
,

ne = εni,

1 =
〈σv〉ieεn2

i

ζnH
+ (1 − ψ)

nivi
∑

k nkπa2
k

ζnH
, (34)

which is equivalent to a unique equation in ψ that can be numer-
ically solved.

3.2. Small grains and low temperatures τk � 1

Small grains can only carry one electric charge due to their
strong polarization. Equation (24) can therefore be written

f (−1) = f (0)
Je(0)

Ji(−1)
= f (0)εΘ

J̃(τk, 0)
J̃(τk,−1)

, (35)

f (1) = f (0)
Ji(0)
Je(1)

= f (0)
1
εΘ

J̃(τk, 0)
J̃(τk,−1)

, (36)

f (−1) + f (0) + f (1) = 1. (37)

For τk � 1, the polarization factors can be approximated to

J̃(τk, 0) ≈
(
π

2τk

) 1
2

, and J̃(τk,−1) ≈
2
τk
. (38)

DS87 assumed a regime in which ne ≈ ni, and therefore
f (1) � f (−1). However, this is not true at high density because
the recombination rate increases faster than the ionization rate,
and the grains absorb most of the electrons. The number of
grains increases with density, and their average charge plum-
mets toward zero. Therefore we cannot neglect the positively
charged grains here and we deviate from the solutions derived
by DS87. Ivlev et al. (2016) investigated this regime by calculat-
ing the deviation of the charge distribution compared to a pure
ion-electron plasma. They did not include the grain polarization
in their study, however. Ossenkopf (1993) also performed a sim-
ilar calculation, accounting for the polarization, to determine the
impact of the grain charges on their coagulation rate. They found
that this factor had only a limited effect on the collision proba-
bility of grains, however.

The above system can be solved into

f (0) =
1

1 + 1
αk

[
εΘ + 1

εΘ

] ,
f (−1) =

1
1 + 1

εΘ
αk + 1

ε2Θ2

,

f (1) =
1

1 + εΘαk + ε2Θ2 , (39)

where αk = [8/(πτk)]1/2. The average charge of grains is then
just given by

Zk =
∑

Z

Z f (Z) = f (1) − f (−1)

=
1 − ε2Θ2

1 + εΘαk + ε2Θ2 . (40)

The average polarization factor is calculated similarly. For the
recombination of ions onto grains,

〈J̃(τk)〉 =
∑

Z

J̃(τk,Ze/qi) f (Z) = J̃(τk,−1) f (−1) + J̃(τk, 0) f (0).

(41)

We can neglect J̃(τk, 1) f (1) because it represents the repulsive
interaction between a positive ion and a positively charged grain.
Combining Eqs. (41) and (35) gives

〈J̃(τk)〉 = J̃(τk,−1) f (−1)
[
1 +

1
εΘ

]
, (42)

=

2
τk

[
1 + 1

εΘ

]
1 + 1

εΘ
αk + 1

ε2Θ2

. (43)

Neglecting f (1) and J̃(τk, 0) f (0) in this calculation gives the
results derived by DS87 (their Eqs. (4.12) and (4.13) for f (−1)
and f (0), and Eqs. (5.3) and (5.11) for Zk and 〈J̃(τk)〉).

3.3. General case

DS87 proposed a generalization for all τ of the electric charge
and the enhancement factor, which is simply the sum of both
cases (Eqs. (30) and (40)):

Zk = ψτk +
1 − ε2Θ2

1 + εΘαk + ε2Θ2 . (44)

Similarly, the recombination enhancement factor is

〈J̃(τk)〉 = (1 − ψ) +

2
τk

[
1 + 1

εΘ

]
1 + 1

εΘ
αk + 1

ε2Θ2

. (45)

Combining these two expressions with Eq. (31) for ψ, Eq. (29)
for charge neutrality and Eq. (28) for ionization gives the follow-
ing system in ψ, ε, and ni:

ε =
1 − ψ
Θeψ

,

ni = −
1

1 − ε

∑
k

nkZk,

1 =
〈σv〉ieεn2

i

ζnH
+

nivi

ζnH

∑
k

nkπa2
k〈J̃(τk)〉, (46)

which is equivalent to a unique equation in ψ. This system can
be numerically integrated to obtain ψ, then ni, ε, ne, and all Zk.
We describe a method for a solution in Appendix A.

