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a Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France
b CNRS, IMFT, F-31400 Toulouse, France
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a b s t r a c t

Producing nanoparticles in dense suspensions can be achieved in a stirred media mill. However the

mechanisms of fragmentation in the mill are still not fully understood and the process remains

laborious because of the large amount of supplied energy. We focus on the numerical analysis of the

local hydrodynamics in the mill. Based on the flow simulations we determine the parameters which

control the efficiency of the collisions between grinding beads (impact velocities and orientation of the

collisions). The suspension flow (grinding beads, particles, carrying fluid) is modelled with effective

physical properties. We solve directly the continuity and Navier–Stokes equations for the equivalent

fluid assuming that the flow is two-dimensional and steady. Depending on the Reynolds number and

the non-Newtonian behaviour of the fluid, we found that the flow is composed of several toroidal

vortices. The most energetic collisions are driven by the strong shear experienced by the suspension

within the gap between the disc tip and the wall chamber.

1. Introduction

The need of nanoparticles has raised during the past few years.

They enhance for example lifetime of paints, strength of materials,

efficiency of pharmaceuticals or lubricants. Stirred media mills

have proved to be an efficient way to produce nanoparticles,

especially for poorly water soluble compounds (Mende et al.,

2003; Merisko-Liversidge et al., 2003). Practically, the product

must have a long residence time within the grinding chamber or

be processed through several passes in a circulating mode in order

to produce nanosize fragments. Many experiments have revealed

that the particle size achieves a steady distribution during the

fragmentation process. More particularly the mechanism of size

reduction is not well understood and thus the limit fineness or the

minimum achievable size is not well predicted. Limitations of the

process may be of three types: mechanical, physicochemical or

hydrodynamical. Depending on the material strength and struc-

ture, Bernotat and Schönert (1988) showed that the theoretical

limit fineness related to the length of the fracture zone may vary

from (1–10nm) for brittle minerals to ð1210mm) for plastics. In

practice, such a minimum size is difficult to reach without the use

of grinding aids or choosing optimum physicochemical conditions

able to prevent screen attractive interparticle interactions

(Bernhardt et al., 1999; Mende et al., 2003; Garcia et al., 2004;

Stenger et al., 2005a). Thus, physicochemical limitations raise

because of the emergence of fragments below 1mm inducing

interparticle forces leading to the aggregation of fine particles.

The third possible limitation is due to the process itself. Indeed

when grinding beads collide, the squeezed fluid between the two

surfaces of contact slows down their approaching motion due to

lubrication. The dynamics of the fluid drainage depends on the

fluid viscosity and the impact parameters. Therefore most of

the available energy of the impact is dissipated in the fluid. Also,

the fluid, which flows out of the gap, transports the particles

away. Only particles remaining in this active volume may be

crushed. Experiments have shown that the particle size, the solid

concentration of the suspension and the physicochemical inter-

actions between particle surfaces have a great influence during

the size reduction process. However the role of each of these

parameters regarding the impact velocity and the diameter of the

grinding beads is unknown.

This study focuses on the hydrodynamics inside the grinding

chamber. Its main purpose is to estimate collision velocities

between grinding beads, as a function of the operating milling

conditions (stirrer speed, flow rate, rheological properties of the

suspension), without modelling contacts between grinding beads.

Indeed, it is difficult to model accurately the contacts between

grinding beads embedded in a suspension. That is why there are

few Discrete Element Method (DEM) studies on wet grinding

(Gudin et al., 2007; Mori et al., 2004). Yang et al. (2006) proposed a
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comparison of experimental measurements with DEM. In this

approach the milling beads are followed in a Lagrangian frame-

work. The beads experience successive collisions while the effect of

the fluid is simply accounted for by a coefficient of viscous

dissipation. Relating the numerical parameters of DEM simulations

with the physical properties of the beads, the particles and the

carrying fluid is a key issue of those models. Only very recently

(Jayasundara et al., 2009), more advanced model include the

simultaneous simulation of the bead trajectories supplemented by

solving the fluid flow equation. These simulations are much more

time consuming and required a careful modelling of the fluid-

particle interactions. An alternative and very attractive approach

for the prediction of the hydrodynamics is based on fluid flow

studies and have been done for Newtonian fluids. For example,

Blecher et al. (1996) have simulated the flow in the mill and the

trajectories of isolated particles whose diameter varied from

250mm to 1mm. They concluded that beads may follow or not

the flow according to a Motion Index which represents the ratio of

the centrifugal force on the experienced drag force by the beads.

Instead of a two-phase flow model, Lane (1999) preferred a simple

approach based on the simulation of an equivalent fluid with the

constant viscosity 1Pa s. As an indicator, he chose the viscous

energy dissipation rate to estimate the local intensity of grinding.

The present paper investigates numerically the hydrodynamics

within the mill, simulating the suspension flow by direct

numerical solution of the continuity and Navier–Stokes equations

for an equivalent fluid, accounting for the presence of both the

grinding beads and the particles to be milled. The effective

viscosity is modelled by a Krieger–Dougherty law where the

viscosity depends on the particulate concentration. Since most of

dense suspensions exhibit a non-Newtonian behaviour, results of

simulations with shear-thinning or shear-thickening fluids are

also discussed. Finally, collision velocities are estimated from the

flow fields for frontal collisions and collisions induced by shear

stress. Then, the available energy to break particles can be

quantified according to the suspension properties.

2. Modelling approach

2.1. Mill design

Fig. 1 shows the design of an industrial stirred bead mill. For

example, a similar mill was used in the experimental studies

presented in Garcia et al. (2004) or Frances and Anne-Archard

(2004). In this type of mill (Fig. 1), the apparent volume of

grinding is approximately filled up to 80% with monosized

millimetric beads (from 100mm to few mm diameter). This

corresponds to an actual grinding media fraction of 50.4%

according to a random close packing of 63% for the beads. The

remaining of the volume contains a suspension of particles to be

ground. The carrying fluid is often an aqueous solution with

grinding aids. The beads and the suspension are strongly stirred

by a central rotating agitator typically at a speed ranging from

1000 to 6000 rpm. The particle fragmentation results from the

capture of particles inside zones of occurring strong stress when

two grinding beads collide (frontal collisions in straining regions

or oblique collisions induced by a local shear). The stirrer is

usually composed of four perforated discs mounted on a driven

shaft. The suspension flows continuously into the chamber. A

rotating gap at the exit of the mill, used as a separation device,

forces the grinding beads to stay inside the mill. A double jacket,

where cooling water flows, allows the control of the temperature

increase due to the size reduction process. However, in order to

compare the results of our simulations with those previously

obtained by Blecher et al. (1996) the geometrical dimensions of

the mill reported in Table 1 were used. As a first step, the

influence of holes in the discs has been neglected and discs are

fully filled in our simulations. The presence of holes in the discs

would affect moderately the flow field (assuming that the

symmetry related to the disc plane still exists). The holes are

likely to produce local changes in the velocity field but such effect

is expected to be moderate in the absence of axial flow rate. When

an axial flow is superimposed, axial velocity is present across the

holes. Considering a typical value of 1.7 l/min, the mean axial

velocity is about 5mm/s in the gap corresponding to some

percent of the disc tip speed Vy showing that the expected 3D

Fig. 1. Sketch of an industrial stirred media mill.

