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Near-optimal rate of consistency for linear models with missing values

Alexis Ayme 1 Claire Boyer 1 2 Aymeric Dieuleveut 3 Erwan Scornet 3

Abstract
Missing values arise in most real-world data sets
due to the aggregation of multiple sources and
intrinsically missing information (sensor failure,
unanswered questions in surveys...). In fact, the
very nature of missing values usually prevents us
from running standard learning algorithms. In
this paper, we focus on the extensively-studied
linear models, but in presence of missing values,
which turns out to be quite a challenging task. In-
deed, the Bayes predictor can be decomposed as
a sum of predictors corresponding to each miss-
ing pattern. This eventually requires to solve a
number of learning tasks, exponential in the num-
ber of input features, which makes predictions
impossible for current real-world datasets. First,
we propose a rigorous setting to analyze a least-
square type estimator and establish a bound on
the excess risk which increases exponentially in
the dimension. Consequently, we leverage the
missing data distribution to propose a new algo-
rithm, and derive associated adaptive risk bounds
that turn out to be minimax optimal. Numerical
experiments highlight the benefits of our method
compared to state-of-the-art algorithms used for
predictions with missing values.

1. Introduction
Missing values are more and more present as the size of
datasets increases. These missing values can occur for a
variety of reasons, such as sensor failures, refusals to answer
poll questions, or aggregations of data coming from different
sources (with different methods of data collection). There
may be different processes of missing value generation on
the same dataset, which makes the task of data cleaning
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difficult or impossible without creating large biases. In
his leading work, Rubin (1976) distinguishes three missing
values scenarios: Missing Completely At Random (MCAR),
Missing At Random (MAR), and Missing Not At Random
(MNAR), depending on the links between the observed
variables, the missing ones, and the missing pattern.

In the linear regression framework, most of the literature
focuses on parameter estimation (Little, 1992; Jones, 1996;
Robins et al., 1994), using sometimes a sparse prior leading
to the Lasso estimator (Loh & Wainwright, 2012) or the
Dantzig selector (Rosenbaum & Tsybakov, 2010). Note
that the robust estimation literature (Dalalyan & Thompson,
2019; Chen & Caramanis, 2013) could be also used to han-
dle missing values, as the latter can be reinterpreted as a mul-
tiplicative noise in linear models. Besides, Sportisse et al.
(2020) adapt and theoretically study the famous stochastic
gradient algorithm for model estimation in online linear
regression.

On the other hand, prediction with missing values in a para-
metric framework -even under a linear model- is in fact not
an easy task. Indeed, the prediction task is distinct from
model estimation: estimated model parameters cannot be
directly used to predict on a test sample containing miss-
ing values as well. As a matter of fact, the occurrence of
missing data turns the linear regression problem into a semi-
discrete one of very high complexity. Finally, establishing
risk bounds -even without missing values- for random de-
signs is already a challenge as studied in papers (Györfi
et al., 2006; Audibert & Catoni, 2011; Dieuleveut et al.,
2017) and more recently in (Mourtada, 2019).

Related work. There is actually little work on prediction
with missing values. Pelckmans et al. (2005) adapt the
SVM classifier to the case of missing values. Josse et al.
(2019) study the consistency of imputation strategies prior
to non-parametric learning methods. Prediction under linear
models has been studied in (Le Morvan et al., 2020a;b), by
exploiting the peculiar pattern-by-pattern structure of the
Bayes predictor (i.e. decomposable into predictors specific
to each missing pattern), and estimating it when the input
variables are assumed to be Gaussian. Le Morvan et al.
(2020b) obtain risk bounds, that suffer from the curse of
dimensionality, and are actually not compatible with their
Gaussian assumption. Agarwal et al. (2019) investigates



the PCR strategy to deal with missing values in a high-
dimensional setting.

Contributions. In this paper, we study pattern-by-pattern
predictors for regression with missing input variables. First,
we provide a synthetic overview of all assumptions that
allow to obtain a pattern-wise linear Bayes predictor, and
we propose a detailed study on how these assumptions are
related (Section 2). Second, we provide a distribution-free
excess risk bound for a least-square estimator handling un-
bounded features (Section 3), but suffering from the curse
of dimensionality. We therefore introduce a novel thresh-
olded estimator for which we establish an excess risk bound
adaptive to the missing pattern distribution (Section 4). The
latter actually applies to all types of missing data (MCAR,
MAR, MNAR) and is shown to be minimax optimal. We
exhibit three settings in which our bound is precisely eval-
uated, improving upon state-of-the-art results. Finally, we
experimentally illustrate our method on three different simu-
lation settings, outperforming existing competitors designed
to handle missing values, both in terms of predictive perfor-
mance and computational time (Section 5). All the proofs
of theoretical results can be found in the supplementary
materials.

Notations. For n ∈ N, we denote [n] = {1, . . . , n}. We
use . to denote inequality up to a universal constant. We
denote a ∧ b = min(a, b) and a ∨ b = max(a, b). For any
x ∈ Rd and for any set J ⊂ [d] of indices, we let xJ be the
subvector of x composed of the components indexed by J .
|J | denotes the cardinal of a discrete set J .

2. Typology of missing value and its
consequence on the Bayes predictor

2.1. Setting

In a context of regression, we observe n ∈ N input/output
observations (Xi, Yi)i∈[n], i.i.d. copies of a generic pair
(X,Y ) ∈ Rd × R, assuming that the underlying model
linking Y to X is linear.

Assumption 1 (Linear Model). Y = β0 + β>X + ε, with
a Gaussian noise ε ∼ N (0, σ2) independent of X .

The (unknown) model parameters are therefore (β0, β) ∈
Rd+1. Although standard linear regression is a well-
understood problem in statistics, we consider here that
only a fraction of the components of X is available: to
the data X ∈ Rd one associates the missing values pattern
M ∈ {0, 1}d, such thatMj = 1 if and only ifXj is missing.
LetM = {0, 1}d be the set of missing values patterns. For
m ∈ M, we denote by obs(m) (resp. mis(m)) the set of
indexes of the observed variables (resp. the missing vari-
ables) and Xobs(m) (resp. Xmis(m)) the vector of observed
components (resp. unobserved components) of X . Thus,

under a linear model with missing covariates, our goal is to
predict Y given

(
Xobs(m),M

)
, denoted Z in the sequel.

2.2. Bayes predictor

The Bayes predictor for the quadratic loss can be decom-
posed according to the possible missing data patterns, as

f?(Z) = E [Y |Z] = E
[
Y |Xobs(m),M

]
=
∑
m∈M

f?m(Xobs(m))1M=m,

where f?m(Xobs(m)) := E
[
Y |Xobs(m),M = m

]
can be

seen as the Bayes predictor conditionally on the event
“M = m”. Under Assumption 1, f?m can be written as

f?m(Xobs(m)) = β0 + β>obs(m)Xobs(m)

+ β>mis(m)E
[
Xmis(m)|Xobs(m),M = m

]
.

Thus, f?m remains linear in the observed variables Xobs,
provided that x 7→ E

[
Xmis(m)|Xobs(m) = x,M = m

]
is

a linear function. This is not always true as shown in the
following example.
Example 2.1. Let Y = X1 + X2 + X3 + ε, where X3 =
X2e

X1 . Then

f?(0,0,1)(X1, X2) = X1 +X2 +X2e
X1 ,

where m = (0, 0, 1) is the missing value pattern where only
X1 and X2 are observed. Despite Assumption 1, the predic-
tor f?(0,0,1) is not linear in the observed covariates, due to
the non-linear link between the observed variables X1, X2

and the missing one X3. Therefore, linear regression with
missing data is hard to analyze without any additional as-
sumptions on the joint distribution (X,M).

2.3. Data scenarios

There exist two main approaches for modelling the joint
distribution ofX andM : selection models (Heckman, 2012)
and pattern-mixture ones (Little, 1993).

Selection models. They rely on the following factoriza-
tion of the joint distribution P (X,M) = P(X)P(M |X).
Therefore, in selection models, one specifies the distribu-
tions of X (the most common ones being Assumptions 2
and 3 below) and M |X (Assumptions 4, 5 or 6 below).

Assumption 2 (Independent covariates). The covariates
{Xj}j∈[d] are mutually independent.

Assumption 3 (Gaussian covariates). There exist µ ∈ Rd
and Σ ∈ Rd×d such that X ∼ N (µ,Σ).