3.4. Test

In this section, we compare the ionization given by the system of
equations in the general case (Eq. (46)) to the results of the Dust-
dap code (Guillet et al. 2007, 2020), which has been developed
to study the detailed charge and dynamics of a full size distribu-
tion of dust. We set up an MRN distribution between amin = 5 nm
and amax = 250 nm with a dust-to-gas mass ratio of d = 0.006.
The size distribution was divided into 50 bins of equal width in
log space and did not evolve for this test. For densities between
nH = 104 cm−3 and nH = 1012 cm−3, we calculated the average
electric charge of each bin of grain size as well as ni and ne. We
assumed a CR ionization rate of ζ = 5 × 10−17 s−1, an average
ion mass of µi = 25, and se = 0.5. The grains have an ice mantle
of thickness 8.7 nm and negligible mass, which does not affect
the calculation except for the grain radii. We used the Newton-
Raphson algorithm described in Appendix A.

The results are displayed in Fig. 2. Our method (bottom
panel) shows an excellent agreement with Dustdap (top panel).

A50, page 5 of 11



A&A 649, A50 (2021)

10-4

10-3

10-2

10-1

100

101

104 105 106 107 108 109 1010 1011 1012
10-4

10-3

10-2

10-1

ions

e-

-Z

n i
, n

e

nH (cm-3)

250 nm
100 nm
30 nm
15 nm

10-4

10-3

10-2

10-1

100

101

104 105 106 107 108 109 1010 1011 1012
10-4

10-3

10-2

10-1

ions

e-

-Z

n i
, n

e

nH (cm-3)

250 nm
100 nm
30 nm
15 nm

Fig. 2. Evolution of the average charge of grains (colored lines, left axis)
and the density of ions and electrons (solid and dashed black lines, right
axis) as a function of density. Comparison between Dustdap (top panel)
and the method presented in this work (bottom panel).

Initially, the average charge of the grains (which are small,
τ < 0.15) is ≈ −1, and electrons and ions are present in equiva-
lent numbers. As density increases, the recombination becomes
much more efficient than the ionization, and the average charge
of the grains decreases because their number increases. Most
of the electrons are captured by the grains, and their fractional
abundance decreases. At high density, the ratio ni/ne converges
toward Θ ≈ 107.

4. Caveats

4.1. Intermediate coupling assumption

This coagulation method assumes that the grains are in the inter-
mediate coupling regime with the turbulence. This hypothesis is
valid only if the grain stopping time is longer than the dissipation
timescale of the turbulence τη, but shorter than the turbulence
injection timescale τL. The dissipation timescale depends on the
Reynolds number as

τη =
τL
√

Re
, (47)

Re =6.2 × 107
( nH

105cm−3

)1/2
. (48)

The condition τη < τs < τL constrains the validity domain of
the intermediate coupling hypothesis, which depends on the den-
sity, temperature, and grain size. Figure 3 shows the ratio τL/τs
(top) and τη/τs (bottom) in the nH-T domain for a = 10 nm (left)
and a = 1 µm (right). Blue means that the condition is satisfied,

a=10 nm
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Fig. 3. Ratio τL/τ (top) and τη/τ (bottom) in density-temperature inter-
vals for grain sizes of a = 10 nm (left) and a = 1 µm (right). Blue repre-
sents the domain of validity for the intermediate coupling assumption.

while white shows where the hypothesis is not valid (in these
cases, the grains would fall into the tightly coupled regime). The
only problematic domains are in the high density-high temper-
ature quadrants, especially for the smaller grains. However, this
domain corresponds to protostellar or protoplanetary disk condi-
tions. The grains would have experienced significant coagulation
by the time they reach the protostar, as shown by Fig. 1. This
point will be developed further in a forthcoming paper.