Table 1

Actual dimensions of the mill and non-dimensional length scales (DR being the

gap between the disc tip and the chamber wall).

Shaft radius Rs 21mm 1:4DR

Disc radius Rd 60mm 4DR

Inner chamber radius Rc 75mm 5DR

Gap between discs Dd 43mm 2:8DR

Disc thickness Td 9mm 0:6DR

Chamber length Lc 380mm 25:3DR
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effect is presumably of minor importance. The most important

length scales are the shaft radius, the disc radius and the inner

chamber radius because they determine the flow in the mill.

2.2. Numerical method

The computations reported in this paper have been carried out

with the numerical code JADIM presented in details in numerous

references (Magnaudet et al., 1995; Legendre and Magnaudet,

1998; Legendre et al., 2003). Its ability to simulate cylindric

Couette flows has been recently presented in Climent et al. (2007).

The code JADIM solves the continuity and the three-dimensional

unsteady Navier–Stokes equations written in velocity-pressure

variables in a general system of orthogonal curvilinear coordinates.

For the present problem, these equations are:

r:v¼ 0 ð1Þ

reff

@v

@t
þv:rv

 !

¼#rpþr:ðmeff ðrvþr
t
vÞÞ ð2Þ

where reff is the effective fluid density, v the fluid velocity, p the

pressure, meff the effective fluid viscosity. We introduce the disc

tip speed as Vy ¼ vyðr¼ RdÞ. The spatial discretization is based on a

staggered mesh and the equations are integrated in space using a

finite volume method with second-order accuracy, all spatial

derivates being approximated using second-order schemes. The

temporal evolution is achieved through a Runge-Kutta-Crank-

Nicholson algorithm, which is second-order accurate in time.

Finally, incompressibility is satisfied at the end of each time step

by solving a Poisson equation for an auxiliary potential. The

axisymmetric grid is Cartesian and is made of 118$ 62 grid

points along the radial and axial directions, respectively. We have

done some preliminary tests to verify that the results are

independent of the number of nodes used to discretize the

domain.

Accounting for symmetries in the mill, the flow can be

simulated in the plane represented in Fig. 2 in axisymmetric

framework of reference: r is the radial coordinate, z the axial

coordinate and y the tangential coordinate. In actual operations,

the mill is horizontal. But, gravity has no effect in our simulations

while the equivalent fluid is assumed to be homogeneous. The gap

between the disc tip and the chamber wall is called DR and is

selected to scale all the length scales of the geometry. This

simulation domain illustrated in Fig. 2 is bounded by the mill wall

on the right ðr=DR¼ 5Þ, the shaft wall on the left ðr=DR¼ 1:4Þ and

two planes of symmetry (on the top z=DR¼ 1:73, at the bottom

z=DR¼ 0). The grid is refined near the wall in order to capture the

velocity gradients for the largest considered Reynolds number.

Typically, the grid spacing is 8:7$ 10#3oDz=DRo4$ 10#2 and

9:3$ 10#3oDr=DRo3:9$ 10#2 along the radial and axial

directions, respectively. Distinct boundary conditions are

applied on the frontiers of the computational domain: no-slip

conditions are imposed on the walls and symmetry conditions are

imposed on the others boundaries. The wall condition consists in

imposing the velocity of rotation of the inner wall while zero

velocity is imposed on the outer non-rotating cylinder. A

tangential velocity was imposed on the stirrer wall to reproduce

the rotation motion. Typically, a rotation frequency of 955 rpm

corresponds to disc tip speed Vy ¼ 6m=s. The hydrodynamics

within the mill has been simulated in a dimensionless form and

the tip speed of 6m=s is only given as a possible reference to a

practical case. The same value of the Reynolds numbers may be

achieved with doubling the tip speed and the viscosity. Higher

viscosity in the mill are likely to occur during the process (size

reduction enhances adhesion forces) or with operating conditions

corresponding to larger mass loading of the particle suspension.

Simulations are initialized by a composite solution based on a

solid body rotation ðrrRdÞ and a pure Couette flow ðrZRdÞ. We

are only interested in the steady flow patterns as milling

operations are generally operated out over long times. To study

distinct Reynolds number configurations, the fluid viscosity is

Fig. 2. Sketch of the simulation domain and its boundary conditions.
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gradually decreased. For a given viscosity, the simulation is

initialized by a previous solution and the flow evolves during a

transient time before converging to a new steady state. In view of

this study, additional tests have been performed. Two basic flows

of non-Newtonian fluids have been computed for conditions

closed to the present study: a non-Newtonian Poiseuille flow and

a non-Newtonian Couette flow. For the Poiseuille flow the

numerical results were compared to the exact analytic solution

and a very good agreement was achieved for both Newtonian and

non-Newtonian fluids. The maximum relative errors

ðunumerical#uanalyticalÞ=umax are 5:5$ 10#4 and 0.002, respectively.

Similar tests have been performed for the Couette Flow. The radial

profile of the azimuthal velocity vy is reported in Fig. 3 for a

Newtonian fluid and for a non-Newtonian fluid (m¼ 0:1 and

n¼ 0:8). See definitions of m and n in the next section. The

simulations have been carried out under conditions similar to the

ones which were used for the mill simulations. The dimension of

the outer non-rotating cylinder is defined by Rc=DR¼ 5 (radius

75mm) while the inner rotating cylinder radius is Rs=DR¼ 1:4

(radius 21mm). Here DR¼ Rc#Rs is the gap between the two

cylinders. The Reynolds number based on the inner cylinder

diameter is Re¼ 73 corresponding to the rotation frequency o of

100 rad s#1 or 15.9 rounds per second. At this moderate Reynolds

number no instability of flow is expected. The numerical

simulations are compared with the analytic velocity profile:

vyðrÞ ¼o
R
2=n
s

R
2=n
s #R

2=n
c

r 1#
Rc

r

 !2=n
 !

