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Abstract: In this paper, we propose a true unsupervised method to partition large-size images,
where the number of classes, training samples, and other a priori information is not known. Thus,
partitioning an image without any knowledge is a great challenge. This novel adaptive and hierar-
chical classification method is based on affinity propagation, where all criteria and parameters are
adaptively calculated from the image to be partitioned. It is reliable to objectively discover classes
of an image without user intervention and therefore satisfies all the objectives of an unsupervised
method. Hierarchical partitioning adopted allows the user to analyze and interpret the data very
finely. The optimal partition maximizing an objective criterion provides the number of classes and the
exemplar of each class. The efficiency of the proposed method is demonstrated through experimental
results on hyperspectral images. The obtained results show its superiority over the most widely
used unsupervised and semi-supervised methods. The developed method can be used in several
application domains to partition large-size images or data. It allows the user to consider all or part
of the obtained classes and gives the possibility to select the samples in an objective way during a
learning process.

Keywords: unsupervised classification; estimation of classes number; large size datasets; hyperspec-
tral image; unsupervised learning; objective decision making; remote sensing

1. Introduction

The partitioning of large-size images, in order to exploit their rich information content
for the construction of reliable decision-making systems, is of growing interest in many
application fields. Indeed, hyperspectral images are today among the most widely used
data thanks to their large spectral range (several hundred spectral bands covering the visible
and infrared domains) and their fine spatial resolution (a few tens of centimeters). Due to
this richness of information, which allows for better discrimination of objects, interest in
hyperspectral images has increased during the last years in many application fields. These
fields include geology [1], medicine [2–7], industrial production [8,9], safety [10], and the
environment [11–20]. In this latter field, hyperspectral imagery has been of great interest
and several applications have been treated. These applications include the inventory of
vegetation species [11,12], the early detection of vegetation diseases [13,14] and invasive
species [15,16], the identification of marine algae [17,18], and the human and animal impacts
on the environment [19,20], etc. Thus, to efficiently meet the needs of all these areas, any
partitioning method of hyperspectral images must be conducted while respecting the
physical nature of the information provided by these images. A plethora of published
methods do not respect the precise information given by these images, where the ground
truth (GT) data used is simplified [21,22] and the classification of existing methods is
sometimes ambiguous and not consistent. For example, in [23], the authors propose a
method using learning samples by defining it as semi-supervised. Other authors introduce
in [24], the number of classes in the partitioning process and qualify their method as
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unsupervised. In general, it is wrong to consider all algorithms as unsupervised because
the introduction of the number of classes by the user to run an algorithm is a supervised
operation [25].

In order to remove all these confusions, we classify according to criteria related
to the nature of the knowledge introduced by the users this plethora of methods into
three main categories instead of two, as often proposed in the literature (supervised
and unsupervised). The confusion is due to the fact that methods that require a priori
knowledge of the number of classes are in the same category as those that estimate the
number of classes. Thus, we subdivided the category of unsupervised methods into two
categories (semi-supervised and unsupervised methods) [26]. It is important to recall that
the methods of each category can be hierarchical or non-hierarchical and parametric or
non-parametric. Consequently, the three main categories of classification or partitioning
methods opted here are supervised, semi-supervised, and unsupervised, which we will
specify after the definition of “partitioning”.

Definition 1. “Data partitioning” is a method of data analysis that consists of dividing a set of
data described by quantitative features into different homogeneous “sub-sets” or classes, according
to a similarity criterion in the sense that the data in each sub-set share common characteristics. The
obtained classes form a partition.

Data partitioning can be performed with or without learning. In the latter case, all
classes are located and the unidentified classes as in the case of several domains (envi-
ronment, medicine, security, biology, etc.) can be analyzed and listed to add them as new
known classes for possible learning or not.

We specify that in this article we use the term “partitioning” because it is both more
practical and more appropriate to describe the developed data analysis method. In addition,
it is more convenient to avoid using a long term, such as “classification of image pixels,”
and a false term, such as “image classification,” which is another problem.

Partitioning an image or data consists in creating a partition formally defined as follows:
Let X = {x1, x2, . . . , xN} be a set of N objects xi, where each object is charaterized by

B quantitative features.
The process of dividing X into K classes, Ci, consists in creating a partition, P, accord-

ing to one or more objective optimization criteria with: P = {C1, C2, . . . , CK}.
This partition, P, will therefore highlight the different classes in the dataset, X.
The quality of a partition will depend on the degree of homogeneity of the classes

formed and consequently on their number. Thus, in order to obtain a correct partitioning
result, three requirements must be verified simultaneously:

Completeness: all objects in the dataset must be associated with a class.

∀ xi ∈ X, ∃ Cj such that xi ∈ Cj

Separability: the classes must be sufficiently differentiable so that an object can only
be associated with one class.

K
∪

i=1
Ci = X and

K
∩

i=1
Ci = ∅

Relevance: the association of an object to a class must be carried out according to an
objective optimization criterion.

The different partitioning methods can be grouped into three categories [26] which
we define as follows:

-Supervised methods require training samples to accomplish the partitioning task. Meth-
ods such as the Maximum Likelihood [27] and Support Vector Machines [28] are the most
common methods used in this category.

We note that the information required by the methods of this category is not always
available for many applications, and even if it exists, it is not always reliable [21,22].
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-Semi-supervised methods, considered unsupervised in the literature, require the num-
ber of classes and threshold values or other empirical parameters from the operator. K-
means [29] is a basic semi-supervised algorithm that classifies each object according to
their similarity/dissimilarity, requiring the number of classes to be fixed by the user.
Furthermore, it is sensitive to the random initialization of class centers, which makes it
unstable [30–32]. Several extensions of K-means have been developed [33–36] but are still
affected by the initial choice of class centers.

The Fuzzy C-Means (FCM) [37–40] derived from the K-means algorithm is another
semi-supervised algorithm. This algorithm is also sensitive to the initial class centers and
the choice of the fuzzification parameter.

In practice, the knowledge of the number of classes required by supervised and semi-
supervised methods is imprecise and not often accessible, in particular for hyperspectral
aerial images with large landscape areas. As stated in [21,22,32], prior knowledge of the
number of classes is a subjective process in nature, which precludes an absolute judgment
as to the relevance of all data analysis. Consequently, these methods do not allow for the
discovery of novel relevant classes. In this case, the knowledge of the number of classes in
semi-supervised and supervised methods can be considered as a constraint and does not
often reflect reality.

In order to partition objects or form learning classes, unsupervised partitioning meth-
ods present many advantages with respect to supervised and semi-supervised methods, as
defined below.