Note that this latter assumption excludes the pathological
Example 2.1. Regarding the distribution of M |X , Rubin
(1976) introduces the three following missingness mecha-
nisms.

Assumption 4 (Missing Completely At Random - MCAR).
For all m ∈M, P (M = m|X) = P (M = m).

Assumption 5 (Missing At Random - MAR). For all m ∈
M, P (M = m|X) = P

(
M = m|Xobs(m)

)
.

Assumption 6 (Missing Non At Random - MNAR). The
missing pattern M depends on the full vector X (thus, on
the observed and missing entries).

To illustrate these scenarios, consider the simple situation of
a survey with two variables, Income and Age, with missing
values only on the Income variable. The MCAR setting
(Assumption 4) holds when the missing values are indepen-
dent of any value (e.g. respondents have forgotten to fill
the form). The MAR situation (Assumption 5) is verified
when missing values on Income depend on the values of
Age (e.g. older respondents would be less inclined to re-
veal their income). The MNAR scenario (Assumption 6)
allows the occurrence of the missing values on Income to
depend on the values of the income itself (e.g. poor and rich
respondents would be less inclined to reveal their income).
A particular case of the last example consists in considering
that the missingness mechanism for a given variable is only
dictated by its underlying value.

Assumption 7 (Gaussian Self-Masking). For all m ∈M,
P(M = m|X) =

∏d
j=1 P (Mj = mj |Xj) and for j ∈ [d],

P(Mj = 1|Xj) ∝ exp

(
−1

2

(Xj − µ̃j)2

σ̃2
j

)
.

Pattern-mixture models. Such models rely on the fol-
lowing factorization of the joint distribution P (X,M) =
P(M)P(X|M). Therefore, in pattern-mixture models, one
specifies the distributions ofM andX|M : one can therefore
appeal to the Gaussian pattern mixture model (GPMM).

Assumption 8 (Gaussian Pattern Mixture Model-GPMM).
For all m ∈M, X|(M = m) ∼ N (µ(m),Σ(m)).

2.4. Linearity of the Bayes predictor

In this subsection, we give an overview of the properties
that ensure the linearity of f?m based on the assumptions
defined in Section 2.3.

Definition 2.2. Consider the vector space of linear predic-
tors in the observed variables i.e. f ∈ Fb if f(.,m) is linear
for all m ∈M. The dimension of Fb is p := 2d−1(d+ 2).

Proposition 2.3. [Le Morvan et al. 2020b;a, resp. Prop.
4.1 and Prop. 2.1] Under Assumption 1 and one of the
following hypotheses

1. Gaussian covariates with M(C)AR mechanisms (As-
sumption 3 and (4 or 5)),

2. Gaussian covariates with Gausian Self-Masking mech-
anisms (Assumption 3 and 7),

3. Gaussian Pattern Mixture Model (Assumption 8),
4. Independent covariates (Assumption 2).

Then f? ∈ Fb i.e. for all m ∈M there exist δ(m)
0 ∈ R and

δ(m) ∈ R|obs(m)| such that

f?m(Xobs(m)) = δ
(m)
0 +

(
δ(m)

)>
Xobs(m).

Proposition 2.3 is summarized in Figure 1: there is indeed
a wide variety of possible assumptions such that f? ∈ Fb.
Note that the covariates independence (Assumption 2) al-
lows to get the Bayes predictor linearity beyond Gaussian
models. Furthermore, Assumptions 2, 7, and 8 may not only
include MAR but MNAR scenarios as well, the latter known
to be challenging in an inference setting. However, this
comes at the cost of an exponential growth of the dimension
p of Fb with the ambient dimension d (p = 2d−1(d+ 2)).

G+ MCAR (3 and 4) G+ MAR (3 and 5)

GSM (7)GPM (8)

Independent covariates (2)

f?m linear for all m ∈M

Figure 1. Links between the different assumptions to get the lin-
earity of the Bayes predictor as in Proposition 2.3. Scenarios that
may contain MNAR cases are depicted in gray.

2.5. Links between Gaussian PMM & selection models.

In this subsection, we investigate the links between the
assumptions of Proposition 2.3, summarized in Figure 2.

G+MAR (3 and 5) MAR (5)

G+MCAR (3 and 4) GPMM (8) MNAR (6)

Example 2.4

Example 2.5

Example 2.6Example 2.7

Figure 2. Links between Gaussian pattern mixture models
(GPMM) and Gaussian selection models. Solid arrows correspond
to inclusions, dotted (resp. crossed) arrows illustrate a partial in-
clusion (resp. non-inclusion).

First, we remark that GPMM may implicitly encode for
M(C)AR and MNAR scenarios.



Example 2.4 (From GPMM to MCAR). Consider a GPMM
such that there exist µ and Σ such that µ(m) = µ and
Σ(m) = Σ for all m ∈ M. One can show that the latter is
necessary and sufficient to get a MCAR dataset (Assumption
4) with Gaussian covariates X (Assumption 3).
Example 2.5 (From GPMM to MAR). Consider a subset of
always observed variables indexed by J ⊂ [d] (i.e. P(Mj =
0) = 1 for j ∈ J) and a GPMM such that{

µ
(m)
J = µm ∼ U([−1, 1]|J|)

µ
(m)
Jc = µ ∈ R|Jc| (fixed)

and 
Σ

(m)
J,J = Σm ∈ R|J|×|J|

Σ
(m)
Jc,Jc = Σ ∈ R|Jc|×|Jc| (fixed)

Σ
(m)
Jc,J = 0,

where Σm ∈ RJ×J can depend on m. In such a case,
for all m ∈ M, P (M = m|X) = P (M = m|XJ) with
XJ always observed, thus the missing mechanism can be
qualified of MAR. Furthermore, note that as soon as there
exist m,m′ ∈ M, such that µm 6= µm′ or Σm 6= Σ′m then
the dataset is ensured not to be MCAR.
Example 2.6 (From GPMM to MNAR). Consider a GPMM
such that for all m ∈M, Σ(m) = Id and µ(m) is uniformly
drawn at random in [−1, 1]d. In such a case, the missing
mechanism is MNAR and almost surely not MAR.

Note that, Gaussian linear models with MAR missing val-
ues (Assumptions 3 and 5) are not necessarily included in
Gaussian pattern mixture models (Assumption 8). This is in
particular highlighted by the following example.
Example 2.7 (G+MAR 6⊆ GPMM). Let (X1, X2) ∼
N (0, I2) such that X1 is always observed (M1 = 0) and
X2 is observed if and only if X1 ≤ 0 (M2 = 1X1>0).
This corresponds to a linear Gaussian model (Assumption
3), with a MAR missing variable X2 (Assumption 5) since
missing values on X2 only depend on X1 which is always
observed. However, this cannot be a GPMM (Assumption
8) as the distribution of X|(M = (0, 1)) is supported on a
half space (preventing X|M from being Gaussian).

3. A distribution-free bound on excess risk
In the framework of missing values, let the excess risk be

E
(
f̂
)

:= E
[(
f̂(Z)− f?(Z)

)2
∣∣∣∣Dn] , (1)

and its integrated version E[E(f̂)]. This quantity measures
the quality of performance made by a prediction function
f̂ compared to the optimal predictor f?. Le Morvan et al.
(2020b) propose a missing-pattern-distribution-free control
on the integrated risk scaling in d2d/n for the least-square

estimator, requiring (i) the Bayes predictor to be linear in the
observed variables (Definition 2.2) and (ii) the covariates
boundedness. Unfortunately, Proposition 2.3 highlights the
convenience of Gaussian covariates to ensure the linearity of
the Bayes predictor, and yet they are incompatible with (ii).
We intend to fill this gap by providing a unified and more
general analysis to include the case of unbounded covariates
(Assumption 9 below) and where the Bayes predictor is
assumed to be regular without being explicitly linear (As-
sumption 10).

Assumption 9 (Sub-Gaussian covariate). There is a positive
constant γ such that for all j ∈ [d], E [Xj ]

2 ≤ γ and Xj −
E [Xj ] is γ-sub-Gaussian, that is

∀t > 0, P (|Xj − E [Xj ]| > t) ≤ e−
t2

2γ . (2)

Assumption 10 (Lipschitz). There exists B > 0 such that
for all m ∈ M, f?m is B-Lipschitz for the `∞-norm, and
|f?m(0)| ≤ B.