4.2. Fragmentation and other processes

The χ variable does not account for and cannot be used with
other processes that dust may undergo in addition to coagula-
tion, in particular, it cannot be used with fragmentation. Grains
also grow by accreting gaseous material from their surround-
ings, especially during their long journey through the ISM
(Zhukovska et al. 2018). Accretion severely depletes the num-
ber of very small grains as the radius growth rate is indepen-
dent of the grain size. On the other hand, sputtering (McKee
1989; Mattsson 2016) is a process that decreases the grain radius,
especially in supernova shocks in the ISM. In more dense envi-
ronments and at low temperature, such as in protostellar cores,
grains accrete ice mantles (Hocuk & Cazaux 2015). The larger
resulting cross section increases the collision rate, but the man-
tle does not necessarily facilitate the sticking of grains during a
collision (Kimura et al. 2020).

We considered purely spherical grains for simplicity. How-
ever, coagulation tends to produce fractal structures (Ormel et al.
2009), changing the effective cross section and density of the
grain. These issues can be mitigated by introducing a porosity
factor, although nonspherical shapes also promote fragmenta-
tion.

Ormel et al. (2009) provided conditions for the fragmenta-
tion of aggregates based on Dominik & Tielens (1997). If the
kinetic energy of the collision Ekin exceeds five times the rolling
energy Eroll of the grain, then the aggregate experiences signifi-
cant structure changes or breaks. The kinetic and rolling energies
are given by

Ekin =
1
2

mm′

m + m′
∆v2, (49)

Eroll = 6π2ξcritγsaµ, (50)
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Fig. 4. Ratio Ekin/5Eroll as a function of density (x-axis) and the largest
of the two colliding grains (y-axis). Blue indicates a ratio below 1,
meaning that the collision restructures or fragments the grains. The dot-
ted and dashed lines are the first and third quartile of the MRN size
distribution that coagulate during the protostellar collapse presented in
Sect. 2.3.

where m and m′ are the masses of the two colliding grains and
∆v their collision velocity (given by Eq. (14), which depends
only on the size of the largest grain). The critical displacement
for irreversible rolling ξcrit = 2 × 10−7 cm, γs the surface energy
density of the material, and aµ the reduced radius of the grain
monomers. We took γs = 370 erg s−1 for ice-coated silicates and
assumed T = 10 K. As was done by Ormel et al. (2009), we
considered 0.1 µm monomers, therefore aµ = 0.05 µm. Figure 4
shows the ratio Ekin/5Eroll as a function of density and the largest
grain size involved in the collision. In the blue region, the ratio
is lower than 1 and the energy of the collision is not high enough
to restructure the grain, while the red region is the opposite.
We superimposed the first and third quartile of the MRN size-
distribution presented in the test of Sect. 2.3 that coagulates dur-
ing the protostellar collapse3.

At the densities of protostellar envelope (nH < 1010 cm−3),
fragmentation seems to be a minor process even with grain
growth. However, at higher densities (nH > 1010 cm−3), typi-
cal of the first Larson core and the disk, the largest grains of the
coagulated distribution reach the threshold. Therefore we cannot
rule out fragmentation in the disk, even at early phases, which is
also supported by observations of small grains in protoplanetary
disks (Habart et al. 2004; Lagage et al. 2006). For bare silicates
(without ice), the fragmentation threshold is lower but the con-
clusion is the same. This process tends to steepen the distribu-
tion as larger grains shatter into smaller grains. While the mass
remains in the large grains, the small grains dominate the num-
ber density and the surface area, hence significantly impacting
the non-ideal MHD resistivities and the opacity of the medium.
The results given by the method presented in this paper should
thus be taken with caution in the environment of a protostellar
disk.

We did not consider differential dynamics of gas and
dust either. This can generate local variations of the dust-
to-gas ratio and the dust distribution for grains larger than
≈50 µm during protostellar collapse (Bate & Lorén-Aguilar
2017; Lebreuilly et al. 2019, 2020) and ≈10 µm in molecular
clouds (Tricco et al. 2017).

3 That is, 25% of the mass is below the dotted line, while 75% is below
the dashed line.

4.3. Limitations of the ionization model

The ionization formula derived by DS87 does not account
for charge transfer between grains. As Marchand et al. (2016)
pointed out in their Appendix B, this would lead to inaccurate
values of the ionization and the MHD resistivities if the grains
were the dominant charge carrier. This could in principle be the
case during the protostellar collapse, at the end of the isothermal
phase, and during the life of the first Larson core (Larson 1969).
However, as Guillet et al. (2020) showed, coagulation efficiently
reduces the number of grains, ensuring that ions remain the dom-
inant charge carriers in the gas during collapse and in the proto-
planetary disk (see also Okuzumi 2009; Fujii et al. 2011).