-Unsupervised methods do not require the number of classes, associated learning sam-
ples, or any other prior knowledge. The number of classes is objectively estimated following
a given optimization criterion or several optimization criteria. This category is called ex-
ploratory data analysis by Xu and Wunsch [32]. It is more adapted to explore data analysis
or to learn a novel object and discover a novel phenomenon. Indeed, the identification
of the nature of each class is defined after the partitioning process and not before. This
category leads to a fine and complete analysis of the observed data and does not limit
the analysis to known classes. For these reasons, it meets a real need generated by some
application domains, such as Earth observation, where the areas to be analyzed are very
large or difficult to access. It provides accurate, objective, and consistent solutions that
translate real information content of images independently of the GT data or learning
samples which can be biased or simplified [21,22].

The definition of unsupervised methods given above ensures that no subjective knowl-
edge is introduced by the user.

Several unsupervised methods have been proposed for data partitioning. In [41],
an unsupervised version of the K-means algorithm, named Modified Linde–Buzo–Gray
(MLBG) is proposed. This method improves the different stages of the Linde–Buzo–Gray
(LBG) algorithm and is able to automatically determine the number of classes; however,
it requires a long computing time. In [26], an optimized version of the baseline FCM
algorithm (FCMO) was presented in order to make it stable and deterministic. Stability is
achieved by initializing the class centers through an adaptive incremental procedure. In
addition, an unsupervised evaluation criterion, based on the within- and between-class
disparities, is introduced to estimate the optimal number of classes. This method can be
used in unsupervised or semi-supervised mode.

One of the most elaborate unsupervised partitioning methods is Affinity Propagation
(AP) [42]. This method has six advantages: (i) no a priori knowledge is required, especially
the non-introduction of training samples, to give the user the possibility to detect and locate
the known classes and new classes called “discovery classes”; (ii) stability of the results
thanks to its deterministic character; (iii) possibility to objectively select the samples of the
classes in a learning system in order to be able to detect them afterward; (iv) applicable to
several domains without learning constraints; (v) it can be used in unsupervised or semi-
supervised mode, and; and (vi) it is insensitive to initialization. Due to these advantages,
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it is widely used in several application areas, such as environmental monitoring and
safety [43–47], multimedia data management, and pattern recognition [48–57].

The main drawback of the standard AP method is that it is not applicable to par-
titioning large-size hyperspectral images. Indeed, the memory space required for each
of the four main matrices has a quadratic relationship with the number of pixels to be
partitioned. In [25], Chehdi et al. suggested a reduction in the number of pixels to allow the
application of AP to partition large-size images. To reduce this number, the hyperspectral
image is divided into blocks and the reduction step is applied independently within each
block. Then, the AP method is applied only on exemplars of the duplicated pixels and
non-duplicated pixels. However, in its current version, AP does not take into account the
presence of identical objects after the reduction step in the calculation of the criteria used.
Other drawbacks of the standard AP method are: (i) some parameters are not computed
adaptively; and (ii) the criterion of identification of class exemplars may create not perfectly
homogeneous classes, as demonstrated in Section 3.1.2.

To extend the AP method to large-size data, such as hyperspectral aerial images, and
to optimize it by adaptively calculating the criteria and parameters used, we propose here a
new version without any prior knowledge introduced by the user. We recall that a relevant
partitioning method, whatever its nature (supervised, semi-supervised, or unsupervised),
must provide results to the end-user, taking into account the physical characteristics
provided by measuring instruments [21,22].

The main contributions of this work are: (1) modification and optimization of several
steps of the standard AP algorithm; (2) introduction of a new approach to partition large size
images and proposal of a fusion procedure of the classes obtained in the blocks with stable
results regardless of the chosen block size; and (3) generation of hierarchical partitioning.
For AP optimization, the improvements are the estimation of the preference parameter
value for each object; taking into account the presence of identical objects in the calculation
of similarity, responsibility, and availability criteria; updating procedure of estimating the
values of the responsibility and the availability criteria; and finally, modification of the
decisional criterion used to estimate the number of classes and identify their exemplars. The
proposed hierarchical method allows the user to obtain several partitions while indicating
the most optimal one. These partitioning results are very important and necessary in several
application fields to perform a fine analysis and interpretation of the formed classes.

The remainder of the paper is organized as follows: Section 2 provides an overview of
the standard AP algorithm and related studies. Section 3 describes the proposed method,
named “Unsupervised Partitioning by Optimized Affinity Propagation” (UP-OAP) and
its hierarchical version, named “Hierarchical Unsupervised Partitioning approach by
OAP” (HUP-OAP). Section 4 presents the assessment results of the proposed method
on a synthetic hyperspectral image constructed from a real aerial image acquired by our
platform. It is also evaluated on a real aerial large-size hyperspectral image. The target
application of these images is the identification of marine algae species. To assess the
efficiency of the proposed unsupervised method, each image is provided with validated
GT data. Finally, Section 5 concludes this paper and provides some perspectives.

2. Review of the Standard Affinity Propagation Algorithm and Related Studies

Unsupervised partitioning methods, as defined in the introduction, have many ad-
vantages over supervised and semi-supervised methods: (i) they do not require any prior
knowledge to aggregate objects in classes (neither the number of classes to discriminate,
nor learning samples). The number of classes is estimated following a given optimization
criterion, and (ii) they respect the physical characteristics of objects in the formation of
classes. Thus, unsupervised methods provide more relevant results because the decision
criteria for objects aggregation is independent of the GT data or learning samples, which
can be biased or simplified in some cases [21,22]. For these reasons, we are interested in
the development of an unsupervised partitioning method that excludes user intervention.
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2.1. Overview of the Standard AP Algorithm

In the standard AP algorithm developed by Frey and Dueck [42], two procedures of
message transmission, called responsibility and availability, are used to exchange messages
between objects. These messages are used to identify in an iterative manner the best
exemplar of each class that may exist. The responsibility, r(xi, xk), is sent from object xi
to candidate exemplar xk and reflects how well-suited it would be for object xk to be
the exemplar of object xi. The availability, a(xi, xk), is sent from candidate exemplar xk
to object xi, and reflects how appropriate it would be for object xi to choose candidate
exemplar xk as its exemplar. To calculate both criteria, the similarity matrix is used as the
opposite of the squared Euclidean distance −d2

2(xi, xk), where d2 is the distance associated
to L2-norm.

For set X = {x1, x2, . . . , xN} of N objects to be partitioned, where each object, xi, is
characterized by a set of B features, S, R, and A denote the similarity, responsibility, and
availability matrices of size N × N, respectively. s(xi, xk), r(xi, xk), and are their respective
elements for objects xi and xk. Mathematically, responsibility, r(xi, xk), and availability,
a(xi, xk), are defined as follows [42]:

r(xi, xk)i 6=k = s(xi, xk)− max
k′ ,k′ 6=k

[s(xi, xk′) + a(xi, xk′)] (1)

r(xk, xk) = p− max
k′ ,k′ 6=k

[s(xk, xk′) + a(xk, xk′)] (2)

with s(xi, xk) = −d2
2(xi, xk), for i 6= k and s(xk, xk) = p, where p denotes a global preference

parameter, whose value is generally set as the minimum or median value of the similarity
matrix S, which implicitly controls the number of classes.