According to Assumption 10, one can control the `∞-norm
of Bayes predictors on an `∞-ball. For instance, this as-
sumption is easily verified when Bayes predictors are linear
functions. Since covariates are assumed to be unbounded
(Assumption 9), one should consider the set

KD :=
{

(xobs(m),m),
∥∥xobs(m)

∥∥
∞ ≤ D

}
, (3)

for some D >
√
γ, which consists in taking the covariates

with all observed components in an `∞-ball of radius D.

Under Assumption 9, an observation Z falls into the
bounded set KD with high probability (see Lemma A.5).
One can then adapt the results in (Györfi et al., 2006; Au-
dibert & Catoni, 2011) when X is on a bounded set to
the sub-Gaussian case. To do so, consider the modified
least-squares (D-LS) estimator taking into account only the
observations falling into KD:

f̂ (D-LS) ∈ arg min
f∈Fb

∑
Zi∈KD

(f(Zi)− Yi)2 (4)

if KD 6= ∅, and f̂ (D-LS) = 0 otherwise. Computing f̂ (D-LS)

amounts to perform one ordinary least-square procedure per
missing pattern (as Fb is composed of functions that are lin-
ear on each missing pattern). Finally, for technical purposes,
to ensure that the prediction is bounded, we consider the
clipped estimator at level L, TLf̂ := (−L) ∨ f̂ ∧ L.

Theorem 3.1. Under Assumptions 9 and 10, choosing D =√
γ(1 +

√
γ log(n)), and L = (D + 1)(B + 1) leads to

E
[
E
(
TLf̂

(D-LS)
)]

. (log(n) + 1)
(
σ2

na ∨ L2
)
2d
d

n
+AFb ,

(5)



where f̂ (D-LS) is the estimator defined in (4), and{
σ2

na := supz∈Supp(Z) V [Y |Z = z]

AFb := inff∈Fb E
[
(f(Z)− f?(Z))

2
]
.

(6)

Theorem 3.1 is the first theoretical result that provides a
control on the excess risk of a least-square-type predictor
under very general assumptions on the input variables distri-
bution and without any assumption on the missing pattern
distribution. This result only relies on concentration and
regularity arguments. Note that leaving the approximation
error aside, the obtained upper bound is the multiplication of
three terms. The first factor (log(n) + 1) is due to (Györfi
et al., 2006, Theorem 11.3) on which our result is built
upon. The second factor σ2

na ∨ L2 should be seen as a tight
bound for E[Y 2], which corresponds to the risk of the trivial
predictor (predicting 0 for any value of Z). Note that the
coefficient L logarithmically depends on n: the truncation
of the predictor should be less stringent with an increasing
number of observations. The rate of convergence is eventu-
ally dictated by the factor 2d dn , which remains problematic
as it grows exponentially with the dimension. It reflects the
fact that a different regression model is required for each
missing value pattern. Overall, the bound ensures that when
n > d2d, the least-square predictor is better than the zero
one. This curse of dimensionality is unfortunately unavoid-
able as it naturally arises for some specific distributions
(worst-case scenario of the GPMM framework).

In the framework of Proposition 2.3 (cases 1-3), Assump-
tion 9 and 10 trivially hold and the Bayes predictor is en-
sured to be linear. This wipes out the approximation error
in Theorem 3.1 as underlined in the following result.

Corollary 3.2. Under Assumptions [3 and (4 or 5)] or 8,
with the same choice of D and L as in Theorem 3.1 with
B = maxm∈Mmax[|δ(m)

0 |, ‖δ(m)‖1], we have

E
[
E
(
TLf̂

(D-LS)
)]

. (log(n) + 1)
(
σ2

na ∨ L2
)
2d
d

n
,

where the sub-Gaussian parameter γ in L,D is

γ =


max
j∈[d]

E
[
X2
j

]
(Assumption 3),

max
m∈M
j∈[d]

E
[
X2
j |M = m

]
(Assumption 8).

To ease the readability, we define when possible

an := (log(n) + 1)
(
σ2

na ∨ L2
)
, (7)

which logarithmically grows with n and depends on the
distribution of (X,Y ).

4. Main result: an excess risk bound adaptive
to the missing pattern distribution

The error bound obtained in Theorem 3.1 holds for any
missing pattern distribution. For instance, when all the
2d missing patterns are equiprobable, the bound of Theo-
rem 3.1 appears sharp -as one should actually perform 2d

“independent” regressions- and then suffers from the curse
of dimensionality. However, this bound is pessimistic when
some missing patterns are not observed or, more generally,
when the missing pattern distribution is non-uniform, i.e. of
low entropy. In this section, we leverage the distribution
of the missing patterns in order to derive better theoretical
bounds compared to Theorem 3.1. To this end, we propose
a refined version of the predictor introduced in Equation (4).

4.1. Regression only on high frequency missing patterns

For any missing pattern m ∈ M, we denote Em =

{i ∈ [n],Mi = m} and D(m)
n = ((Xi,obs(m), Yi))i∈Em re-

spectively the observation indices and the sub-sample with
missing pattern m. For any m ∈M, we build an estimator
f̃m of f?m as

f̃m ∈ arg min
f∈Fm

∑
i∈Em

(f(Xi)− Yi)2 (8)

if Em :=
{
i ∈ Em,

∥∥Xobs(m)

∥∥
∞ ≤ D

}
is non-empty, and

f̃m = 0 otherwise. The global predictor is then obtained by
combining the previous pattern-by-pattern predictors for all
patterns m ∈M that appear with a frequency p̂m := |Em|

n
larger than a threshold τ ∈ [0, 1],

f̂ (τ)(Z) =
∑
m∈M

f̃m
(
Xobs(m)

)
1p̂m>τ1M=m. (9)

Contrary to the naive estimator f̂ (D-LS) defined in (4), com-
puting f̂ (τ) may not require to perform up to 2d linear re-
gressions. Indeed, linear regressions are only computed for
patterns with a frequency larger than the threshold τ . This
new predictor (9) enjoys the following risk bounds.

Theorem 4.1. Under the same assumptions as in Theo-
rem 3.1, for any τ ≥ 1/n, the generalization bound for the
predictor f̂ (τ) defined in (9), reads as

E
[
E
(
TLf̂

(τ)
)]

. an

(
1 ∨ d

nτ

)
Cp(τ) +AFb . (10)

where an is defined in (7), and with the missing patterns
distribution complexity Cp(τ) defined by

Cp(τ) :=
∑
m∈M

pm ∧ τ. (11)



The upper bound in Inequality (10) is minimal for the choice
τ = d/n which leads to

E
[
E
(
TLf̂

(d/n)
)]

. anCp

(
d

n

)
+AFb . (12)

Theorem 4.1 is the first result controlling the excess risk of a
pattern-by-pattern least-square-type predictor with a bound
depending on the missing pattern distribution through the
complexity Cp, and holds for any type of missing patterns.
Theorem 4.1 improves over Theorem 3.1, as the pattern
distribution complexity Cp is a lower bound of 2dd/n. Note
that choosing τ = d/n is relevant only in the case where
d < n (otherwise, the proposed predictor is the zero one).
The adaptivity of Cp to the missing pattern distribution is
illustrated in the following examples.

4.2. Examples

In this subsection, we compute the quantity Cp
(
d
n

)
, driving

the bound obtained in Theorem 4.1, for different missing
data settings. We focus on the case d ≤ n ≤ d2d, i.e. when
we have enough observations for statistical guarantees in
standard linear regression (w/out missing values) but not
enough when missing values occur (setting of Theorem 3.1.)

4.2.1. EXAMPLE 1: FEW FREQUENT MISSING PATTERNS

One can actually write another characterization of the com-
plexity Cp, as precised in the following lemma.

Lemma 4.2. For any distribution p on the missing patterns

Cp

(
d

n

)
= inf
B⊂M

{
Card(B)

d

n
+ P (M ∈ Bc)

}
,

where P (M ∈ Bc) =
∑
m∈Bc pm.