Finally, our ionization model assumes that CRs are the only
source of ionization. The system of equations we derive needs
to be adapted for other ionization sources, such as UV or X-rays
from young stars.

5. Conclusion

We presented two analytical methods.
With the first method, we have derived a new reduced vari-

able to track grain coagulation for any kernel in which the
variable can be separated. Given an initial size distribution, the
coagulated distribution depends only on the value of an integral
χ along the trajectory of the grains. We applied this method to
the turbulent kernel derived by Ormel & Cuzzi (2007) and found
χ =

∫ t
0 n3/4

H T−1/4dt. Although other mechanisms that process
grains, such as fragmentation, cannot be included in the calcula-
tion, the χ variable provides a simple and inexpensive technique
to evaluate the role of grain coagulation in analytical and numer-
ical studies.

We also described a method for computing the ionization of
a medium knowing the ionization rate, the gas density and tem-
perature, and the grain size distribution. We adapted the model of
DS87 by reducing it to a single equation that can be numerically
solved to rapidly compute the average charge of grains as a func-
tion of their size, as well as the ion and electron density. Using
a Newton-Raphson scheme, the solution of this equation is fast
enough to be performed on the fly in numerical simulations.

Two upcoming papers will focus on the application of these
methods to the formation of dense molecular cores and in proto-
stellar collapse simulations. These tools can be used together to
rapidly and self-consistently calculate the nonideal MHD resis-
tivities locally. The code Ishinisan is publicly available4.
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Appendix A: Numerical solution for ionization

We describe a numerical solution to find the values of ψ, ni and
ne of the system of Eqs. (46). These can be rewritten as

Zk =ψτk +
1 − ε2Θ2

1 + εΘαk + ε2Θ2 , (A.1)

〈J̃(τk)〉 =(1 − ψ) +

2
τk

[
ε2Θ2 + εΘ

]
1 + εΘαk + ε2Θ2 , (A.2)

ε =
1 − ψ
Θeψ

, (A.3)

ni = −
1

1 − ε

∑
k

nkZk, (A.4)

f (ψ) =
〈σv〉ieεn2

i

ζnH
+

nivi

ζnH

∑
k

nkπa2
k〈J̃(τk)〉 − 1 = 0. (A.5)

The two unknowns ε and ni are functions of ψ, therefore we
need to solve f (ψ) = 0. The charge distribution f is monotonous
on its validity interval [ψ0, 0[, where ψ0 is the solution of Eq. (31)
for ε = 1 (ψ0 = −2.504 for µi = 1 and ψ0 = −3.799 for µi = 25,
e.g.).

We used a Newton-Raphson iteration scheme to solve the
equations. Starting from an initial value of ψ = ψ0 or the last
calculated ψ, we calculated the next estimate

ψn+1 = ψn −

(
f (ψn)

d f /dψ(ψn)

)
, (A.6)

and we iterated until | f (ψn)| < δ, where δ � 1 is a chosen toler-
ance factor.

The first derivative of the function f (ψ) reads

d f
dψ

(ψ) =
〈σv〉ieni

ζnH

(
ni

dε
dψ

+ 2ε
dni

dψ

)
+ 2

nivi

ζnH

(
ε2Θ2 + εΘ

) [( 1
ni

dni

dψ
+

2εΘ + 1
ε(1 + εΘ)

dε
dψ

)
∑

k

nkπa2
k

τk
(
1 + εΘαk + ε2Θ2)

+
dε
dψ

∑
k

nkπa2
k

(
2εΘ2 + Θαk

)
τk

(
1 + εΘαk + ε2Θ2)2


+

nivi

ζnH

(
1
ni

dni

dψ
(1 − ψ) − 1

)∑
k

nkπa2
k , (A.7)

where

dε
dψ

= −ε
2 − ψ
1 − ψ

, (A.8)

dni

dψ
= −

1
(1 − ε)2

dε
dψ∑

k

nk[−ε4Θ4 + (4Θ2 − Θ3αk)ε2 + (2Θαk − 4Θ2)ε + 1 − Θαk]
(1 + εΘαk + ε2Θ2)2

−
1

1 − ε

(
ψ

1 − ε
dε
dψ

+ 1
)∑

k

nkτk. (A.9)

The solution algorithm is therefore the following:
1. Calculate the quantities τk and αk for all grains.
2. Calculate ψ0, the solution of Eq. (31) with ε = 1.