In this method, all diagonal elements s(xk, xk) of the similarity matrix S are equal to
the p value instead of zero.

a(xi, xk) = min {0, r(xk, xk) + ∑
i′ , i′ 6={i,k}

max[0, r(xi′ , xk)]} (3)

a(xk, xk) = ∑
k′ ,k′ 6=k

max[0, r(xk′ , xk)] (4)

At each iteration, m, responsibility and availability are estimated as follows:

r̂(xi, xk)m = λ r̂(xi, xk)m−1 + (1− λ) r(xi, xk)m (5)

â(xi, xk)m = λ â(xi, xk)m−1 + (1− λ) a(xi, xk)m (6)

where λ is a damping factor (λ]0, 1[).
At any step of the iterative process, responsibilities and availabilities are combined to

identify the exemplar of each class to be formed. The criterion that identifies object xk as
an exemplar of object xi is:

E∗(xi) = argmax
k

[r̂(xi, xk) + â(xi, xk)] (7)

The standard AP algorithm requires as inputs (see Algorithm 1), the value of the
damping factor, λ, and the choice between two possibilities of the value of the preference
parameter, p, which can be fixed at the minimum or median value of the similarity matrix,
whatever the object. The choice of the values of these two parameters conditions the
partitioning results; therefore, the optimality of the results is not guaranteed.
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Algorithm 1 Standard AP

Input:

- Data table (N objects × B features)
- Parameters to be set by the user:

# Damping factor λ (λ ∈]0,1[)
# Preference parameter value p: fixed to the minimum or median value of the

similarity matrix, S

Preliminary steps:

- Calculation of the similarity matrix S of size N × N
s(xi, xk) = −d2

2(xi, xk)
- Identification of the preference parameter value, p, according to the fixed choice
- Initialization: r(xi, xk) = 0, a(xi, xk) = 0

Procedure:

1. Replacement of the diagonal elements of S by the value of p
2. Calculating all responsibilities given the availabilities according to Equations (1), (2), and (5)
3. Calculating all availabilities given the responsibilities according to Equations (3), (4), and (6)
4. Combining availabilities and responsibilities according to Equation (7) for each object xi and

identifying exemplars xk that maximize [r̂(xi, xk) + â(xi, xk)]
5. if exemplars do not change, proceeding to the next step (6)

else repeat steps (2) to (4) until convergence
end if

6. Merging every object to its nearest exemplar and break

Output: Partition P of K classes and exemplar of each class

2.2. Related Studies

The AP algorithm has large success in numerous application areas by providing
relevant partitioning results, as mentioned in the introduction [42–57], but its use remains
limited to images of small sizes. This algorithm can also be improved to give better
partitioning results by adapting the damping factor and the preference parameter.

In [43–45,48], several extensions of the AP algorithm are proposed, but the preference
parameter, p, and the damping factor, λ, remain not adaptive.

To adapt the preference parameter, a solution is proposed in [47]. Each preference
parameter, pj, is automatically adjusted during the iteration process according to the data
distribution by fixing two thresholds. With this method, the problem of partitioning large-
size images remains. Furthermore, the introduction of these two thresholds makes this
method parametric. In [58], an extension of the AP algorithm is presented in order to reduce
the computing time and the memory space, but the values of the preference parameter and
the damping factor are to be set by the user. Other propositions are described in [56,59,60],
but they are also not adapted to partition large-size data. Furthermore, the damping factor
and the preference parameter are fixed by the user. Finally, in [61,62], the AP algorithm was
combined with other methods to improve the learning task. For these last two methods,
prior knowledge is required for the learning task, the preference parameter is also not
adaptive, and the damping factor must also be chosen by the user.

3. Proposed Hierarchical Unsupervised Partitioning Method

In this section, we first present a new unsupervised partitioning method based on an
Optimization of Affinity Propagation [42], which we name “UP-OAP”. Next, we describe
the main steps of the hierarchical partitioning version using the UP-OAP method which
we call “HUP-OAP”.
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3.1. Unsupervised Partitioning Method by Optimized Affinity Propagation (UP-OAP)

In contrast to the standard AP, in the UP-OAP method, all the parameters and criteria
are calculated in an adaptive way, taking into account the presence of identical objects in
the dataset to be partitioned. Finally, the criterion for identifying the exemplars of each
class is reformulated. The flowchart of the UP-OAP method is shown in Figure 1.
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3.1.1. Preference Parameter and Responsibility-Availability Criteria

In the standard version of AP, the preference parameter, p, is set to the minimum
or median value of the similarity matrix and does not take into account the variations of
the similarity values between the objects of the dataset, X. To associate to each object, xi,
its preference parameter, pi, in the similarity matrix S (row i of S) calculated on X, when
s(xi, xk) = 0, for i = k or i 6= k, this parameter is calculated as follows:

pi =
1
N

N

∑
k = 1

s(xi, xk) (8)

where s(xi, xk) denotes the elements of matrix S and N is the size of X.
To take into account the presence of identical objects in the dataset to be partitioned,

that is, s(xi, xk) = 0, for i 6= k, two modifications are made: (i) assigning the value of the
preference parameter, pk, to all the null elements of the matrix S, in the same way as those
on its diagonal; and (ii) calculating the elements of R and A, as follows:

r(xi, xk)i 6=k = r(xk, xk) = pk − max
k′ ,k′ 6=k

[s(xk, xk′) + a(xk, xk′)] (9)

a(xi, xk)i 6=k = a(xk, xk) = ∑
k′ ,k′ 6=k

max[0, r(xk′ , xk)] (10)

To update R and A in Equations (5) and (6) without a choice of the damping factor, λ,
a smoothing operation is introduced as follows:

r̂(xi, xk)m =
[
r̂(xi, xk)m−3 + r̂(xi, xk)m−2 + r̂(xi, xk)m−1 + r(xi, xk)m

]
/4 (11)

â(xi, xk)m =
[
â(xi, xk)m−3 + â(xi, xk)m−2 + â(xi, xk)m−1 + a(xi, xk)m

]
/4 (12)

This operation provides less biased estimates of R and A matrices, in contrast to those
obtained in [42,63].

3.1.2. Identification Criterion of Exemplars

The decision criterion E∗(see Equation (7)) maximizing (R + A) to identify exemplars
is inappropriate because availability, A, is in some cases incoherent with responsibility, R.
Consequently, some exemplars are not detected, which leads to the aggregation of a truly
existing class to another. To overcome this drawback, only the criterion using responsibility
is used, as justified in the following.



Remote Sens. 2021, 13, 4874 8 of 22

Proposition 1. Let xi, xj ∈ X, be two highly similar objects (s
(
xj, xi

) ∼= 0) and
∀ xq ∈ X, s

(
xj, xi

)
� s

(
xj, xq

)
, where xj and xq are dissimilar (s

(
xj, xq

)
� 0), that is, xj can

only aggregate with xi. Assume that xi and xq are two candidate exemplars for xj, where xj

will be better represented by xi than xq: r
(
xj, xi

)
> r
(
xj, xq

)
.