The proof can be found in Appendix C.4. To illustrate this
lemma, consider a subset B ⊂M of small cardinality |B|,
so that only missing patterns in B are very frequent and that
the other missing patterns occur with a residual probability
δ = P (M ∈ Bc). Lemma 4.2 entails that

Cp

(
d

n

)
≤ |B| d

n
+ δ. (13)

and thus by Theorem 4.1,

E
[
E
(
TLf̂

(d/n)
)]

. an|B|
d

n
+ anδ +AFb . (14)

This bound clearly improves upon Theorem 3.1, as the com-
plexity is now controlled by |B| dn instead of 2d dn . This
bound reflects the good learning ability of the regressor
f̂ (d/n) when there are few frequent missing patterns.

Note that Lemma 4.2 applies to any missing data mecha-
nisms. In particular, MCAR, MAR and MNAR scenarios

can be exemplified through the setting developed in this sec-
tion, so that the upper bound (14) is very generic. The next
two examples make use of this bound in two more specific
scenarios, resulting in even more informative bounds.

4.2.2. EXAMPLE 2: THE BERNOULLI MODEL

Assume that the distribution p of missing value patterns is
p = B(ε1) ⊗ · · · ⊗ B(εd) for εj ∈ [0, 1] with j ∈ [d], so
that components (Mj)j are independent and of distribution
Mj ∼ B(εj). The model is said homogeneous when ε1 =
ε2 = · · · = εd = ε ∈ [0, 1], and heterogeneous otherwise.
Note that in such a setting, the missing mechanisms can be
still of MCAR, MAR or MNAR nature.

Consider a homogeneous Bernoulli model with ε < 1/2.
Consequently, the most frequent patterns are those with the
least missing values. For a given s ∈ [d], define Bs the set of
missing patterns with less than s missing values. Therefore,
Equation (13) reads as

Cp

(
d

n

)
≤ |Bs|

d

n
+ δs, (15)

where δs = P (M ∈ Bcs) is the probability of having a pat-
tern with more than s missing values. Controlling each of
these terms gives the following lemma.

Lemma 4.3. Under a homogeneous Bernoulli model with
proportion ε of missing data, one has

Cp

(
d

n

)
≤ inf
s∈[d]

(
d

n
+ εs

)(
ed

s

)s
.

One can then obtain a version of Theorem 4.1 in the case of
a Bernoulli model, by optimizing s in Lemma 4.3.

Proposition 4.4. Under the assumptions of Theorem 3.1,

E
[
E
(
TLf̂

(d/n)
)]

. an

(
ed

sε (d/n)

)sε(d/n)
d

n
+AFb ,

with sε (d/n) := 1 ∨
⌊

log(nd )
log(ε−1)

⌋
∧ d.

Here, sε (d/n), being in [d], can be interpreted as a hidden
dimension (relative to the missing pattern distribution). In-
deed, the initial complexity scaling as 2d in Theorem 3.1
is replaced by ( ed

sε(d/n) )sε(d/n) in Proposition 4.4 for this
Bernoulli model.

Observe that the bound improves as ε decreases, for example
for ε ≤ d

n , the excess risk bound scales as d2

n . This again
highlights the benefit of adaptivity in Theorem 4.1, which
allows us to obtain a bound that improves when the fraction
of missing data decreases below a certain level.

We extend the result above to the heterogeneous case in Ap-
pendix C.2.3, and provide a discussion on the comparison



between the complexities for homogeneous and heteroge-
neous Bernoulli models that share the same overall fraction
of missing data ε in Appendix C.2.1.

4.2.3. EXAMPLE 3: DATABASE MERGE MODEL

Consider a context of multi-sources data, where for instance
a medical register results from merging d-dimensional data
coming from h different hospitals:

1. each hospital k ∈ {1, . . . , h} has its own measurement
protocol, resulting in the missing pattern Pk (Pk,j = 1
if measure j ∈ {1, . . . , d}, is not performed in hospital
k). Note that this missing pattern is shared by all the
patients in care in hospital k.

2. in addition, for each measure j ∈ {1, . . . , d}, the mea-
suring device may make a protocol-independent error,
that produces a missing value with probability η.

For an entry of the merged medical register, call P (taking
values in P1, . . . , Ph) the missing pattern coding for the
protocol effective in the hospital where this information
has been collected, and N ∈ {0, 1}d the missing pattern
coding for the measurement failure. Therefore, the eventual
missing value pattern can be decomposed as,

(1−M) = (1− PH)� (1−N), (16)

where � is the Hadamard product.

This model is compatible with MNAR missing data mecha-
nisms. Indeed, the missing pattern may be informative about
the missing data values, as it encloses information about the
hospital where the data is collected, and thereby may depend
on a certain type of population distribution (geographical
location, level of wealth...) frequenting the above hospital.
Theorem 4.1 can be adapted in such a setting as follows.

Proposition 4.5. Under Assumptions of Theorem 3.1,

E
[
E
(
TLf̂

(d/n)
)]

. an

(
ed

sη (d/n)

)sη(d/n)

h
d

n
+AFb ,

where sη is defined in Proposition 4.4.

See Appendix C.3 for the proof. The excess risk bound
in Proposition 4.4 encompasses a term similar to that of the
Bernoulli case involving only the measurement failure prob-
ability η here, whereas the number of protocols h linearly
intervenes. To understand why this could be an advantage,
consider two hospitals (h = 2) in which only 50% of the
variables are systematically measured, and assume that the
probability of measurement failure η equals 0.01. The over-
all proportion ε of missing values in the merged dataset is
therefore high, i.e. ε = 1 − 0.99/2 ' 0.5. Altogether, the
bound in Proposition 4.5 (controlled via sη) improves upon
the one of Proposition 4.4 (controlled via sε) by a factor

ε/(hη) = 25. This means that the bound in Proposition 4.4
does not suffer from the resulting proportion ε of missing
values, and mostly depends on the probability η of mea-
surement failure. This outlines the great plasticity of the
complexity Cp even in regimes with a large proportion of
missing values, by leveraging the missing value structure.

4.3. Minimax aspects

In this section we discuss the optimality of the risk bound
obtained for f̂ (τ). To this end, we consider the class below.
Definition 4.6. The class of problems Pp(σ,R) is assumed
to satisfy the following conditions: for all P ∈ Pp(σ,R)

1. ∀m ∈M,P (M = m) = pm,
2. Y = 〈β,X〉+ ε where ε ∼ N

(
0, σ2

)
,

3. Assumptions 9 and 10 hold with B2(γ + 1) ≤ 3R2,
4. AFb = 0.

Note that this class of problems includes the Gaussian case
(Assumption 3) with M(C)AR, or GPMM (Assumption 8).
For this large class of problems, the excess risk can be upper
bounded by Theorem 4.1 at the rate anCp(d/n), with an ≤
(log(n) + 1)2(R2 ∨ σ2

na). The following result provides a
lower bound on the excess risk of the best possible predictor
in the worst-case scenario of class Pp(σ,R): it exhibits the
same dependency on the complexity Cp.
Theorem 4.7. Consider a distribution p onM, thenR, σ >
0 and c be such that 16e−

1
4 ( Rdσ )

2

≤ c. Therefore,

(1− c)σ2Cp

(
1

n

)
. min

f̂
max

P∈Pp(σ,R)
EP

[
E
(
f̂
)]

.

where the minimum is over all predictor f̂ .

This result highlights the relevancy of the complexity Cp in
the control of the excess risk. Since Cp

(
1
n

)
≥ d−1Cp

(
d
n

)
,

the lower bound in Theorem 4.7 is sharp up to a factor d.
Note that if the distribution of missing patterns is uniform,
one gets Cp

(
1
n

)
= 2d

n , meaning that the upper-bound
of Theorem 4.1 cannot be improved in full generality. Re-
stricting the considered class to the MAR ones does not
impact the lower bound, as outlined in what follows.
Corollary 4.8. Assume that one component of X is always
observed. Then Pp(σ,R) ∩ PMAR is non empty and

(1− c)σ2Cp

(
1

n

)
. min

f̂
max

P∈Pp(σ,R)∩PMAR

EP

[
E
(
f̂
)]
.

This lower bound is of the same order as that of the lower
bound in Theorem 4.7, meaning that the worst-case scenario
of Pp(σ,R) is as hard as the one of Pp(σ,R) restricted to
MAR settings. While the MAR hypothesis facilitates the
inference framework (the former actually originates from
the latter, see Rubin 1976), Corollary 4.8 emphasizes that
MAR scenarios do not help prediction purposes.



5. Numerical experiments
In this section, we numerically evaluate the performance of
several regressors on varying missing data scenarios.