ð3Þ

where n is the fluid index defined by Eq. (6). A very good

agreement is again achieved between the numerical simulations

and the Eq. (3) as shown by Fig. 3. The maximum relative errors

ðvnumerical
y #vanalytical

y
Þ=Vy are 4$ 10#5 and 0.02 for Newtonian and

non-Newtonian fluids, respectively.

2.3. Suspension modelling

The actual flowing phase in a stirred media mill is complex

because it is a polydisperse suspension composed of the carrying

fluid, the particles to be crushed and the grinding beads. The fluid

phase carries grinding beads but a strong dissipation of energy

occurs through lubrication effects during bead collision and

particle breakage. Feed particles become smaller and smaller

and modify the suspension viscosity which controls the collision

intensities between beads. Nevertheless the size ratio between

grinding beads and particles is always high. It ranges from 10 or

more to roughly 1000. The particle suspension can therefore be

considered as a homogeneous media for the grinding beads.

Another quantity of interest to characterize the flowing phase

is the mean distance between grinding beads d. It is estimated by

the relation (Shook and Rocco, 1991):

d¼
fm

f

 !1=3

#1

" #

dGM ð4Þ

where f and fm are, respectively, the volume fraction and the

random close packing fraction (63%) and dGM is the diameter of

the grinding beads. For the usual volume fraction f¼ 50:4%, this

leads to d=dGM % 8%. d can be regarded as half the free average

spacing for a grinding bead. No experimental evidences are

currently available about the spatial grinding media distribution

in the mill. Nevertheless this low value of d is not likely to induce

strong inhomogeneities.

Consequently, we assume that the dispersed phase composed

of the grinding beads and the particles are uniformly distributed

throughout the mill. This means that the centrifugal segregation

due the fluid rotation is neglected. Such effect may occur for

suspensions of heavy particles. However, the volume fraction of

the solid phase (beads and particles) is very high (80%) and

significant variations of the solid fraction are only expected close

to the shaft where the collision intensity is weak (see the

following results). Our assumption concerning the radial segrega-

tion is confirmed by the recent simulations coupling the DEM

approach for the beads with the solution of the Navier–Stokes

equations for the equivalent fluid (fluid+particles) performed by

Jayasundara et al. (2009). Despite a lower volume fraction for the

solid phase (70%), this study showed a significant reduction of

centrifugal segregation when the fluid viscosity is increased. For

the viscosity range considered in our study, the segregation has

almost disappeared. Concerning the particle motion inside the

secondary flows, the discrepancy between the fluid streamlines

and the bead trajectories can be characterized by a Stokes number

St¼ tGM=tf where tGM is the viscous relaxation time of a bead

ðtGM ¼ ð1=18ÞðrGMþrsup=2Þd2GM=msupÞ and tf a time scale of the

fluid flow that can be estimated by DR=U (U is characteristic of the

strength of secondary flows: 10–25% of the tangential velocity of

the discs). St varies between 0.1 and 1 in the range of operating

conditions investigated here. This moderate value of the Stokes

number indicates that the beads are likely to follow the fluid

streamlines in the secondary flows. So an equivalent one-fluid

model can reasonably be used to avoid the complexity of a

multiphase flow approach without losing the global specific

characteristics of the fluid. Lane (1999) proposed similar numer-

ical simulations for a viscosity of 1 Pa s. In our simulations, the

viscosity of the equivalent fluid is estimated from experimental

data of particle suspension and using the Krieger–Dougherty

model to evaluate the overall viscosity, including the effect of the

grinding beads and particle suspension:

meff ¼ msusp 1#
f

fm

 !#5=2fm

ð5Þ

where msusp is the viscosity of the particle suspension considered

as the carrying fluid for the grinding beads. Values of msusp can

be extracted from a previous experimental study (Frances and

Anne-Archard, 2004) in which the rheological behaviour of a

ground suspension of calcium carbonate CaCO3 ð2700kg=m3Þ was

characterized. For sufficient grinding aids concentration and for

volumetric concentration varying 8–27% (mass fraction between

20% and 50% corresponding to a bulk density of the suspension

rsusp varying from 1340 to 1850kg=m3), the behaviour reveals to

be virtually Newtonian to slightly shear-thinning. Rheological

properties change rapidly when the additives concentration is

Fig. 3. Radial profile of the tangential velocity in a cylindric Couette flow for

Newtonian and non-Newtonian fluids at Re¼ 73 (n¼ 1 and n¼ 0:8). Solid line:

analytical solution (Eq. 3); &: numerical simulations.
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decreasing and one can observe highly shear-thinning behaviour

with low consistency index or even a viscoplastic behaviour. We

restricted our study to usual behaviour encountered in grinding

processes, that is to say with usual additives concentrations.

While the size of the particles of the suspension is reducing due to

the grinding process, a significant increase of the viscosity is more

likely to occur (resulting in a decrease of the Reynolds number)

supplemented by a non-Newtonian behaviour. This evolution

occurs on time scales much longer than the time required to reach

hydrodynamic steady conditions. Therefore our simulations

correspond to different stages of the size reducing process.

Considering the density of each material (particles and grinding

media), the kinematic viscosity neff ¼ meff =reff ranges from 10#3 to

3:3$ 10#4 m2=s which is consistent with experimental observa-

tions.

Shear-thinning behaviour observed in the experiments is fitted

using a power-law model for the equivalent fluid:

t¼m _gn ð6Þ

where t and _g are, respectively, the shear stress and the shear

rate, m the consistency and n the fluid index. _g is calculated from

the components of the strain tensor S:

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 trðS2Þ
q

ð7Þ

where the strain tensor S is defined by:

S¼ 1=2ðrvþrtvÞ ð8Þ

As shear-thickening behaviour may also be observed in concen-

trated suspensions under high shear rate (Barnes et al., 1989),

numerical simulations with values of n-index greater than 1 will

be also be discussed.

2.4. Reynolds number definition

The flow regime is characterized by the Reynolds number.

Depending on hydrodynamics features under interest, different

Reynolds number definitions can be selected. The very widely

used definition for mixing systems is based on the rotation

frequency N and on the agitator diameter D (Nagata, 1975). In

Newtonian cases, it expression is:

Re¼ reff

ND2

meff

ð9Þ

where reff is the effective suspension density and meff the effective

suspension viscosity. Considering non-Newtonian fluids, a gen-

eralized Reynolds number is defined in order to account for the

variations of the fluid viscosity through the fluid index n and the

consistency index m:

Reg ¼ K1#n
s reff

N2#nD2

m
ð10Þ

This extension of the Reynolds number is based on power

consumption considerations using the broadly accepted

Metzner-Otto concept (Chhabra, 2003). This postulates that the

effective shear rate of the flow is proportional to the rotation

frequency through a coefficient Ks. It was shown in the

experiments that Ks is only a function of the impeller-vessel

configuration, at least as long as the index behaviour n of the fluid

is not too small. Although Ks values are proposed in literature for

various mixing systems, there is no systematic study available for

mills. So we use the analytic expression obtained for Taylor-

Couette flow in concentric cylinders with a radius ratio s equal to

Rd=Rc:

KS ¼ 4pnn=ð1#nÞ ð1#s
2=nÞn

1#s2

 !1=ð1#nÞ

ð11Þ

3. Spatial structure of the flow field

We used direct numerical simulations of the continuity and

Navier–Stokes equations to analyse the flow behaviour in the mill.