3. Using ψ0 as a first estimate, calculate in turn ε (Eq. (A.3)),
Zk (Eq. (A.1)), ni (Eq. (A.4)), f (ψ) (Eq. (A.5)), dε/dψ
(Eq. (A.8)), dni/dψ (Eq. (A.9)), and d f /dψ (Eq. (A.7)).

4. Calculate the new estimate for ψ with Eq. (A.6).
5. Repeat steps 3 and 4 with the new value of ψ until f (ψ) < δ.

Appendix B: Methods of Ishinisan

The resolution methods implemented in Ishinisan are largely
inspired by the Dustdap code (Guillet et al. 2007, 2020). Ishin-
isan takes a size distribution as initial condition and computes
the evolution of the dust mass-density with time according to
the Smoluchowski equation for mass density (Eq. (1))5. The gas
density, temperature, and magnetic field are either fixed or can
be input as a datafile tracing its history (from a tracer particle in
a simulation, e.g.). It is adapted to take values of χ as input or
produce them as output to apply the methods presented in this
paper.

B.1. Bins and slopes of the distribution

The initial size distribution of grains is generated by the code
according to the user’s preference and is divided into bins of
equal widths in the log-space. If amin and amax are the minimum
and maximum size of a distribution with n bins, the maximum
and minimum size of the bin i, ai+ and ai,−, are

ai,− = aminζ
i−1, (B.1)

ai,+ = aminζ
i, (B.2)

where ζ = (amax/amin)1/n is the logarithmic increment between
successive bins. Similarly, for the mass of the bins,

mi,− = mminη
i−1, (B.3)

mi,+ = mminη
i, (B.4)

with η = (mmax/mmin)1/n = ζ3, and m = 4/3πρsa3 assuming
spherical grains. For a power-law distribution of the form

dn
da
∝ aλ (B.5)

(λ = −3.5 for the MRN distribution), the initial density in each
bin i is

ρi = ρgd
aλ+4

i,+ − aλ+4
i,−

aλ+4
max − aλ+4

min

, (B.6)

where ρg is the gas density and d is the dust-to-gas mass ratio.
If we define β as the slope in mass of the distribution

dn
dm
∝ mβ, (B.7)

then β = (λ − 2)/3. The slope locally changes with time, and we
assume that it is a power law with a constant coefficient across
the width of the bin. It is calculated as the harmonic mean of the
slope on each side of the bin,

δ+ = log
(

1
η

ρi+1

ρi

)
, (B.8)

5 Not the derived reduced Eq. (8) so as to improve the versatility of the
code and facilitate mass conservation during the calculations.
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δ− = log
(

1
η

ρi

ρi−1

)
, (B.9)

βi =
1

log(η)
2δ−δ+

δ− + δ+

− 1, (B.10)

λi = 3βi + 2, (B.11)

with the special cases

β1 =
δ+

log(η)
, (B.12)

βn =
δ−

log(η)
, (B.13)

βi =
δ+

log(η)
if δ−δ+ < 0. (B.14)

The equivalent size, cross section, and mass of each are
calculated at each time step using the first, second, and third
moments of the distribution in each bin. The kth moment, for
k = 1, 2, 3, reads

〈ak〉i =

∫ ai,+

ai,−
akdn∫ ai,+

ai,−
dn

= ak
i,−

λi + 1
λi + 1 + k

ζλi+1+k − 1
ζλi+1 − 1

, (B.15)

with the special case

〈ak〉i = ak
i,−

log(ζ)
1 − ζ−k , (B.16)

if λi + 1 + k = 0 (or is close to zero, to avoid numerical errors).
We then have 〈a1〉i the average grain size of the bin and

〈m〉i = 4/3πρs〈a3〉i its average mass.

ni =

∫ ai,+

ai,−

dn =
ρi

〈m〉i
, (B.17)

is the number density of grains in bin i.