Regressors. More specifically, we compare the follow-
ing five regression methods. First, we consider two base-
lines consisting in imputation followed by standard lin-
ear regression (on the completed data): for Cst-imp+LR
we learn optimal imputation constants for each variable
(note that this is equivalent to performing a LR of Y on(
Xobs(m),M

)
, see (Le Morvan et al., 2020b, Proposition

3.1)); for MICE+LR, the imputation is performed by the
scikit-learn IterativeImputer which relies on MICE
(Van Buuren & Groothuis-Oudshoorn, 2011). Moreover,
we add two pattern-by-pattern methods, that learn one re-
gression model per pattern as defined in Equation (9): for
all patterns having at least one observation in P-by-P imp
(i.e., τ = n−1 which matches the regressor in (4)), and
with τ = d/n for Thresholded P-by-P imp. For both, the
technical `∞-ball condition is not considered in numerical
experiments. Finally NeuMiss (Le Morvan et al., 2020a) is
a neural network which architecture is specifically designed
to handle missing data in linear regression.

Data generation settings. We consider three different set-
tings in dimension d = 8 with increasing difficulty: (a)
MCAR Bernoulli in which X and M are independent, M
is generated according to the homogeneous Bernoulli Model
of Section 4.2.2 with missing value proportion ε = 10% and
X ∼ N (µ,Σ) where µ 6= 0 and Σ 6= I; (b) MAR in which
X is separated into two blocks of components X(1), X(2)

each of size 4, X(1) is a Gaussian isotropic vector that is
always observed and the missing pattern associated to X(2)

is M (2) = 1X(1)>0, and X(2)|X(1) ∼ N (M (2),Σ) where
Σ 6= I . (c) MNAR-GPMM in which (X,M) is distributed
according to Assumption 8 with 7 non-null probability miss-
ing patterns. See Appendix E.1 for details.

Results. The results are presented in Figure 3. First, the
P-by-P methods (with and without threshold) and NeuMiss
are the only ones that are Bayes consistent regardless of the
scenario (the excess risk tends to 0 on Figures 3(a,b,c)). This
was indeed expected for the P-and-P methods as pointed out
in Theorem 3.1. Neumiss provides similar performances
at least in the MCAR and MAR settings, but its compu-
tational complexity, even in dimension d = 8, prevents
from reaching large sample sizes (see Appendix E.2). All
the previous methods clearly outperform the MICE+LR
strategy as soon as the data are not MCAR anymore, by
exploiting the information contained in the missing pattern.
Note that the Cst-imp method poorly performs whatever
the data setting is: this could be explained by the fact that
the model includes 2d parameters, which is not sufficient to

learn the correlations between the variables (which would
require d2 parameters at least). Secondly, we remark the
benefit of thresholding in P-by-P methods (see Theorem
4.1): Thresholded P-by-P outperforms the unthresholded
version in particular for a small number of samples. Thresh-
olding thus acts as a regularizer, by avoiding overfitting on
the least frequent missing patterns.

The behavior of P-by-P methods is discussed in higher di-
mensional regimes and on a real dataset in Appendix E.3.

6. Conclusion
In this paper, we propose a wide panel of data settings to
study linear models with missing data. Contrary to most
previous works, we focus on the prediction problem by eval-
uating the quadratic risk of linear models. We propose a new
thresholded predictor coming with strong theoretical guar-
antees: the upper bound on its excess risk holds under very
mild assumptions on the data, while integrating the com-
plexity Cp of the missing pattern distribution. This quantity
is interesting on its own as it describes the influence of the
missing data distribution on the predictive performances.
We establish a lower bound on the excess risk of the best
possible predictor on a class of data distributions previously
considered for the upper bound analysis: the lower bound
involves the same complexity Cp. This, supported with
several examples, highlights the sharpness of our results.
Numerical experiments emphasizes the improvement of our
pattern-by-pattern estimator compared to state-of-the-art
algorithms.

Training thresholded pattern-by-pattern predictors is a way
to regularize the learning process highly complex when
missing data occur. Other types of regularization should be
investigated to break the induced curse of dimensionality.
However, the lower bound on the minimax predictor suggest
that current assumptions are not strong enough to obtain bet-
ter guarantees. In the formalism of prediction with missing
values, finding suitable assumptions on the missing patterns
still remains an open question.
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A. Proofs for Section 2
A.1. Key lemma on Binomial law

Let’s begin by a useful lemma on binomial law, which can be found in (Devroye et al., 2013, Lemma A2 p 587).

Lemma A.1. Let B ∼ B(p, n), we have

1

1 + np
≤ E

[
1

1 +B

]
≤ 1

p(n+ 1)
, (17)

and

E
[
1{B > 0}

B

]
≤ 2

p(n+ 1)
. (18)

Proof. • Lower bound of (17): we use Jensen inequality

1

1 + np
=

1

1 + EB
≤ E

[
1

1 +B

]
.

• Upper bound of (17),

E
[

1

1 +B

]
=

n∑
i=0

(
n

i

)
1

1 + i
pi(1− p)n−i

=

n∑
i=0

n!

i!(n− i)!(1 + i)
pi(1− p)n−i

=
1

(n+ 1) p

n∑
i=0

(n+ 1)!

(i+ 1)!(n+ 1− i− 1)!
pi+1(1− p)n−i

=
1

(n+ 1) p

n∑
i=0

(
n+ 1

i+ 1

)
pi+1(1− p)n+1−i−1

≤ 1

(n+ 1) p
,

using binomial formula.

• For (18), we use that 1/x ≤ 2/(x+ 1) on x ≥ 1 and previous result.

A.2. A key intermediate result on regression

First, let us mention a very useful theorem for analyzing the quadratic risk in the regression framework.

Theorem A.2 (Theorem 11.3 in (Györfi et al., 2006)). Let two random variables X and Y be such that

Y = f?(X) + ε

and {
‖f?‖∞ = supx∈Supp(X) |f?(x)| ≤ L
σ2 = supx∈Supp(X) V [Y |X = x] <∞

for some L > 0. Let F be a linear vector space of function f : Rd −→ R. Define the estimate by TLfn(x) =
(−L) ∨ fn(x) ∧ L where

fn ∈ arg min
f∈F

1

n

n∑
i=1

(f(Xi)− Yi)2. (19)



Then

E
[
(TLfn(X)− f?(X))

2
]
≤ cmax

{
σ2, L2

} dim(F)(1 + log(n))

n
+ 8 inf

f∈F
E
[
(f(X)− f?(X))

2
]
, (20)

for some universal constant c.

The main drawback of this theorem is that it is only useful if the support of X is bounded. Assumption 8 requires the
covariates to be unbounded as they are assumed to be Gaussian. However, the covariates are on a bounded set with a high
probability. The following corollary is adapted to this case.

Corollary A.3 (Unbounded case). Let two random variable X , Y and a subset K ⊂ Rd be such that{
‖f?‖∞,K = supx∈K |f?(x)| ≤ LK
σ2 = supx∈Supp(X) V [Y |X = x] <∞

for some LK > 0. Let F be a linear vector space of function f : Rd −→ R. Define

fK(x) := TLfn,K(x)1x∈K, (21)

where {
fn,K ∈ arg minf∈F

∑
Xi∈K(f(Xi)− Yi)2 if ∃i ∈ [n], Xi ∈ K,

fn,K = 0 else.
(22)

Then

E
[
(fK(X)− f?(X))

2
]
≤ cmax

{
σ2, L2

K
} dim(F)(1 + log(n))

n

+8 inf
f∈F

E
[
1X∈K (f(X)− f?(X))

2
]

+RK,
(23)

where pK = P (X ∈ K) and RK = (1− pK)nE
[
1X∈Kf

?(X)2
]

+ E
[
1X/∈Kf

?(X)2
]
.

Compared to Theorem A.2, the bound obtained in the previous corollary includes an additional term RK. The extension
of Theorem A.2 to the unbounded covariates case as done in Corollary A.3 will be therefore informative only if this new term
RK remains of small order compared to the other ones. In the next corollary, we will apply it for sub Gaussian covariates.