Depending on the nature of surface interactions between particles

and between the grinding beads, the suspension may behave as a

Newtonian or a non-Newtonian fluid. We started to study

the evolution of the flow patterns within the chamber for a

Newtonian fluid as the reference case. As the Reynolds number is

the only non-dimensional parameter governing the flow dy-

namics, the disc rotation rate or the viscosity may be equivalently

varied for a fixed geometry. The rotation frequency has been

maintained constant throughout the study, imposing a constant

tangential velocity of the disc Vy and we varied the viscosity of the

suspension to study different Reynolds numbers. The effect of the

overall non-Newtonian hydrodynamics has been investigated

assuming a power law rheological behaviour (shear-thinning or

shear-thickening). Velocity fields and contour levels of energy

dissipation are presented in the visualization plane ðr; zÞ. The

correspondence of the numerical parameters with the physical

operating conditions has been summarized in Table 2.

3.1. Hydrodynamics in the newtonian cases

3.1.1. Flow patterns

At very low Reynolds number, the flow is purely azimuthal.

Beyond a critical value of the Reynolds number, secondary flows

in the axial–radial plane ðr; zÞ appear. Secondary flows in the ðr; zÞ

plane and viscous energy dissipation rate are presented in Figs. 4,

5 and 6 for Reynolds number equal to 229, 458 and 654,

respectively. The fluid rotation between the disc tip and

the fixed wall of the mill generates an instability driven by the

centrifugal force. This configuration is strictly similar to the

Couette-Taylor instability occurring in the gap between two

cylinders (the inner cylinder is rotating while the outer one stays

at rest). As the instability sets in, a single toroidal vortex develops

in the mill (see the streamlines plotted in Fig. 4a).

Further increase of the Reynolds number modifies drastically

the flow structure (Figs. 5a and 6a). Two contra-rotating vortices

fill the whole mill chamber. One strong vortex is located in the

gap between the rotating disc tip and the fixed outer cylinder.

The largest vortex (less energetic) fills the remaining area of the

simulated domain. When the Reynolds number increases from

458 to 654, the small vortex expands. The strength of these

secondary flows is an increasing function of the Reynolds number.

The maximum intensity of the flow in the ðr; zÞ plane is ranging

between 20% and 25% of the tangential velocity of the disc tip. It is

well known that further increase of the Reynolds number in the

Taylor-Couette apparatus leads to an unsteady behaviour of the

vortices (azimuthal wavy oscillation) but we did not observe this

transition in our configuration. This second transition of the flow

is unlikely to occur in the context of stirred media milling because

Table 2

Characteristics of the fluids.

Fluid type Rheological properties Re

Newtonian neff ¼ 1$ 10#3 m2 s#1 229

neff ¼ 5$ 10#4 m2 s#1 458

neff ¼ 3;5$ 10#4 m2 s#1 654

Shear-thinning m=reff ¼ 1$ 10#3 m2 sn#2 and n¼ 0:9 422

m=reff ¼ 5$ 10#4 m2 sn-2 and n¼ 0:9 845

Shear-thickening m=reff ¼ 3;5$ 10#4 m2 sn#2 and n¼ 1:2 67
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the effective suspension viscosity is generally high and limits the

Reynolds number to moderate values.

Similar stationary toroidal vortices have been already observed

by several authors. Theuerkauf and Schwedes (1999) presented a

comparison between simulations and experiments where the

presence of secondary flows was clearly identified. These

challenging measurements were made possible by using an

equivalent transparent fluid. The numerical study of the turbulent

flow was done by means of a k#e model. Their results were

extended to a Reynolds number of 16 000 in Theuerkauf and

Schwedes (2000). But in all their results, a single vortex was

observed in the ðr; zÞ plane. Among papers devoted to the study of

the hydrodynamics in the mill, only the study of Lane (1999)

(simulations with open holes in the discs) has revealed the

presence of several vortices as we observe for Reynolds numbers

458 and 654 (Figs. 5a and 6a). As mentioned by Theuerkauf and

Schwedes (1999), the flow is controlled by the fluid behaviour

between two discs. The mill geometries which slightly differ

(DR=Rc ¼ 0:33 and Dd=Rc ¼ 0:8 in their case) may explain the

discrepancies between both results. Nevertheless, they found only

one vortex in their simulations whatever the Reynolds number.

This is more likely due to the high effective viscosity induced by

the k#e model. The effective viscosity in a Reynolds averaged

model corresponds to the contributions of the molecular viscosity

(around 4:8$ 10#4 m2 s#1 in their case) and the turbulent

viscosity (probably one or two orders of magnitude larger than

the physical viscosity). As a consequence their flow pattern for a

Reynolds number of 16000 is similar to the flow pattern we

obtained for a Reynolds number of 229.

Although the secondary toroidal flows are not very energetic,

they play a major role in the grinding process. If the flow was

purely azimuthal whatever the Reynolds number, the motion of

the suspension would remain on closed pathlines around the

shaft. The secondary flows force the suspension to follow complex

trajectories all the way through the entire volume of the grinding

chamber as mentioned by Blecher et al. (1996). The milling

Fig. 4. Streamlines on the left (a) and contour levels of the non-dimensional viscous energy dissipation rate on the right (b) for a Newtonian fluid, Re¼ 229.

Fig. 5. Streamlines on the left (a) and contour levels of the non-dimensional viscous energy dissipation rate on the right (b) for a Newtonian fluid, Re¼ 458.

Fig. 6. Streamlines on the left (a) and contour levels of the non-dimensional viscous energy dissipation rate on the right (b) for a Newtonian fluid, Re¼ 654.



efficiency is enhanced by applying a net axial flow through the

mill. It is known that the axial flow rate decreases the mean

residence time of particles in the mill according to Weller et al.