Moreover, assume that xi was not chosen as an exemplar for any object, i.e., r(xi, xi) +
a(xi, xi) < 0, therefore r

(
xj, xi

)
+ a
(
xj, xi

)
< 0. Then, xj will be aggregated with another

exemplar, xv, v 6= {i, j}.
This proposition shows that when the responsibility between two objects, xj and xi,

is positive and larger than all other responsibilities, but the candidate exemplar, xi, is
not chosen as an exemplar for any object, the availability in absolute value exceeds the
responsibility value and assigns object xj to another class, even if these objects cannot be
aggregated.

Proof of Proposition 1. Let xi, xj, and xq ∈ X. Assume that r
(
xj, xi

)
> 0 and r

(
xj, xq

)
> 0,

with r
(

xj, xi
)
> r
(

xj, xq
)

(i.e., it is better for xj to be represented by xi than xq). Moreover,
assume that xi was not chosen for any object as an exemplar. �

a
(

xj, xi
)
= min{0, r(xi, xi) + ∑

i′ ,i′ 6={j,i}
max[0, r(xi′ , xi)]}

⇒ a
(

xj, xi
)
= min{0, r(xi, xi) + ∑

i′ ,i′ 6=i
max[0, r(xi′ , xi)]−max

[
0, r

(
xj, xi

)]
}

⇒ a
(

xj, xi
)
= min

{
0, r(xi, xi) + a(xi, xi)−max

[
0, r

(
xj, xi

)]}
Because r

(
xj, xi

)
> 0, then : max

[
0, r

(
xj, xi

)]
= r
(
xj, xi

)
,

⇒ a
(
xj, xi

)
= min

{
0, r(xi, xi) + a(xi, xi)− r

(
xj, xi

)}
⇒ a

(
xj, xi

)
≤ r(xi, xi) + a(xi, xi)− r

(
xj, xi

)
⇒ a

(
xj, xi

)
+ r
(
xj, xi

)
≤ r(xi, xi) + a(xi, xi).

Because xi is not chosen as an exemplar, then:

r(xi, xi) + a(xi, xi) < 0⇒ a
(
xj, xi

)
+ r
(
xj, xi

)
< 0.

Because a
(

xj, xi
)
< 0, r

(
xj, xi

)
> 0 and under the assumptions of Proposition 1, we

have shown that when a
(
xj, xi

)
+ r
(
xj, xi

)
< 0, then

∣∣a(xj, xi
)∣∣ > r

(
xj, xi

)
.

The presence of availability in criterion E∗(xi) for the search for exemplars can assign
an exemplar to an object even if they are highly dissimilar. This disturbs the final decision
and does not correctly detect the real present classes.

Under these conditions, the identification of exemplars by maximizing only R con-
tributes to the formation of homogeneous classes representative of the observed data.

This leads to modify the decision criterion, E∗, identifying exemplars by using only
the responsibility, R:

E∗(xi) = argmax
k

[r̂(xi, xk)] (13)

The steps of UP-OAP method are shown in Algorithm 2.
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Algorithm 2 UP-OAP

Input: Data table (N objects × B features)

1. Calculation of the similarity matrix S of size N × N
s(xi, xk) = −d1(xi, xk), where d1 is the distance associated with L1-norm

2. Initialization: r(xi, xk) = 0, a(xi, xk) = 0
3. Replacement of the null elements of S by the value of pi
4. Calculation of all responsibilities given the availabilities according to Equations (1), (9), and

(11)
5. Calculation of all availabilities given the responsibilities according to Equations (3), (10),

and (12)
6. Identification of exemplars, xk, that maximize E∗ = argmax

k
[r̂(xi, xk)] (Equation (13))

7. If exemplars do not change, proceed to the next step, (8)
else repeat steps (4) to (6) until convergence
end if

8. Merging each object to its nearest exemplar and break

Output: Partition P of K classes and exemplar Ij of each class Cj

3.2. Hierarchical Partitioning of Large Size Hyperspectral Images (HUP-OAP)

In this section, we detail the main steps of the hierarchical unsupervised partitioning
method of large-size images based on the UP-OAP algorithm. The two main steps of this
hierarchical HUP-OAP method are respectively the formation of the first and the other
partitions by identifying the most relevant one according to an optimization criterion.
These steps are described below.

3.2.1. First Partition of the Original Image

The application of the UP-OAP method to large-size images, such as hyperspectral
aerial images, requires block partitioning and merging the block partitioning results. This
subsection details the main steps of the formation of the first partition by partitioning the
blocks of the original image by UP-OAP and fusion of the classes of all blocks, as shown in
the flowchart of Figure 2.
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To be able to partition all the pixels of an image, in a simple way, the image is divided
into regular blocks of the same size, without overlapping between the blocks.
Definition 2. The number of pixels exemplars, N0, considered for partitioning is defined by:

N0 =
M1

∑
i=1

M2

∑
j=1

Nij (14)

where Nij is the number of classes obtained by UP-OAP on block Bij, M1 is the number of blocks in
a row, and M2 is the number of blocks in a column.

Proposition 2. If S0 is the similarity matrix of size N0 × N0 calculated on the new dataset X0, of
size N0 formed by the exemplars of classes of blocks, then we have N0 � N.
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This proposition shows that the size of the similarity matrix using the exemplars is
smaller than the one calculated on the whole original image, which makes it possible to
apply UP-OAP on very large-size images.

Algorithm 3 details the steps to obtain this first partition.

3.2.2. Hierarchical Partitioning

In order to give the user the ability to conduct a finer analysis of datasets, a hierarchical
link between the classes of the partitions is created. These partitions are generated by using
the UP-OAP method from exemplars of classes of the first partition, P1. Thus, to obtain
several partitions in a hierarchical way, the UP-OAP method is applied iteratively at each
level, i (i ≥ 2), to exemplars of classes of partition Pi−1 corresponding to level i− 1. This
“exemplars-partitioning” operation is repeated as long as the partitioning results are not
stable. At each level, the number of classes of the partition is automatically estimated.
The optimal partition and the estimated number of classes are given by the partition that
maximizes the Levine and Nazif criterion [64], denoted as LN. This procedure is detailed
in Algorithm 4.

The method developed here for partitioning large size images, named Hierarchical
Unsupervised Partitioning by Optimized Affinity Propagation (HUP-OAP), is composed of
the three algorithms presented before: the generation of the First partition (Algorithm 3) by
using the UP-OAP method (Algorithm 2) and the hierarchical partitioning (Algorithm 4).
The main steps of this method are summarized in Algorithm 5.