In particular, under assumption E
[
f∗ (Z)

4
]
< +∞, we can use Cauchy-Schwarz inequality to obtain

RK ≤ 2(1− pK)1/2E
[
f∗ (Z)

4
]1/2

. (24)

Proof of Corollary A.3 The main idea of the proof is to consider the subsample of observations that are in K:

EK = {i ∈ [n], Xi ∈ K} . (25)

Step 1: Law on subsample
Let’s start with a useful lemma to describe the elements of subsample induced by EK:

Lemma A.4. Let S = (Xi)i∈N be a sequence of independent variables with same distribution and iS = inf{i,Xi ∈ K}.
We suppose that pK > 0, then iS <∞ almost surely and XiS has the same distribution as X|(X ∈ K).

Proof. P (iS > k) = pkK thus
∑

P (iS > k) is convergent. Borel-Cantelli lemma shows that iS < ∞ almost surely.



Consider a bounded function φ:

E [φ(XiS )] =

∞∑
k=1

P (iS = k)E [φ(Xi)|iS = k]

=

∞∑
k=1

P (iS = k)E [φ(Xk)|Xk ∈ K;X1, ..., Xk−1 /∈ K]

=

∞∑
k=1

P (iS = k)E [φ(Xk)|Xk ∈ K] because Xk does not depend on Xj , j < k

= E [φ(X1)|X1 ∈ K] .

This concludes the lemma.

Thanks to Lemma A.4, we can show (Xi, Yi) ∼ Law ((X,Y )|(X ∈ K)) for all i ∈ EK.
Let (X̃, Ỹ ) ∼ Law ((X,Y )|X ∈ K). Using the same notations of lemma, we can write the Bayes predictor for the
regression problem involving the “conditional” data (Ỹ , X̃): For all x ∈ K,

f̃?(x) = E
[
Ỹ |X̃ = x

]
= E [YiS |XiS = x]

=

∞∑
k=1

P (iS = k)E [Yk|Xk = x ∈ K;X1, ..., Xi−1 /∈ K]

=

∞∑
k=1

P (iS = k)E [Yk|Xk = x ∈ K] because Xk does not depend on Xj , j < k

= E [Y |X = x]

= f?(x).

Thus,
∀x ∈ Supp (X) , f̃?(x) = 1x∈Kf?(x). (26)

Step 2: Decomposition of excess risk
We can decompose:

E
[
(fK(X)− f?(X))

2
]
≤ E

[
1X∈K (fK(X)− f?(X))

2
]

+ E
[
1X/∈K (fK(X)− f?(X))

2
]

(27)

≤ pKE
[
(fK(X)− f?(X))

2 |X ∈ K
]

+ E
[
1X/∈Kf

?(X)2
]
, (28)

using definition for the second term. We will bound the first term using Theorem A.2 by conditioning according to EK.

E
[
(fK(X)− f?(X))

2 |X ∈ K
]

= E
[(
fK(X̃)− f̃?(X̃)

)2
]

by definition (29)

= E
[
E
[(
fK(X̃)− f̃?(X̃)

)2

|EK
]]
. (30)

Let E be a subset of [n]:

• If E is empty,

E
[(
fK(X̃)− f̃?(X̃)

)2

|EK = E

]
= E

[
f̃?(X̃)2

]
= E

[
f?(X̃)2

]
, (31)

using that fK = 0 if EK is empty.



• If E is non-empty, fK is the clipped OLS estimator for the problem (Ỹ , X̃) and the dataset (Yi, Xi)i∈E , thus

E
[(
fK(X̃)− f?(X̃)

)2

|EK = E

]
≤ cmax

{
σ2, L2

K
} dim(F)(1 + log(|E|))

|E|

+8 inf
f∈F

E
[(
f(X̃)− f?(X̃)

)2
]
,

(32)

using Theorem A.2.

Therefore,

E
[(
fK(X̃)− f?(X̃)

)2

|EK
]
≤ cmax

{
σ2, L2

K
} dim(F)(1 + log(n))

|EK|
1|EK|>0 + 1|EK|=0E

[
f?(X̃)2

]
+8 inf

f∈F
E
[(
f(X̃)− f?(X̃)

)2
]
,

(33)

using log(|EK|) ≤ log(n). Moreover |EK| is a binomial distribution with parameters pK and n, thus

E
[(
fK(X̃)− f?(X̃)

)2
]
≤ cmax

{
σ2, L2

K
} 2dim(F)(1 + log(n))

(n+ 1)pK
+ (1− pK)nE

[
f?(X̃)2

]
+8 inf

f∈F
E
[(
f(X̃)− f?(X̃)

)2
]
,

(34)

using the expectation of the inverse of a binomial distribution. By combining (34) and (28), and using

E
[(
f(X̃)− f?(X̃)

)2
]

= E
[
(f(X)− f?(X))

2 |X ∈ K
]

= p−1
K E

[
1X∈K (f(X)− f?(X))

2
]
,

we find

E
[
(fK(X)− f?(X))

2
]
≤ cmax

{
σ2, L2

K
} dim(F)(1 + log(n))

n

+8 inf
f∈F

E
[
1X∈K (f(X)− f?(X))

2
]

+RK,
(35)

where pK = P (X ∈ K) and RK = (1− pK)nE
[
1X∈Kf

?(X)2
]

+ E
[
1X/∈Kf

?(X)2
]
.

Lemma A.5. Under Assumption 9, we have for all D >
√
γ,

∀i ∈ [p], ∀D >
√
γ, P [|Xi| > D] ≤ 2 exp

[
−
(
D −√γ

)2
2γ

]
, (36)

and

P (Z /∈ KD) ≤ 2d exp

(
−
(
D −√γ

)2
2γ

)
. (37)

Proof. Let’s fix m ∈M and i ∈ [p], by Assumption 9: By bounding the tail of a Sub-Gaussian distribution,

P (|Xi − EXi| > D) ≤ 2 exp

(
−D

2

2γ

)
. (38)

Since |Xi|+
√
γ ≥ |Xi|+ |EXi| ≥ |Xi − EXi|, we have

∀i ∈ [p],∀D >
√
γ, P (|Xi| > D) ≤ 2 exp

(
−
(
D −√γ

)2
2γ

)
.



For the second point, we make a union bound and we use (36):

P (Z /∈ KD) =P
(∥∥Xobs(m)

∥∥
∞ > D

)
≤ P (‖X‖∞ > D)

≤
d∑
i=1

P (|Xi| > D)

≤ 2d exp

(
−
(
D −√γ

)2
2γ

)
.

A.3. Proof of Theorem 3.1

The proof consists in verifying the assumptions of the corollary A.3 and to bound the additional term RKD .

• supZ∈KD |f
?(Z)| upper bound:

sup
Z∈KD

|f?(Z)| = sup
m∈M

sup
‖xobs(m)‖∞≤D

∣∣f?m(xobs(m))
∣∣

= sup
m∈M

sup
‖xobs(m)‖∞≤D

∣∣f?m(xobs(m))− f?m(0)
∣∣+ |f?m(0)|

= sup
m∈M

sup
‖xobs(m)‖∞≤D

B
∥∥xobs(m)

∥∥
∞ +B,

using Assumption 10, thus
sup
Z∈KD

|f?(Z)| ≤ (D + 1)B ≤ L. (39)

• RKD upper bound: From (24)

RK ≤ 2(1− pKD )1/2E
[
f∗ (Z)

4
]1/2

≤ 2

√
P (Z /∈ KD)E

[
f∗ (Z)

4
]

≤ 2
√

2d exp

(
−
(
D −√γ

)2
4γ

)√
E
[
f∗ (Z)

4
]
. (40)

It remains to bound

E
[
f∗ (Z)

4
]

=
∑
m∈M

P (M = m)E
[
f∗m
(
Xobs(m)

)4 |M = m
]

=
∑
m∈M

P (M = m)E
[∣∣∣∣f∗m (Xobs(m)

)
− f∗m (0)

∣∣+ |f∗m (0)|
∣∣4 |M = m

]
≤ 8

∑
m∈M

P (M = m)E
[
B4
∥∥Xobs(m)

∥∥4

2
+B4|M = m

]
by Assumption 10

≤ 8B4
∑
m∈M

P (M = m)E
[
‖X‖4∞ |M = m

]
+B4.