(2000). Simulations were carried out to study the effects of a

mean axial flow on the hydrodynamics. For that purpose the flow

rate was varied from 0 to 100 l/h (1.7 l/min) which is a typical

operating condition for laboratory stirred media mills. Those

simulations were performed out with a refined mesh and by

imposing periodic boundary conditions between z¼ z1=2 and

z¼#z1=2 supplemented by an appropriate mean pressure gradi-

ent in the axial direction (see Fig. 2). No noticeable modification of

the flow structure and velocity profiles were observed. It can be

explained by the very lowmean axial velocity even in the smallest

sections of the mill corresponding to the gap between the disc tip

and the chamber wall. The mean axial velocity corresponding to

100 L=h is less than 0.1% of Vy. Therefore, only results with zero

axial flow will be discussed in the remaining of the paper. The

enhanced efficiency observed experimentally with this axial mean

flow is probably related to the mixing of the suspension,

especially close to the exit of the mill.

In Fig. 7, we compare the radial profiles of the non-

dimensional tangential velocity vy=Vy in the vicinity of the disc

ðz¼ z0Þ and along the symmetry plane between two discs

ðz¼ z1=2Þ, see the sketch in Fig. 2 for the definition of z0 and z1=2.

The slope of the velocity distribution is modified when the ratio

between inertia and viscous effects is increasing. Steep gradients

of velocity are expected in the regions close to rotating walls as

the boundary layer is becoming thinner. This effect is particularly

obvious within the gap between the disc r=DR¼ 4 and the fixed

wall r=DR¼ 5. When the Reynolds number increases from 229 to

654, the shape of the profile is conserved but the radial gradient of

the tangential velocity is steeper in the vicinity of the disc

whatever the plane. In the plane z¼ z1=2 when the Reynolds

number is increased from Re¼ 458 to Re¼ 654, we observe the

progressive motion of the fluid between the discs toward a region

experiencing a solid body rotation flow close to the shaft

(between r=DR¼ 1:4 and r=DR¼ 2). From r=DR¼ 2 to r=DR¼ 4

the tangential velocity is approximately constant but higher for

Re¼ 654 than for Re¼ 458 and decreases toward zero on the fixed

wall (r=DR¼ 5). Based on these observations, it is obvious that the

radial gradient of the tangential velocity in the gap between the

disc tip and the fixed chamber wall is very strong and is likely to

be the dominant contribution to the viscous energy dissipation.

3.1.2. Spatial distribution of the energy dissipation

The local rate of energy dissipation by viscous friction is a

spatial indicator of the comminution efficiency (Blecher and

Schwedes, 1996). Energy supplied to the stirrer is dissipated in

regions of high shear forcing to collisions between grinding beads

and particles. In these regions of the flow, collisions are expected

to be very energetic and consequently the comminution to be the

most efficient. In cylindrical coordinates the energy dissipation

rate P¼ 2mðS : SÞ is written as follows:

P
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In a pure shear flow, P is related to the shear rate by the relation

P¼ meff
_g2. Note that for generalized Newtonian fluids (see definition

in Eq. (6) Eq. (12) is still valid as long as the viscosity meff is evaluated

from the local shear rate. The energy dissipation rate is scaled by

Pref ¼ meff
_gref

2 where _gref ¼ Vy=DR and we define P' ¼ P=Pref . The

Figs. 4b, 5b and 6b show the contours of P' while the Reynolds

number is increased. For the lower Reynolds number, the region of

high dissipation rate is confined close to the disc where the gradient

of the tangential velocity in the z-direction ð@Vy=@zÞ dominates the

other components of the strain rate tensor. When the Reynolds

number is increased, the enhancement of the second toroidal vortex

is accompanied by a strong gradient in the r-direction ð@Vy=@rÞ

between the disc and the fixed outer wall of the mill. This

contribution becomes dominant by Re¼ 654. In Figs. 4b, 5b and 6b

isolines of P' are closely related to contour levels of the shear rate.

Typically, for the Newtonian fluids considered in our study, a shear

rate of 1000 s#1 corresponds to a P' ¼ 6:25. High energy dissipation

rates (corresponding to P'41) occur in two narrow areas: near the

disc surface and along the chamber wall. Both regions become thinner

as the Reynolds number increases. This contraction of high energy

dissipation areas was first highlighted by Blecher et al. (1996).

Together with this reduction of areas, themaximum of viscous energy

dissipation strongly increases between Re¼ 229 and Re¼ 458

(P'max ¼ 35 for Re¼ 229 and P'max ¼ 80 for Re¼ 458), but decreases

at Re¼ 654 ðP'max ¼ 28Þ. Finally, we observe that the area close to the

chamber wall moves toward the symmetry axis while the area near

the disc moves toward the disc tip. This has to be related to the

modification of the flow structure with increasing Re.

3.2. Hydrodynamics of non-Newtonian fluids

During the grinding process, comminution of feed particles

may lead to dramatic modifications of the suspension. If a size

reduction occurs, surface interactions between particles or

between particles and beads will strongly evolve. Fluid behaviour

becomes more and more shear-thinning, and as volume fractions

are high, shear-thickening behaviour may also appears. Then it

was of particular interest to analyse effects of such non-New-

tonian characteristics. The consistency m and the fluid index n

characterize the non-Newtonian behaviour of the fluid (cf. Eq. (6).

When no1 the fluid has a shear-thinning behaviour and the

effective viscosity meff ¼m _gn#1 is a decreasing function of the

shear rate. If n41 the fluid will be shear-thickening.

3.2.1. Shear-thinning fluid

We selected the value n¼ 0:9 and varied the pseudo-consis-

tency from m=reff ¼ 1$ 10#3 m2 sn#2 to m=reff ¼ 5$ 10#4 m2 sn#2

corresponding to the Figs. 8 and 9 where the generalized Reynolds

number is, respectively, equal to 422 and 845.

Even though the fluid index has been slightly varied from the

Newtonian behaviour, the flow patterns are significantly modified

Fig. 7. Radial profile of the tangential velocity at the surface of the disc (z¼ z0) and

at the symmetry axis between two discs (z¼ z1=2) for Re¼ 654 (continuous line),

Re¼ 458 (dashed line) and Re¼ 229 (dotted line).
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especially the secondary flows. Indeed, the configuration corre-

sponding to Re¼ 422 leading to streamlines in Fig. 8 is similar to

the Newtonian flow pattern observed for neff ¼ 1$ 10#3 m2 s#1.

The strength of the secondary flow ranges within the same order

of the magnitude (20–25% of the maximum azimuthal velocity).

But, the simulations corresponding to m=reff ¼ 5$ 10#4 m2 sn#2

and n¼ 0:9 lead to the formation of a third vortex in the ðr; zÞ

plane. This new vortex has a very low rotation intensity typically

less than 2% of the reference velocity scale. This evolution may be

related to an increase of the generalized Reynolds number. The

local reduction of the effective viscosity in regions of high shear

rate induces a centrifugal forcing. As inertia is gradually increased,

secondary flows are able to develop.