B.2. Coagulation between two bins

We consider two bins i and j (i ≥ j) that coagulate. In the inter-
mediate coupling regime of Ormel & Cuzzi (2007), their coagu-
lation rate is(

dn
dt

)
i, j

= nin jK(mi,m j) = nin j

√
8

3π
π(ai + a j)2∆V, (B.18)

where

∆V =

(
3
√

8
z0[kBG]1/2 γρs

µmH

) 1
2

a
1
2 (nHT )−

1
4 . (B.19)

If i = j, the kernel has to be divided by 2 so as to not count the
same grains twice.

The product of coagulation is distributed over two bins C and
C + 1, with

C =

⌊
1

log η
log

(
mi,− + m j,−

mmin

)
+ 1

⌋
. (B.20)

If we assume mC � m j, then the coagulation between any grain
of bin j and a grain of bin i with a mass lower than mC,− − m j
produces a grain in bin C. The fraction υ of grains transferred to
bin C is therefore given by

υ =

∫ m j,+

m j,−

∫ mC,+−m j

mi,−
(m + m′)K(m,m′)mβi m′β j dmdm′∫ m j,+

m j,−

∫ mi,+

mi,−
(m + m′)K(m,m′)mβi m′β j dmdm′

. (B.21)

However, if mC,− − m j < mi,−, then the product of coagulation is
too massive for bin C and υ = 0. Conversely, if mC,− −m j > mi,+
then υ = 1. The integrals of Eq. (B.21) need to be calculated ana-
lytically due to the computational cost of performing a numerical
integration for each pair of bins at each time step. In particular,
if the distribution is steep, one end of the bin may not be cap-
tured accurately, yielding large errors. For coagulation kernels
that are in the form K(m,m′) = mαm′α

′

, the analytical calcula-
tion is tedious but straightforward. Fortunately, this is the case
for the kernel used in this paper (see Eqs. (9) and (14)),

K(m,m′) ∝
(
m

1
3 + m′

1
3

)2
m

1
6 . (B.22)

The analytical expression of υ is a function of mβ, which can
lead to inaccuracies due to numerical truncation errors where
the distribution is steep (|β| is large). Fortunately, for high val-
ues of |β|, some terms can be simplified. This is not the case for
specific lower values (if we have to integrate m−1 into a log func-
tion instead of a power-law), however, so that the simplification
cannot be generalized to all β. We also have to ensure that the
simplification can be applied to both the top and bottom of the
fraction. We detail here the procedure used in Ishinisan to mini-
mize numerical inaccuracy.

We define the following functions:

q(m−,m+, β, u) =


log

(
m+

m−

)
if |β + u| < 10−10,(

m+
m−

)β+u
−1

β+u if β < −5,

mβ+u
−

(
m+
m−

)β+u
−1

β+u else,

(B.23)

and r(m1,−,m1,+,m2,−,m2,+, β1, β2), so that

υ =
r(mi,−,mC,+ − m j,m j,−,m j,+, βi, β j)

r(mi,−,mi,+,m j,−,m j,+, βi, β j)
. (B.24)

We therefore have for the turbulent kernel

r(m1,−,m1,+,m2,−,m2,+, β1, β2) =

κ
5
3
1 κ

0
3
2 q

(
m1,−,m1,+, β1,

7
6 + 5

3

)
q
(
m2,−,m2,+, β2, 1 + 0

3

)
+κ

4
3
1 κ

1
3
2 q

(
m1,−,m1,+, β1,

7
6 + 4

3

)
q
(
m2,−,m2,+, β2, 1 + 1

3

)
+κ

3
3
1 κ

2
3
2 q

(
m1,−,m1,+, β1,

7
6 + 3

3

)
q
(
m2,−,m2,+, β2, 1 + 2

3

)
+κ

2
3
1 κ

3
3
2 q

(
m1,−,m1,+, β1,

7
6 + 2

3

)
q
(
m2,−,m2,+, β2, 1 + 3

3

)
+κ

1
3
1 κ

4
3
2 q

(
m1,−,m1,+, β1,

7
6 + 1

3

)
q
(
m2,−,m2,+, β2, 1 + 4

3

)
+κ

0
3
1 κ

5
3
2 q

(
m1,−,m1,+, β1,

7
6 + 0

3

)
q
(
m2,−,m2,+, β2, 1 + 5

3

)
,

(B.25)

where κk = mk,− if sk < −5, and κk = 1 else, for k = 1, 2, to
match the criteria of function q (B.23).