Algorithm 3 First partition merging block classes

Input:

- Original image, Im, or Data table to be partitioned
- Maximum block size (Y1 ×Y2 ) allowing application of the UP-OAP method

Procedure:

1. Dividing image Im into NB blocks Bij, with i ∈ {1, 2, . . . , M1} and j ∈ {1, 2, . . . , M2},
where M1 is the number of blocks in a row and M2 is the number of blocks in a column

2. Application of the UP-OAP method on each block
for i =1 to M1 do
for j = 1 to M2 do
Partitioning of block Bij by the UP-OAP method
Let Pij be the obtained partition of block Bij:

Iij =
{

I1
ij, I2

j , . . . , I
Nij

ij

}
, is the set of exemplars and Nij is the number of classes of Pij

Pij =
{

C1
ij, C2

ij, . . . , C
Nij

ij

}
end for
end for

3. Merging classes of blocks Bij by application of the UP-OAP method on the exemplars
of blocks.

4. Formation of the partition P1: merging each object to its exemplar.

Output: Partition P of K classes and exemplar of each class
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Algorithm 4 Hierarchical partitioning

Input: Data table, X1 (N1 exemplars × B features), composed of the exemplars of the first
partition P1 of N1 classes Cj

1. Application of UP-OAP on the dataset, X1
2. Repeat UP-OAP on the new dataset Xi (i ≥ 2)

Xi is composed of the exemplar I j
i−1 of each class Cj of the partition Pi−1, with:

Xi =
{

I1
i−1, I2

i−1, . . . , INi−1
i−1

}
Formation of the partition Pi: merging each object to its exemplar
Until the stability of the partition Pi

3. Choice of the optimal partition that maximizes the LN criterion:
Pf inal = max

i
[LNi]

Output: The hierarchical partitions of the original dataset, the optimal partition, and a set of
exemplars of its classes

Algorithm 5 HUP-OAP

Input: Image or Data table to be partitioned

1. Application of Algorithm 3 to obtain the first partition P1 and its exemplars
2. Formation of the dataset X1 composed of the exemplars of P1
3. Application of Algorithm 4 on the dataset X1

Output: The hierarchical partitions of the image, the optimal partition, and a set of exemplars of
its classes

4. Numerical Assessment

In this section, we present the assessment of the proposed method on two hyperspec-
tral images. The first one is a small synthetic image and the second one is a real aerial large
size image. Through these assessments, the application addressed is the localization and
the identification of marine algae classes.

4.1. Partitioning of a Synthetic Hyperspectral Image

The synthetic hyperspectral image presented in Figure 3 is used to assess the parti-
tioning result performed by the proposed method. The size of this image is limited to
60 × 60 pixels (100 spectral bands), with wavelengths ranging from 404.2 nm to 978.5 nm.
This image was generated from pixel samples of nine GT classes of a real hyperspectral
image acquired by our aerial platform in 2013. The samples of each class are randomly
selected from the GT data accompanying the real acquired hyperspectral image. The nine
classes of this image can be aggregated into four main classes as detailed in Figure 4. The
four classes of the GT are Water, Substrate, Algae, and Mixed class. The water class is com-
posed of three sub-classes (Deep, Shallow, and Turbid), the substrate class is composed of
two sub-classes (Pebble and Sand), and the algae class can be divided into three sub-classes
(Ulva, Enteromorpha, and Fucus).

Figure 5 shows the optimal partitioning result (LN criterion: 0.25) obtained at level 2
by the proposed HUP-OAP method (Algorithm 5), where the estimated number of classes
is ten. For this evaluation, the set of 100 features corresponding to the spectral signature
of each pixel is considered and the image is divided into 16 blocks, where the size of each
block is 15 × 15 pixels, to cover the whole image.
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. (*) Optimal
hierarchical partition.

The confusion matrix of Table 1 highlights the repartition of pixels of the GT classes
in the classes formed by the HUP-OAP method. The quality of the partitioning result is
evaluated according to the correct classification rate (CCR) criterion which is calculated
from the confusion matrix as follows:

CCR =
1
Z
× [

Nc

∑
i=1

Zi]× 100 (15)

where Z is the total number of GT points, Nc is the number of GT classes, and Zi is the
number of the GT points correctly classified in each class i of GT.

The CCR obtained by the proposed method is 96.89%. This rate can be corrected to
99.91% if we consider the homogeneity of class 10 formed only by a subset of pixels of
the GT C6 class as shown in Table 1. The example of the GT C6 class illustrates perfectly
the interest of an unsupervised method. Indeed, this class corresponds to a Green algae,
but the proposed method clearly divides it into two subclasses. This is due to the fact that
during the elaboration of the GT map, the two variants of this class were not specified. The
classes 6 and 10 formed by the unsupervised HUP-OAP method correspond to Green algae
classes, but with variations. For example, according to the depth of the water (the spectrum
of Green algae through the water column), subclasses can be discriminated against. It is
therefore thanks to the unsupervised nature of the proposed method that it is possible to
objectively highlight the wealth of the information provided by hyperspectral imagery in
the near-infrared (NIR) compared to that provided only in the visible domain. The class
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10 formed may reflect, for example, the presence of algae in deeper water than the class
6 formed.

Table 1. Confusion matrix of partitioning result by HUP-OAP.

Classes Formed by HUP-OAP

1
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Table 1. Confusion matrix of partitioning result by HUP-OAP. 

  Classes Formed by HUP-OAP 

  1  2  3  4  5  6  7  8  9  10  
G
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C1  989 0 0 0 0 0 0 0 0 0 
C2  0 158 0 0 0 0 0 0 0 0 
C3  0 0 177 0 0 0 0 0 0 0 
C4  0 0 0 281 0 0 0 0 0 0 
C5  0 0 0 0 786 0 0 0 0 0 
C6  0 0 0 0 0 143 3 0 0 109 
C7  0 0 0 0 0 0 416 0 0 0 
C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 

Number of Blocks (Level, 𝑲) CCR (%) CPU Time (s) Memory Space (Mb) 
Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 

Methods 

Unsupervised  
(Estimated Number of Classes) 

Semi-Supervised  
(Fixed Number of Classes) 

HUP- 
OAP 

Standard AP 
U-FCMO S-FCMO FCM (*) K-means (*) 𝒑𝒎𝒆𝒅 𝒑𝒎𝒊𝒏 

Number of classes 10 13 9 6 9 9 9 
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82 
Memory space (MB) 23.19 296.93 296.93   3.82 3.17  2.99  2.75  

 (*) Average rate of 5 CCR. 