As shown in Figs. 4b and 8b, the areas of high viscous dissipation

rate (from P' ¼ 1 to its maximum value) have shrinked when the

Newtonian fluid of effective viscosity neff ¼ 1$ 10#3 m2 s#1 has

been substituted by a shear-thinning fluid (m=reff ¼ 1$ 10#3

m2 sn#2 and n¼ 0:9). In the same time, P'max has increased: for

Re¼ 422, P'max ¼ 56 instead of 35 for the newtonian case. Thus, the

areas of high energy dissipation are more spread. Similarly, areas of

high viscous dissipation rate have shrinked when the Newtonian

fluid of effective viscosity neff ¼ 5$ 10#4 m2 s#1 has been substi-

tuted by a shear-thinning fluid described by m=reff ¼ 5$

10#4 m2 sn#2 and n¼ 0:9. But in this case, P'max decreases

(P'max ¼ 22 instead of 80 for the corresponding Newtonian case).

Again, we tested the influence of a net axial flow rate of 85 L/h

on the structure and intensity of secondary flows and maximal

viscous dissipation rate contours. We found that the modifica-

tions were only minor.

3.2.2. Shear-thickening fluid

This behaviour is encountered in very high concentrated

suspensions experiencing high shear rates (Barnes, 1989). The

results of the simulation (Fig. 10) with a shear-thickening fluid

(consistency m=reff ¼ 1$ 10#3 m2 sn#2 and n¼ 1:2) are compared

to the Newtonian behaviour corresponding to a viscosity

neff ¼ 1$ 10#3 (Fig. 4). The shape of the streamlines are almost

similar but the maximum velocity in the ðr; zÞ plane is twice lower.

Again, this can be interpreted in terms of the reduction of the

generalized Reynolds number (67 for the shear-thickening fluid

and 229 for the Newtonian fluid). Consequently, the regions of

high shear rate are drastically reduced to a small area along the

disc tip. Any influence of the flow rate is noticeable.

4. Determination of collision characteristics

Based on simulations of the global dynamics of the effective

fluid in the mill chamber, we propose an analysis of the local flow

experienced by grinding beads. We aim at providing a quantita-

tive prediction of collisions intensity of the beads which is the

energy available for comminution of the feed particles. Indeed,

the purpose of this section is to estimate the kinetic energy, the

geometric configuration and the range of non-dimensional

parameters characterizing the impact of two neighbouring beads

embedded in the suspension.

4.1. Different types of collision

The comminution of the feed particles in a stirred media mill

may be inferred to two distinct mechanical phenomena. The

particles are either squeezed between two colliding grinding

beads or between a bead and a wall. Centrifugal force of the

suspension is related to the tangential mean flow induced by

the high speed rotating shaft and discs. Particles and beads in the

vicinity of the outer wall of the mill chamber (r=DR¼ 5) are

experiencing a high pressure. This contribution to the process can

Fig. 8. Streamlines on the left (a) and contour levels of the non-dimensional viscous energy dissipation rate on the right (b) for a shear-thinning fluid, Re¼ 422.

Fig. 9. Streamlines on the left ( a) and contour levels of the non-dimensional viscous energy dissipation rate on the right (b) for a shear-thinning fluid, Re¼ 845.
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be evaluated by analysing the magnitude of the pressure at the

wall for the equivalent fluid. However, Kwade (1999) found that

this particular mechanism was not dominant. So we will consider

only the second mechanism which is induced by bead-bead

collisions. Two types of collision between grinding beads can be

distinguished. The first configuration of impact is called frontal

collision: the relative velocity of the beads and the beads centre

line are aligned. This configuration is encountered when the beads

are moving along the same streamline but with different

velocities (Fig. 11a). In all the other cases, collisions can be

called oblique collisions because induced by local shearing of the

flow. The beads are moving along distinct parallel streamlines

(Fig. 11b and c). In the ðr; zÞ plane, the presence of secondary flows

is forcing oblique and frontal collisions. The intensity and the

orientation of the impact are related to the local flow properties.

These collisions may occur simultaneously within the mill in

the ðr; zÞ plane and in the ðr;yÞ plane. Due to the fluid rotation in

the azimuthal direction only oblique collisions are expected in the

ðr; yÞ plane (Fig. 11c).

4.2. Impact parameters

For determining the physical characteristics of beads impact

within the mill, we need to estimate the relative velocity when

the contact occurs. Based on the simulations of the effective fluid

flow which models the overall dynamics of the suspension, the

prediction of collision properties is related to the rate of

deformation of the fluid flow. Indeed, any flow field can be split

into two distinct contributions: strain deformation and solid body

rotation, respectively, symmetric and antisymmetric parts of the

velocity gradient tensorrv. Obviously, pure rotation of the fluid is

unable to provoke any bead collisions. Therefore, the relative

velocity is only a consequence of a local rate of deformation. This

velocity gradient may be multiplied by the typical distance

corresponding to the contact of two beads, i.e the bead diameter.

A bead diameter dGM ¼DR=37:5 has been chosen. Considering

dimensions reported in Table 1, it corresponds to dGM ¼ 400mm. It

means that collision velocities between grinding beads in the mill

are supposed to be modelled by relative velocities between

spheres moving under the flow of the equivalent fluid. The

magnitude of the velocity gradients can be obtained using

the flow fields of the previous section and by calculating the

eigenvalues of the strain rate tensor S (defined by Eq. (8). The

eigenvalues of the three-dimensional deformation rate tensor

multiplied by the bead diameter give a measure of the local

relative velocities. The local rotation of the flow is given by the

rotation rate tensor O defined by

O¼
1

2
ðrv#rt

vÞ ð13Þ

The type of collisions, frontal or oblique is related to the flow

kinematics (S and O). Indeed, if the magnitudes of the deforma-

tion and rotation rate are similar it means that the collisions will

be shear-induced. Shear flow is a particular combination of

rotation and deformation rates with equal magnitude. On the

contrary, if the magnitude of the eigenvalues of the deformation

tensor dominate, collisions will be frontal.

The physics of liquid-solid suspensions is complex and the

collision of solid particles embedded in a viscous fluids is a central

mechanism in the comminution process. Particles are trapped in the

active volume between two grinding beads experiencing an impact.

The available kinetic energy for breaking fine particles is depending

on the hydrodynamic regime of the collision. This can be mainly

characterized by two non-dimensional numbers, namely the

collisional Reynolds Recoll and Stokes Stcoll numbers. The Reynolds

Fig. 11. Sketches of a frontal collision between two beads following the same streamline (a), an oblique collision between two beads following different streamlines in the

ðr; zÞ plane (b) and an oblique collision between two beads having circular trajectories in the (r,y) plane (c).