≤ 8B4
(
E
[
‖X‖4∞

]
+ 1
)
. (41)



Then,

E
[
‖X‖4∞

]
≤ E

[
(‖X − EX‖∞ + ‖EX‖∞)

4
]

by triangular inequality

≤ 8E
[
‖X − EX‖4∞ + ‖EX‖4∞

]
≤ 8E

[
‖X − EX‖4∞

]
+ 8γ2 by Assumption 9

≤ 8E
[
max
j∈[d]
|Xj − EXj |4

]
+ 8γ2

≤ 8

d∑
j=1

E
[
|Xj − EXj |4

]
+ 8γ2

≤ 8d
(

2! (4γ)
2
)

+ 8γ2 (42)

≤ 257dγ2. (43)

We have used moment’s characterization (Boucheron et al., 2013, Theorem 2.2) in (42). Using (40), (41) and (43), we
have

RKD ≤ 64B2d1/2 (γ + 1) exp

(
−
(
D −√γ

)2
4γ

)
.

The choice D =
√
γ +

√
4γ log(n) leads to:

RKD ≤ 64B2 (γ + 1)
d

n
. (44)

Since Assumptions of Corollary A.3 are satisfied, we have

E
[(
TLf̂

(D-LS)(Z)− f∗(Z)
)2
]
≤ c

[
max

[
σ2

na, B
2(D + 1)2

] 2dd(log(n) + 1)

n
+ 64B2 (γ + 1)

d

n

]
+ 8AFb

≤ c2 max
(
σ2

na, L
2
) 2dd (log(n) + 1)

n
+ 8AFb .

A.4. Proof of Corollary 3.2

We just have to check the assumptions of the Theorem 3.1.

• Under Assumptions of Proposition 2.3 f?m is linear:

|fm(x)− fm(y)| ≤
∣∣∣〈x− y, δ(m)

〉∣∣∣
= ‖x− y‖∞

∣∣∣∣〈 x− y
‖x− y‖∞

, δ(m)

〉∣∣∣∣
≤ ‖x− y‖∞ sup

‖u‖∞≤1

∣∣∣〈u, δ(m)
〉∣∣∣

= ‖x− y‖∞
∥∥∥δ(m)

∥∥∥
1
,

thus 10 is verified with B = maxm∈Mmax
[
|δ(m)

0 |,
∥∥δ(m)

∥∥
1

]
.

• Let’s check Assumption 9:



– Under Assumption 3 and (5 or 4), for j ∈ [d], Xj is Gaussian, thus Xj − EXj is V[Xj ]-Sub-Gaussian and{
E [Xj ]

2 ≤ γ
V [Xj ] ≤ γ,

where γ = maxj∈[d] E
[
X2
j

]
.

– Under Assumption 8: Let γ such that for all m ∈M and j ∈ [d],

E
[
X2
j |M = m

]
≤ γ (45)

We will use moment characterisation (Boucheron et al., 2013, Theorem 2.1) to proove that the tail of Xj is
Sub-Gausian.

E
[
(Xj − EXj)

2q
]
≤ E

[
X2q
j

]
=
∑
m∈M

pmE
[
X2q
j |M = m

]
By assumption, Xj |M = m is Gaussian, we denote by ej,m is expectancy, we have e2

j,m ≤ γ, from this it follow
that

E
[
X2q
j |M = m

]
=

2q∑
k=0

(
2q

k

)
E
[
(Xj − ej,m)

k |M = m
]
e2q−k
j,m

=

q∑
k=0

(
2q

2k

)
E
[
(Xj − ej,m)

2k |M = m
]
e2q−2k
j,m

≤
q∑

k=0

(
2q

2k

)
E
[
(Xj − ej,m)

2k |M = m
]
γ2q−2k

≤
q∑

k=0

(
2q

2k

)
(2k)!

2kk!
γ2kγ2q−2k

≤ γ2q(2q)!

q∑
k=0

1

2k

≤ 2γ2q(2q)!.

Thus,
E
[
(Xj − EXj)

2q
]
≤ (2γ)

2q
(2q)!.

This conclude that Xj − EXj is 8γ-Sub-Gaussian.

B. Proofs of the main result from Section 4
B.1. Intermediate results

The following lemma allows to control a key quantity, that appears when we try to separate the frequent patterns among
those that are less frequent.

Lemma B.1. Let’s define

Rτ,p(n) := E

[ ∑
m∈M

pm

(
1|Em|>τ

|Em|
d+ 1|Em|=0

)]
,

where Em = {i ∈ [n],Mi = m}. We have for τ ≥ 1/n:

Rτ,p(n) ≤ 5 max

(
1,

d

nτ

)
Cp(τ). (46)



Proof. • Case 1: if τ > 1 then Rτ,p (τ) = 1 and Cp (τ) = 1 thus

Rτ,p(n) ≤ 5Cp (τ) .

• Case 2: We suppose that τ ≤ 1, we have d
nτ = 1. We denote by Kτ the cardinal number of {m ∈M, pm > τ},

Rτ,p(n) ≤ E

[ ∑
m∈M

pm

(
1|Em|>nτ

|Em|
d+ 1|Em|<nτ

)]

= E

[ ∑
m:pm>τ

pm

(
1|Em|>nτ

|Em|
d+ 1|Em|<nτ

)]
+ E

 ∑
m:pm≤τ

pm

(
1|Em|>nτ

|Em|
d+ 1|Em|<nτ

) .
Using that d

nτ = 1, we have 1|Em|>nτ
|Em| d+ 1|Em|<nτ ≤ max

(
1, d

nτ

)
. Thus,

Rτ,p(n) ≤ E

[ ∑
m:pm>τ

pm

(
1|Em|>nτ

|Em|
d+ 1|Em|≤nτ

)]
+ max

(
1,

d

nτ

) ∑
m:pm≤τ

pm

≤ E

[ ∑
m:pm>τ

pm
1|Em|>nτ

|Em|
d

]
+

∑
m:pm>τ

pmP (|Em| ≤ nτ) + max

(
1,

d

nτ

) ∑
m:pm≤τ

pm. (47)

– First term: We use Lemma A.1, E
[
1|Em|>1

|Em|

]
≤ 2

pm(n+1) because |Em| ∼ B(n, pm).

E

[ ∑
m:pm>τ

pm
1|Em|>nτ

|Em|
d

]
≤ 2Kτ

d

n
≤ 2Kττ. (48)

– Second term:∑
m:pm>τ

pmP (|Em| ≤ nτ) ≤
∑

m:pm>τ

pm

(
P (|Em| = 0) + P

(
1|Em|>0

|Em|
≥ 1/τn

))
≤

∑
m:pm>τ

pm

(
(1− pm)n + τnE

[
1|Em|>0

|Em|

])
by Markov inequality

≤
∑

m:pm>τ

pm(1− pm)n +
∑

m:pm>τ

pmτn
2

pm(n+ 1)

≤ Kτ

n
+ 2τKτ . by optimization

≤ 3τKτ because 1/n ≤ τ.
(49)

Combining (47),(48) and (49), we find

Rτ,p(n) ≤ 5τKτ + max

(
1,

d

nτ

) ∑
m:pm≤τ

pm ≤ 5 max

(
1,

d

nτ

)
Cp(τ).

The next lemma is particularly useful to show that the optimal threshold is τ = d/n.

Lemma B.2. For all τ > 0,

Cp

(
d

n

)
≤ max

(
1,

d

nτ

)
Cp (τ) .



Proof. Remark that for any τ ,

Cp

(
d

n

)
=
∑
m∈M

pm ∧
d

n
=
∑
m∈M

pm ∧
(
d

nτ
τ

)
≤
∑
m∈M

pm ∧
(

max

(
1,

d

nτ

)
τ

)
≤ max

(
1,

d

nτ

)
Cp (τ) .

Using that max
(
1, d

nτ

)
≥ 1.

B.2. Proof of Theorem 4.1

Proof. In this proof we use same notations and some results of the proof of Theorem 3.1. We consider on each m ∈ M,
Km,D :=

{
xobs(m),

∥∥xobs(m)

∥∥
∞ ≤ D

}
. From (39), we have for L = (D + 1)B

∀x ∈ Km,D, |f?m(x)| ≤ L. (50)

Let’s begin by a decomposition of excess risk.