4.2. Partitioning of a Real Large Size Hyperspectral Aerial Image 

   

Number of classes fixed to 9 

5

Remote Sens. 2021, 13, 4874 14 of 21 
 

 

Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 
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C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 
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49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 
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 (*) Average rate of 5 CCR. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 
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8 (15 × 30 pixels) 7.08  41.93 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 

Table 1. Confusion matrix of partitioning result by HUP-OAP. 
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C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 
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Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 
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CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 

Table 1. Confusion matrix of partitioning result by HUP-OAP. 
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C6  0 0 0 0 0 143 3 0 0 109 
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C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 

Number of Blocks (Level, 𝑲) CCR (%) CPU Time (s) Memory Space (Mb) 
Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 
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U-FCMO S-FCMO FCM (*) K-means (*) 𝒑𝒎𝒆𝒅 𝒑𝒎𝒊𝒏 

Number of classes 10 13 9 6 9 9 9 
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82 
Memory space (MB) 23.19 296.93 296.93   3.82 3.17  2.99  2.75  

 (*) Average rate of 5 CCR. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 

Table 1. Confusion matrix of partitioning result by HUP-OAP. 
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C1  989 0 0 0 0 0 0 0 0 0 
C2  0 158 0 0 0 0 0 0 0 0 
C3  0 0 177 0 0 0 0 0 0 0 
C4  0 0 0 281 0 0 0 0 0 0 
C5  0 0 0 0 786 0 0 0 0 0 
C6  0 0 0 0 0 143 3 0 0 109 
C7  0 0 0 0 0 0 416 0 0 0 
C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 

Number of Blocks (Level, 𝑲) CCR (%) CPU Time (s) Memory Space (Mb) 
Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 

Methods 
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Semi-Supervised  
(Fixed Number of Classes) 

HUP- 
OAP 
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U-FCMO S-FCMO FCM (*) K-means (*) 𝒑𝒎𝒆𝒅 𝒑𝒎𝒊𝒏 

Number of classes 10 13 9 6 9 9 9 
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82 
Memory space (MB) 23.19 296.93 296.93   3.82 3.17  2.99  2.75  

 (*) Average rate of 5 CCR. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 

Table 1. Confusion matrix of partitioning result by HUP-OAP. 
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C1  989 0 0 0 0 0 0 0 0 0 
C2  0 158 0 0 0 0 0 0 0 0 
C3  0 0 177 0 0 0 0 0 0 0 
C4  0 0 0 281 0 0 0 0 0 0 
C5  0 0 0 0 786 0 0 0 0 0 
C6  0 0 0 0 0 143 3 0 0 109 
C7  0 0 0 0 0 0 416 0 0 0 
C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 

Number of Blocks (Level, 𝑲) CCR (%) CPU Time (s) Memory Space (Mb) 
Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 
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Semi-Supervised  
(Fixed Number of Classes) 

HUP- 
OAP 
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U-FCMO S-FCMO FCM (*) K-means (*) 𝒑𝒎𝒆𝒅 𝒑𝒎𝒊𝒏 

Number of classes 10 13 9 6 9 9 9 
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82 
Memory space (MB) 23.19 296.93 296.93   3.82 3.17  2.99  2.75  

 (*) Average rate of 5 CCR. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 

Table 1. Confusion matrix of partitioning result by HUP-OAP. 
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C1  989 0 0 0 0 0 0 0 0 0 
C2  0 158 0 0 0 0 0 0 0 0 
C3  0 0 177 0 0 0 0 0 0 0 
C4  0 0 0 281 0 0 0 0 0 0 
C5  0 0 0 0 786 0 0 0 0 0 
C6  0 0 0 0 0 143 3 0 0 109 
C7  0 0 0 0 0 0 416 0 0 0 
C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 

Number of Blocks (Level, 𝑲) CCR (%) CPU Time (s) Memory Space (Mb) 
Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 

Methods 
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Semi-Supervised  
(Fixed Number of Classes) 

HUP- 
OAP 
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U-FCMO S-FCMO FCM (*) K-means (*) 𝒑𝒎𝒆𝒅 𝒑𝒎𝒊𝒏 

Number of classes 10 13 9 6 9 9 9 
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82 
Memory space (MB) 23.19 296.93 296.93   3.82 3.17  2.99  2.75  

 (*) Average rate of 5 CCR. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 

Table 1. Confusion matrix of partitioning result by HUP-OAP. 
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C3  0 0 177 0 0 0 0 0 0 0 
C4  0 0 0 281 0 0 0 0 0 0 
C5  0 0 0 0 786 0 0 0 0 0 
C6  0 0 0 0 0 143 3 0 0 109 
C7  0 0 0 0 0 0 416 0 0 0 
C8  0 0 0 0 0 0 0 493 0 0 
C9  0 0 0 0 0 0 0 0 45 0 

CCR 96.89% (99.91% with homogenous class 10)  

Table 2. HUP-OAP results according to the block size. 

Number of Blocks (Level, 𝑲) CCR (%) CPU Time (s) Memory Space (Mb) 
Full image (60 × 60 pixels) (3, 10) 

96.89 

49.76 302.86  
2 (30 × 60 pixels) 

(2, 10) 

20.2  153.54 
4 (30 × 30 pixels) 10.77  79.23 
8 (15 × 30 pixels) 7.08  41.93 
16 (15 × 15 pixels) 3.73  23.19  

Table 3. Performances of the developed method and the five other compared methods. 
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(Fixed Number of Classes) 

HUP- 
OAP 
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U-FCMO S-FCMO FCM (*) K-means (*) 𝒑𝒎𝒆𝒅 𝒑𝒎𝒊𝒏 

Number of classes 10 13 9 6 9 9 9 
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03 

CCR with homogenous output 
classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85 

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82 
Memory space (MB) 23.19 296.93 296.93   3.82 3.17  2.99  2.75  

 (*) Average rate of 5 CCR. 
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Figure 5. Partitioning results of the synthetic image by unsupervised and semi-supervised methods. 
(*) Optimal hierarchical partition. 
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Table 2 shows that for the image in Figure 3, the partitioning results are the same
regardless of the block size. We can notice that the partitioning result of the image without
division into blocks is identical to that obtained by division into blocks. We can also see
that the smaller the block size, the lower the CPU time and memory space.

Table 2. HUP-OAP results according to the block size.

Number of Blocks (Level, K) CCR (%) CPU Time (s) Memory Space (Mb)

Full image (60 × 60 pixels) (3, 10)

96.89

49.76 302.86
2 (30 × 60 pixels)

(2, 10)

20.2 153.54
4 (30 × 30 pixels) 10.77 79.23
8 (15 × 30 pixels) 7.08 41.93

16 (15 × 15 pixels) 3.73 23.19

In order to evaluate the performances of the developed method compared to others,
we have chosen unsupervised methods (Standard AP and U-FCMO) and methods that
require a minimum of a priori knowledge, i.e., the knowledge of the number of classes
without any training sample (Stable FCMO, FCM, and K-means).

For the semi-supervised methods, the number of classes was set to 9 in order to match
the number of classes of GT image, and for FCM, U-FCMO, and S-FCMO methods, the
fuzzification parameter was fixed at 2. We specify that for the K-means and the FCM
methods, the rates given are the average of five fluctuating results due to their non-stability
with respect to initialization. For methods of the state of the art, the metric used to calculate
the similarity matrix is the Euclidean distance (d2).