Fig. 10. Streamlines on the left (a) and contour levels of the viscous energy dissipation rate on the right (b) for a shear-thickening fluid, Re¼ 67.
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number is based on the viscosity of the particle suspension msusp, the

density of the particle suspension rsusp, the relative velocity DU

between two grinding beads separated by the bead diameter dGM .

Recoll ¼
dGMrsuspDU

msusp

ð14Þ

This will help to identify if the relative motion between the spheres

is dominated by viscous or fluid inertia effects. The Stokes number

compares two time scales: the viscous relaxation time of the bead

and the characteristic time based on the collision velocity RGM=DU.

The viscous relaxation time can be approximated using Stokes drag

by mGM=3pmsuspdGM where mGM is the mass of a grinding bead.

Therefore, after rearrangement, the Stokes number is:

Stcoll ¼
dGMrGMDU

9msusp

ð15Þ

In general, the value of the impact Stokes number may vary from

few hundreds in gas-solid suspension leading to elastic collisions

(often termed as dry collisions) to less than unity for collisions of

beads in viscous liquids. The critical Stokes number characterizing

the occurrence of a rebound is in the range of 10–15 according to

Gondret et al. (2002) and Legendre et al. (2006). Below this critical

value the fluid dissipates all the kinetic energy of the relative motion

and the beads do not bounce. Therefore, in the context of grinding in

a stirred media mill, we expect collisional Stokes numbers

significantly larger than the critical value for rebound meaning that

if the collisions occur energy will be still available for breakage of the

feed particles.

4.3. Maximum relative velocity and stress intensity in Newtonian

fluids

The first stage of the analysis consists in estimating the

maximum impact velocity in the whole domain without distinc-

tion of the type of collisions (frontal or oblique collisions). This

will give the order of magnitude of the kinetic energy available for

the comminution process. The maximum of the relative velocities

DU does not follow a constant evolution with the Reynolds

number due to the complex nature of the flow. We obtained

approximately 5% of the velocity at the disc tip Vyðr¼ RdÞ for

Newtonian flows, corresponding roughly to 0:3m=s when the

Reynolds numbers ranges between 229 and 654. These values

agree with the relative velocities found experimentally in Mende

(2005) which range from 0.2 to 5m/s. Similarly, the kinetic energy

of all collisions has the same trend and reaches a maximum of

3:2$ 10#6 J (calculated with reff ). This value may appear very low

but actually more than 75% of the domain corresponds to impact

velocities lower than 1% of VyðRdÞ.

Kwade et al. (1996) proposed to scale the intensity of collisions

by the reference stress intensity SIref defined as

SIref ¼ rGMd
3
GMV

2
y ð16Þ

SIref is proportional to the maximum kinetic energy of the beads.

It provides a scaling for the maximum energy available in the

comminution process. Multiplied by a stress number SN which

evaluates the number of efficient collisions (corresponding at

least to the capture of one particle), we can estimate the energy

available for breaking particles, called specific energy Es. Accord-

ing to Kwade and Schwedes (1997), Stenger et al. (2005b), the

stress intensity SI determines the size of the product particles for

a given Es. Indeed a decrease of SI, related to a smaller bead

diameter for example, induces an increase of the contact number

and then an increase of SN (and vice versa). SI and SN control the

process performance. Optimal values of SN and SI exist: too many

collisions at low energy are unable to break particles and also few

contacts at high energy are poorly efficient.

Based on the determination of DU, it is now possible to

evaluate the stress intensity number SI defined below in which

the disc tip velocity has been replaced by the maximum relative

velocity between two neighbouring beads:

SI¼ rGMd
3
GMDU

2 ð17Þ

In the Figs. 12a, b and c we show the contours of stress intensity

levels scaled by the reference stress intensity SIref given by 16. For

clarity, SI=SIref values have been multiplied by a constant factor

103 as their maximum values ranges between 2:2$ 10#3 and

3:1$ 10#3. Typically, SI=SIref ¼ 9$ 10#4 corresponds to a shear

rate of 1000 s#1. Consequently, SIref is 3 orders of magnitude

larger than the effective stress intensity involved in the collision.

Two main areas of high intensity appear again near the disc and

along the chamber wall where velocity gradients are the most

intense. It is also correlated to the spatial distribution of the

viscous dissipation rate because collisions are mainly related to

Fig. 12. Contour levels of 103SI=SIref for a Newtonian fluid, for Re¼ 229 (a),

Re¼ 458 (b), Re¼ 654 (c) from top to bottom.
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the presence of shear flows. Indeed the first area, limited by the

0.4-isoline for example, expands and moves toward the disc tip

when the Reynolds number is increased from 229 to 458. Between

Reynolds numbers 458 and 654, this zone shrinks and moves

toward the symmetry axis between the two discs close to the disc

tip while the maximum value increases revealing that localized

collisions are very intense for a Reynolds number equal to 654. On

the contrary, the second area which moves toward the symmetry

axis between two discs reduces as the Reynolds number increases

(the maximum of the scaled stress intensity reaches a maximum

for Re¼ 458).

Finally, the maximum relative velocity in the ðr; zÞ plane is

calculated in the simulation based on the eigenvalues of the

deformation tensor S. The maximum values range from 3% to 3.5%

of the tangential velocity at the disc tip Vyðr¼ RdÞ. Therefore,

secondary flows may play an important role in the comminution

process. Also, they allow particles to move through areas of high

shear rate in the gap between the chamber wall and the disc tip

where particles are milled due to strong gradients of the

tangential velocity.

4.4. Maximum relative velocity and stress intensity in non-

Newtonian fluids

4.4.1. Shear-thinning fluids

Contour levels of the stress intensity SI for two shear thinning

fluids are presented on Figs. 13a ðRe¼ 422Þ and 13 b ðRe¼ 845Þ.

Similarly to Newtonian fluids, the area of intense stress intensity

near the disc develops at the disc tip and reduces along the disc

wall when the Reynolds number is increased from 422 to 845. The

area of high SI=SIref at the chamber wall moves from the gap

between the chamber wall and the disc tip to the symmetry axis

between the two discs. We observe that the ratio SI=SIref is higher

in both simulations than for the Newtonian cases (maximum

value 7$ 10#3 for Re¼ 422 and 4:1$ 10#3 for Re¼ 845). There-

fore, collisions are expected to be more intense around the disc.