When the value of υ is known, the variations rates of mass
density in the four involved bins are

∆ρi

∆t
= −mi

(
dn
dt

)
i, j
, (B.26)

∆ρ j

∆t
= −m j

(
dn
dt

)
i, j
, (B.27)

∆ρC

∆t
= υ(mi + m j)

(
dn
dt

)
i, j
, (B.28)

∆ρC+1

∆t
= (1 − υ)(mi + m j)

(
dn
dt

)
i, j
. (B.29)
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After summing all the variation rates, we chose the time-
step ∆t so that the relative variation of mass in each bin does
not exceed a number εprec, typically smaller than one, to ensure
numerical accuracy,

1
ρi

(
∆ρi

∆t

)
tot

∆t < εprec. (B.30)

The densities are then updated

(ρi)new = ρi +

(
∆ρi

∆t

)
tot

∆t, (B.31)

and the new slopes, average size, and average mass of
bins are calculated according to the calculations detailed in
Appendix B.1.

B.3. Tests

We tested the coagulation algorithm using two simple kernels,
namely the constant and additive kernels,

Kc(m,m′) = 2, (B.32)
Ka(m,m′) = m + m′. (B.33)

Menon & Pego (2004) showed that these two kernels possess
self-similar solutions,

d log ρc

d log m
=

(m
t

)2
e−

m
t , (B.34)

d log ρa

d log m
=

√
me−2t

2π
e−me2t/2. (B.35)

The mass density in each bin i is given by

ρc,i =


(
1 +

mi,−

t

)
e−

mi,−
t −

(
1 +

mi,+

t

)
e−

mi,+
t for mi,−

t < 1,

e−
mi,−

t

[(
1 +

mi,−

t

)
−

(
1 +

mi,+

t

)
e
−mi,++mi,−

t

]
else,

(B.36)

ρa,i =


erf

(
mi,+e−2t

2

)
− erf

(
mi,−e−2t

2

)
for mi,−e−2t < 1,

−erfc
(

mi,+e−2t

2

)
+ erfc

(
mi,−e−2t

2

)
else,

(B.37)

where erf and erfc are the error function and the complementary
error function. In each case, the two formulae are mathemati-
cally equivalent but are written in this form to avoid numerical
truncation errors.

The fraction υ has a similar form as the turbulent kernel pre-
sented in the previous section (Eq. (B.24)). The function q is the
same, and function r for the constant kernel reads

rc(m1,−,m1,+,m2,−,m2,+, β1, β2)
= κ2q

(
m1,−,m1,+, β1, 1

)
q
(
m2,−,m2,+, β2, 2

)
+ κ1q

(
m1,−,m1,+, β1, 2

)
q
(
m2,−,m2,+, β2, 1

)
, (B.38)

and for the additive kernel
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Fig. B.1. Test runs of Ishinisan for the constant kernel (top) and addivite
kernel (bottom). The points are the simulation results and the solid lines
represent the analytical solution.

ra(m1,−,m1,+,m2,−,m2,+, β1, β2)

= κ2
1q

(
m1,−,m1,+, β1, 3

)
q
(
m2,−,m2,+, β2, 1

)
+ 2κ1κ2q

(
m1,−,m1,+, β1, 2

)
q
(
m2,−,m2,+, β2, 2

)
+ κ2

2q
(
m1,−,m1,+, β1, 1

)
q
(
m2,−,m2,+, β2, 3

)
. (B.39)

We used Ishinisan to reproduce these self-similar solutions.
We set up 30 bins between mmin = 4 × 10−6 and mmax =

4 × 108. The initial size distribution was given by the analyt-
ical solutions (B.36) and (B.37) at t = 0. Figure B.1 shows the
numerical results for both kernels alongside their analytical solu-
tions (B.36) and (B.37). Ishinisan shows an excellent agreement
with the theoretical prediction. The largest errors appear at high
masses where the distribution is very steep, which affects only a
minor fraction of the total mass of the grains.
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