Table 3 gives the performances of the three unsupervised and three semi-supervised
methods by computing four criteria: CCR (%), CCR with homogenous output classes (%),
CPU time (s), and Memory space (Mb).
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Table 3. Performances of the developed method and the five other compared methods.

Methods

Unsupervised
(Estimated Number of Classes)

Semi-Supervised
(Fixed Number of Classes)

HUP-OAP
Standard AP

U-FCMO S-FCMO FCM (*) K-Means (*)

pmed pmin

Number of classes 10 13 9 6 9 9 9
CCR (%) 96.89 83.17 94.94 86.14 86.55 83.07 72.03

CCR with homogenous
output classes (%) 99.91 97.83 98.38 86.14 93.71 84.80 86.85

CPU time (s) 3.73 61.88 72.01 35.63 4.46 64.73 52.82
Memory space (MB) 23.19 296.93 296.93 3.82 3.17 2.99 2.75

(*) Average rate of 5 CCR.

These results show that the developed method gives the best results according to
three criteria (CCR, CCR with homogenous output classes, and CPU time), in addition to
its unsupervised advantage. On the other hand, it requires more memory space than the
U-FCMO, S-FCMO [26], FCM, and K-means methods because of the responsibility and
availability matrices, but considerably less than the standard AP method. We can also
note that the semi-supervised FCM and K-means methods give overall the least interesting
results according to the CCR criterion. In addition, their results are not stable from one run
to another, despite the introduction of the number of classes.

4.2. Partitioning of a Real Large Size Hyperspectral Aerial Image

The objective of this experimental database is to identify two main algae species
(Green and Brown) and to provide an accurate mapping of their coverage rate.

We specify that the HUP-OAP method in its design is developed for partitioning
large-size images which can be larger than the example treated here.

The large-size image (630 × 1800 pixels) of Figure 6a used for this assessment was
acquired on 27 May 2013 (part of the French seashore) using the AISA Eagle sensor
integrated in the aerial acquisition platform available at the TSI2M Laboratory. The ground
spatial resolution of this image is 0.6 m, and the number of spectral bands is 100, covering
the V-NIR spectral range from 404.2 nm to 978.5 nm.

To allow the evaluation and validation of the results of the proposed unsupervised
HUP-OAP method, we used a field campaign performed at the same time as the aerial
survey. The field spectra measurements were acquired with a spectroradiometer coupled
with a GPS. After this step, the GT points were validated [21,22], where only ground
points with similar spectral signature to their corresponding pixels in the original aerial
hyperspectral image were selected.

This example proves that it is impossible in practice to elaborate a GT for all the pixels
of a large-size image. For this reason, we limited ourselves to a few survey points in the
field to assess and validate the unsupervised partitioning method developed in this paper.

Figure 6b shows the location of the field measurements of four classes over the original
hyperspectral image. Figure 7 highlights the validated GT spectral signature and average
± standard deviation (in luminance) of these four main classes: Brown algae, Green algae,
Rocks and Pebbles, and Sand. These last two classes can be aggregated into a single
substrate class.

To partition this large size hyperspectral image (630 × 1800 pixels × 100 spectral
bands: the size of the data table is 1,134,000 pixels × 100 features) by the HUP-OAP
method (Algorithm 5), the chosen size of each block is 63 × 90 pixels (200 blocks). Figure 8
shows the optimal partitioning result of the hyperspectral image in Figure 6a maximizing
the LN criterion which is obtained at level 4. The estimated number of classes for this
partition is 5. Table 4 gives for each partitioning level the number of classes estimated by
the HUP-OAP method and the value of the LN optimization criterion.
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Figure 7. Spectral signatures of GT points by class. Line 1: (a) Green algae (Ulva armoricana); (b) Brown algae (Fucus 
serratus); Substrate ((c) Rocks and Pebbles and (d) Sand), and Line 2: corresponding average spectral signature ± standard 
deviation of each class. 

To partition this large size hyperspectral image (630 × 1800 pixels × 100 spectral 
bands: the size of the data table is 1,134,000 pixels × 100 features) by the HUP-OAP method 
(Algorithm 5), the chosen size of each block is 63 × 90 pixels (200 blocks). Figure 8 shows 
the optimal partitioning result of the hyperspectral image in Figure 6a maximizing the 𝐿𝑁 criterion which is obtained at level 4. The estimated number of classes for this partition 
is 5. Table 4 gives for each partitioning level the number of classes estimated by the HUP-
OAP method and the value of the 𝐿𝑁 optimization criterion. 

The GT points of the four classes (Green algae, Brown algae, Rocks and Pebbles, and 
Sand) belong to the four different formed classes. This result highlights a fifth class, whose 
spectral signature corresponds to that of water. We observe in Figure 9 that the average 
spectral signature ± standard deviation of each formed class differs from the others and 
can be used as reference learning samples. The optimal partition of level 4 shows that the 
CCR is 100%, by checking the positions of the 23 points of the four GT classes within the 
formed classes. 

The method thus developed gives, in addition to the optimal partitioning, other par-
titions which can contribute to the fine analysis and interpretation of the data according 
to the users’ needs. It is also important to stress that the several experiments conducted 
show that the partitioning result is independent of the choice of block size. 

Based on the reference spectral signatures, the algae coverage rate given by the opti-
mal partition corresponds to 44.61% (19% for Brown algae and 25.61% for Green algae), 
as shown in Table 5. 

The computing time and memory space for partitioning this image with the proposed 
method (data table of size: 1.134.000 pixels × 100 features) on an Intel(R) Core (TM) i7-7700 
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on a multiprocessor machine. 

In comparison (see Table 7), the developed unsupervised method yields better per-
formances with respect to FCMO [26] in its unsupervised and semi-supervised versions, 
denoted as U-FCMO and S-FCMO respectively, and to the semi-supervised K-means and 
FCM methods. The number of classes for these last three methods has been set to five and 
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respond to the Green algae, Brown algae, Substrate, and Water classes. In this case, the 
GT points belonging to the Rocks and Pebbles and Sand are aggregated in the same class. 

Figure 7. Spectral signatures of GT points by class. Line 1: (a) Green algae (Ulva armoricana); (b) Brown algae
(Fucus serratus); Substrate ((c) Rocks and Pebbles and (d) Sand), and Line 2: corresponding average spectral signature ±
standard deviation of each class.
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Figure 8. Optimal partitioning result obtained by the HUP-OAP method (5 classes localized, LN = 0.17 at level 4).

Table 4. Estimated number of classes by HUP-OAP method per partitioning level and values of
optimization criterion for each partition.