Maximum relative velocities range between 8.35% (0.5m/s) and

6.44% (0.39m/s) of Vy, respectively, whereas they reach 5.52% and

3.14% of Vy if we restrict the analysis to the ðr; zÞ plane. Compared

to the simulations with a Newtonian fluid, secondary flows are

less efficient in the comminution process when the Reynolds

number is increased. The ratio between the total energy available

for breakage and its related value solely to the secondary

flows varies from 4 to 9 when the Reynolds number evolves

between 422 and 845. Finally, it is interesting to note that the

increase of the Reynolds number makes both areas of high stress

intensity smaller. Indeed, relative velocities are lower than 1% of

Vy in 75% (for Re¼ 422) and 83% (for Re¼ 845) of the simulation

domain.

4.4.2. Shear-thickening fluid

Contour levels of 103SI=SIref for a shear-thickening fluid are

reported in Fig. 14 corresponding to Re¼ 67. The maximum

values ð103SI=SIref 40:1Þ are confined in a very narrow area

between the disc tip and the chamber wall. The maximum of

SI=SIref reaches 0:87$ 10#3 which is much smaller than those

obtained for the other fluids. Indeed the maximum relative

velocity is only 2.96% of Vy (0.18m/s) and 1.72% when we restrict

the analysis to the ðr; zÞ plane. That can be explained by the high

viscosity of the equivalent suspension. Consequently, the energy

of collision in the mill is weak ð1$ 10#6 JÞ. The ratio comparing

the total available energy to the corresponding energy with the

secondary flows in the ðr; zÞ plane is now 9.3.

4.5. Prediction of colliding conditions

We stressed in Section 4.2 that Stcoll and Recoll help describing

the hydrodynamic interactions of two grinding beads colliding.

Both non-dimensional numbers depend mainly on the relative

velocities of the beads DU (described in the previous section) and

on the dynamic suspension viscosity msusp. msusp must be

distinguished from the effective suspension viscosity meff . Indeed,

the collision between two beads occurs in a suspension of

particles. The colliding beads are experiencing the effect of an

effective surrounding media composed only with the carrying

fluid and the particles (viscosity msusp, see Section 2.3). Therefore

we can estimate maximum Stcoll and Recoll for beads of 400mm
diameter (6000kg=m3 for ZrO2 beads) based on the value of msusp.

In Table 3, we report the values of Stcoll and Recoll corresponding to

each flow configuration characterized by Re (Eq. 9) and fluid

nature.

Stcoll and Recoll are lower than the values measured for inertial

particles experiencing actual rebounds. Stcoll is below the critical

Fig. 13. Contour levels of 103SI=SIref for a shear thinning fluid, for Re¼ 422 on the left (a), Re¼ 845 (b) on the right.

Fig. 14. Contour levels of 103 SI=SIref for a shear thickening fluid, Re¼ 67.
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value meaning that, if a collision occurs, the energy available for

this collision will be mainly dissipated in the fluid during the near

field hydrodynamic interactions. Moreover, based on the Recoll
values, fluid inertia and viscosity effects are of the same order.

Probably, a higher rotation rate of the shaft would increase the

values of Stcoll and Recoll for the same bead diameter.

Based on these results, we can assume that particles breakage

is not forced by binary bead-bead collision but more likely by

collective compression and friction. Indeed, Stcoll being lower than

the critical value of rebound, beads are experiencing long time

enduring contacts favourable to attrition of the particles. Working

at high concentration and high rotation frequency is advanta-

geous while centrifugal force will induce the presence of high

pressure zones in the flow.

5. Conclusion

The local hydrodynamics in a stirred media mill have been

investigated by means of numerical simulations. The character-

istic Reynolds number and the nature of the equivalent fluid

(Newtonian or power law fluids) have been largely varied. We

showed the existence of secondary flows constituted by several

vortices of different sizes. These flows originate from a centrifugal

instability due to the rotation of the discs. The effect of a weak

axial flow is negligible on the flow structure compared to the

strong rotation of the discs. We observed an increase of the

viscous dissipation rate with the generalized Reynolds number

(varying from 67 to 845). Although secondary flows and the mean

axial flow are much less energetic than the tangential flow, they

are very useful to mix the suspension. The particles of the

suspension move through all the zones of high shear rates where

they are broken by the contacts of grinding beads induced by

strong velocity gradients. As Cleary et al. (2006) and Sinnott et al.

(2006), we found that he energy consumption and particle

agitation controlling the efficiency of milling is confined in very

narrow areas close to the moving parts of the agitators.

The main contribution of this study is an original method to

estimate impact velocities from the velocity fields. This information

is a keystone in understanding the mechanisms occurring during the

collision of two grinding beads. We modelled the suspension as a

non-Newtonian fluid and investigated the evolution of the velocity

gradients. Maximum relative velocities are obtained by computing

the eigenvalues of the deformation rate tensor. Therefore, we

determined effective impact parameters. Based on this analysis, we

showed that collisions induced by the strong shear in the disc plane

ðr; yÞ are the most intense and as a consequence the most efficient

for the fragmentation of suspended particles since the plane ðr; zÞ

contains a low part of the total energy of collision and frontal

collisions cannot occur in the plane ðr; yÞ because of purely

azimuthal flow. In tower or pin mills, Cleary et al. (2006) and

Sinnott et al. (2006) found also that collisions induced by the strong

shear are the most efficient for the fragmentation. Nevertheless, the

corresponding maximum velocities reach approximately 10% of the

tangential velocity at the disc tip.

Finally, based on these estimations of impact velocities, the

physical nature of the collision between two grinding beads have

been analysed. The simulations predict the existence of low

impact Stokes number showing no bead-bead rebounds. The

velocity scale of the secondary flows is in the range of 10% to 25%

of the tangential velocity of the discs. These flows in the (r,z) plane

do not induce strong velocity gradient. On the other hand, the

equivalent fluid sheared with the gap between the disc tip and the

chamber wall experiences much stronger gradient (r, y plane),

typically Vy=DR¼ 6=0:015¼ 400 s#1. Although the shear rate is

high, due to the small size of the beads, the relative velocity is

weak (10% of the typical disc tangential velocity) and collisions

without rebound are more likely to occur. This was an unexpected

result. On the contrary, if we found that collisions in the fluid are

almost elastic (weak dissipation by hydrodynamic interactions)

this would contradict the assumption that bead velocity can be

estimated by a one-fluid approach while a strong agitation of the

beads would exist.

So, the milling of particles must be the result of compression

and attrition generated by the friction of layers of grinding beads.

We have evaluated the respective contributions of both mechan-

isms. In our simulations, the tangential stress (related to attrition

by friction of neighbouring layers) is at least one order of

magnitude larger than the compressive force (especially in the

vicinity of the mill walls).
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