Level Estimated Number of Classes LN Criterion Value

1 1162 0.029
2 181 0.038
3 33 0.07
4 5 0.17
5 2 0.14

The GT points of the four classes (Green algae, Brown algae, Rocks and Pebbles, and
Sand) belong to the four different formed classes. This result highlights a fifth class, whose
spectral signature corresponds to that of water. We observe in Figure 9 that the average
spectral signature ± standard deviation of each formed class differs from the others and
can be used as reference learning samples. The optimal partition of level 4 shows that the
CCR is 100%, by checking the positions of the 23 points of the four GT classes within the
formed classes.

The method thus developed gives, in addition to the optimal partitioning, other
partitions which can contribute to the fine analysis and interpretation of the data according
to the users’ needs. It is also important to stress that the several experiments conducted
show that the partitioning result is independent of the choice of block size.

Based on the reference spectral signatures, the algae coverage rate given by the optimal
partition corresponds to 44.61% (19% for Brown algae and 25.61% for Green algae), as
shown in Table 5.

Table 5. Coverage rate of each class obtained at level 4 by HUP-OAP.

Classes Number of Pixels Coverage Rate (%)

Green algae 290,452 25.61
Brown algae 215,509 19.00

Rocks and Pebbles 180,802 15.94
Sand 170,617 15.05
Water 276,620 24.39
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Figure 9. Average spectral signature ± standard deviation of each class of Figure 8 obtained by HUP-OAP: (a) Green algae; 
(b) Brown algae; (c) Rocks and Pebbles; (d) Sand; (e) Water. 

Table 5. Coverage rate of each class obtained at level 4 by HUP-OAP. 

Classes Number of Pixels Coverage Rate (%) 
Green algae 290452 25.61 
Brown algae 215509 19.00 

Rocks and Pebbles 180802 15.94 
Sand 170617 15.05 
Water 276620 24.39 

Table 6. CPU time and Memory space of partitioned image of Figure 6 by HUP-AOP. 

Number of Blocks CPU Time (s) Memory Space (Mb) 
 200 (63 × 90 pixels) 4 932.67 148850 
5040 (15 × 15 pixels) 982.60  837 

Table 7. Performance of the developed method, HUP-OAP, U-FCMO, S-FCMO, FCM, and K-means. 

Methods Number of Classes CCR (%) 
HUP-OAP 5 (estimated)  100 
U-FCMO 4 (estimated)  86.85 
S-FCMO 5 (fixed)  91.30 
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K-means 5 (fixed)  78.25 (*) 

(*) Average rate of 5 CCR. 
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Figure 9. Average spectral signature ± standard deviation of each class of Figure 8 obtained by HUP-OAP: (a) Green algae;
(b) Brown algae; (c) Rocks and Pebbles; (d) Sand; (e) Water.

The computing time and memory space for partitioning this image with the proposed
method (data table of size: 1.134.000 pixels × 100 features) on an Intel(R) Core (TM) i7-7700
CPU processor with 3.6 GHz and 16 Go memory are given in Table 6 for two different block
sizes. We can see that they decrease with the size of the blocks. The indicative time given
here can be greatly reduced because the block partitioning can be done in parallel, on a
multiprocessor machine.

Table 6. CPU time and Memory space of partitioned image of Figure 6 by HUP-AOP.

Number of Blocks CPU Time (s) Memory Space (Mb)

200 (63 × 90 pixels) 4932.67 148,850

5040 (15 × 15 pixels) 982.60 837

In comparison (see Table 7), the developed unsupervised method yields better per-
formances with respect to FCMO [26] in its unsupervised and semi-supervised versions,
denoted as U-FCMO and S-FCMO respectively, and to the semi-supervised K-means and
FCM methods. The number of classes for these last three methods has been set to five and
the metric used to calculate the similarity matrix is the Euclidean distance (d2). We recall
that the standard AP algorithm cannot be applied to partition this large-size image.

Table 7. Performance of the developed method, HUP-OAP, U-FCMO, S-FCMO, FCM, and K-means.

Methods Number of Classes CCR (%)

HUP-OAP 5 (estimated) 100
U-FCMO 4 (estimated) 86.85
S-FCMO 5 (fixed) 91.30

FCM 5 (fixed) 79.12 (*)
K-means 5 (fixed) 78.25 (*)

(*) Average rate of 5 CCR.

The analysis of the U-FCMO result shows that the number of estimated classes cor-
respond to the Green algae, Brown algae, Substrate, and Water classes. In this case, the
GT points belonging to the Rocks and Pebbles and Sand are aggregated in the same class.
This means that the GT points 48, 49, and 50 of the sand class are misclassified, which
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gives a rate of 86.95%. If we do not take into account the discrimination between these two
Substrate classes, the rate can therefore be 100%. However, this result is less accurate than
that of the HUP-OAP method which gives more detail by splitting the substrate class into
two subclasses. Another interesting piece of information is given by the partition of level
5, where the algae classes are merged into one class and the others (substrates and water)
in another class. Furthermore, the user can use the other partitions of the hierarchy for
more details. In the case of the S-FCMO method, the GT points 19 and 44 of the Rocks and
Pebbles class were aggregated in the Sand class, which gives a CCR of 91.30%.

5. Conclusions

In this paper, we presented a new unsupervised hierarchical partitioning method
adapted to large-size datasets, such as hyperspectral aerial imagery. This method has
eight main advantages that can be objectively listed: (1) no a priori knowledge is required,
especially the non-introduction of training samples, to give the user the possibility to detect
and locate known classes and new classes called “discovery classes”; (2) stability of the
results thanks to its deterministic character; (3) selection of the exemplar of each class
and the assignment of a pixel (or an object) to a class are done in a very elaborate way
according to optimization criteria; (4) very low computing time with block processing, in
contrast to the compared methods; (5) applicable to data or images whatever their size
with the possibility of parallelizing the block partitioning; (6) possibility of elaborating
several hierarchical partitions by indicating the most relevant one according to an objective
criterion; (7) possibility of objectively selecting the samples of the classes in a learning
system in order to be able to detect them afterwards; finally, (8) applicable to several
domains without learning constraints. However, it requires more memory space.

Evaluations of the developed method on synthetic and real hyperspectral images show
that the results are relevant without any intervention of the end-user, and its application to
large-size images gives the same optimal result regardless of the block size used.

The correct classification rates (CCR) obtained by our method are better than those
of semi-supervised methods such as Stable FCM (S-FCMO), K-means, and FCM, despite
its unsupervised character (estimation of the number of classes and classification of pixels
without any a priori knowledge). It also outperforms compared unsupervised methods
such as U-FCMO and the standard AP method.

This true unsupervised method meets the partitioning requirements of large-size
images provided by modern hyperspectral sensors. Moreover, it can be applied to a wide
range of applications to objectively highlight all existing classes in an image [22]. From this
complete partition, the user can exploit all or some of the obtained classes. It also offers the
possibility to use the samples of the classes in learning processes.

In perspective, this method will be assessed and validated on other databases ex-
tended to several application fields in order to prove the relevance and the benefits of
its unsupervised operating mode. An optimization in memory space also remains to
be performed.
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