E
[(
TLf̂

(τ)(Z)− f?(Z)
)2
]

=
∑
m∈M

pmE
[(
TLf̂

(τ)(Z)− f?(Z)
)2

|M = m

]
=
∑
m∈M

pmE
[(
TLf̂

(τ)
m (Xobs(m))− f?m(Xobs(m))

)2

|M = m

]
,

where f?m(Xobs(m)) := f̃m
(
Xobs(m)

)
1p̂m>τ . Using Corollary A.3 on each m with

K = Km,D =
{
xobs(m),

∥∥xobs(m)

∥∥
∞ ≤ D

}
,

we have

E
[(
TLf̂

(τ)
m (Xobs(m))− f?m(Xobs(m))

)2

|M = m,Em

]
≤ 1|Em|≤τnE

[
f?m(Xobs(m))

2|M = m
]

+cσ2
na ∨ L2 d

|Em|
1|Em|>τn

+8Approx (f?m,Fm) +RKm,D .

We split the first term:

1|Em|≤τnE
[
f?m(Xobs(m))

2|M = m
]

= 1|Em|≤τnE
[
1‖xobs(m)‖∞≤D

f?m(Xobs(m))
2|M = m

]
+1|Em|≤τnE

[
1‖xobs(m)‖∞>D

f?m(Xobs(m))
2|M = m

]
.

(51)

If Xobs(m) ∈ Km,D then f?m(Xobs(m))
2 ≤ L2 and the second term is smaller than RKm,D . Thus,

1|Em|≤τnE
[
f?m(Xobs(m))

2|M = m
]
≤ 1|Em|≤τnL

2 +RKm,D . (52)

By combining,

E
[(
TLf̂

(τ)
m (Xobs(m))− f?m(Xobs(m))

)2

|M = m,Em

]
≤ cσ2

na ∨ L2

(
d

|Em|
1|Em|>τn + 1|Em|≤τn

)
+8Approx (f?m,Fm) + 2RKm,D .



By summing and taking expectation, we obtain

E
[(
TLf̂

(τ)(Z)− f?(Z)
)2
]

= cσ2
na ∨ L2

∑
m∈M

pmE
[(

d

|Em|
1|Em|>τn + 1|Em|≤τn

)]
+8AFb + 2RKD .

(53)

We have used that
∑
m∈M pmApprox (f?m,Fm) = AFb and

∑
m∈M pmRKm,D = RKD . From Lemma B.1 we have∑

m∈M
pmE

[(
d

|Em|
1|Em|>τn + 1|Em|≤τn

)]
≤ 5 max

(
1,

d

nτ

)
Cp(τ).

We recall that we have from (44) and (60):

RKD ≤ 64L2 d

n
≤ 64L2Cp(d/n) ≤ 64L2 max

(
1,

d

nτ

)
Cp(τ), (54)

using Lemma B.2. This concludes on (10).

The optimal choice of τ to minimize the upper bound (10) is τ = d/n, by a direct application of Lemma B.2.

C. Properties of Cp and examples
C.1. Insight on Cp

In this section, we will enumerate a number of results on Cp. In particular, thanks to the link with the notion of entropy, and
the properties linking structure and complexity of distribution p, we can deal with examples such as the homogeneous and
heterogeneous Bernoulli Model.

C.1.1. LINK WITH ENTROPIES

Computing Cp
(
d
n

)
explicitly can be tricky and requires the knowledge of the distribution p of the missing data patterns.

The purpose of the following development is to control this complexity with generic bounds.

Definition C.1. Let b > 0, let Pb(M) be the set of p ∈ P(M) such that for all m ∈M, pm ≤ b. We define Gb the set of
function g : (1/b,+∞) −→ R?+ such that

(G1) : x 7−→ g(x) is non decreasing
(G2) : x 7−→ xg(1/x) is non decreasing.

And, for all p ∈ Pb(M), set
Hg(p) :=

∑
m∈M

pmg(1/pm).

Depending on the choice of g, the quantities Hg(p) can convey some characteristics of the distribution p. For example, if
g = id, Hg(p) falls down to the cardinal of the support. If now g = log, this leads to the standard Shannon entropy. Note
that if we rewrite (11) as

∀τ ∈ (0, 1), Cp (τ) :=
∑
m∈M

pm min

(
1,

τ

pm

)
, (55)

then, Cp(τ) = Hg(p) for g(x) = min(1, τx). This gives the intuition of the following result.

Theorem C.2. Let b > 0, for all p ∈ Pb(M) and τ ∈ (0, b),

Cp (τ) = inf
g∈Gb

Hg(p)

g(1/τ)
. (56)

The reformulation of Cp provided by Theorem C.2 gives us a great diversity of possible upper bounds on Cp. The following
table presents different upper bounds obtained for different choices of functions.



Name g Cp (τ) upper bound Related entropy
Cardinal (or Hartley) g(x) = x card (M) τ Ent1(p) = log (card (M))

Shannon g(x) = log x Ent0(p)
log(1/τ) Ent0(p) =

∑
pm log (1/pm)

α−Renyi g(x) = x1−α (
τeEntα(p)

)1−α
Entα(p) = 1

1−α log
∑
pαm

α−Bertrand g(x) = x1−α logα(x) τ1−α

logα(1/τ)

∑
m∈M (pm log (1/pm))

α Na

Table 1. Upper bounds on Cp (τ). Note that the parameter α is in (0, 1) and that Shannon and Bertrand’s upper bounds are verified only
for p ∈ P1/e.

The bound based on the cardinality ofM is a classical one and suffers from the curse of dimensionality when the cardinality
is too large. The Shannon bound is cardinal-free and adapts with the entropy of p. Therefore, even if the cardinal scales
exponentially in the dimension, when the entropy is low, the corresponding bound is more relevant than the classical bound,
all the more so as when τ is large (this dependence being only logarithmic). The Renyi bound, obtained with g(x) = x1−α,
is a good compromise between the two previous ones: it is smaller than the cardinal for large τ and decreases rapidly as τ
decreases.
Remark C.3 (Rényi entropy). Depending on the considered τ , upper-bounds provided in Table 1 may be more or less
relevant. First, note that the first three upper bounds (Hartley-Shannon-Renyi) of Table 1 are informative, i.e. strictly less
than 1, if and only if

τ < e−Entα(p), (57)

for α ∈ [0, 1], where Rényi’s entropy is defined by

Entα (p) :=
1

1− α
log

( ∑
m∈M

pαm

)
. (58)

Note that Shannon and Hartley’s entropies can be reformulated as limiting cases of Renyi’s entropy (Rényi et al., 1961)
when α = 1 and α = 0. Note also that all of these entropies are one when the distribution p of the missing patterns is
uniform. As soon as the latter is non-uniform, different regimes for these entropies can be identified. Indeed, for very small
τ (less than minm pm), Hartley’s bound (i.e. the cardinal-type bound) is the lowest one. For larger τ , Rényi’s bound is
bounded from above by Hartley’s one (i.e. the cardinal-type bound) and from below by Shannon’s one. Furthermore, remark
that Renyi’s Entropy is non-increasing in α (see (Rényi et al., 1961)), so given (57), as τ decreases, the Shannon’s bound is
the first one to be informative (less than 1), followed by Rényi’s one, in turn, followed by Hartley’s one. The advantage of
an entropic form is that you can use the additivity property which is very useful for dealing with examples.
Remark C.4. A number of properties other than Theorem C.2 are very useful for dealing with certain distributions that have
a particular structure (for example defined as a tensor product).

The proof of Theorem C.2 is based on the following lemma.

Lemma C.5. Let b > 0, τ, p ∈ (0, b) and g ∈ Gb, one has

min(p, τ) ≤ pg(1/p)

g(1/τ)
. (59)

Proof.

• If p < τ ,

min(τ, p) = p

=
pg(1/p)

g(1/p)

≤ pg(1/p)

g(1/τ)
using that 1/τ < 1/p and condition (G1).



• If τ ≤ p,

min(τ, p) = τ

=
τg(1/τ)

g(1/τ)

≤ pg(1/p)

g(1/τ)
using that τ ≤ p and condition (G2).

Theorem C.2 is just an application of this lemma for each term of Cp(τ) in (11).

C.1.2. SOME PROPERTIES OF Cp (τ)

Proposition C.6.

1. Cp is non-decreasing, concave, and for all λ > 1 and τ ∈ (0, 1):

Cp (λτ) ≤ λCp (τ) . (60)

2. For τ ∈ (0, 1):
τ ≤ Cp(τ). (61)

3. Let p, q be two distributions with countable supports, for all τ ∈ (0, 1),

Cp⊗q (τ) ≤ Cp (Cq (τ)) . (62)

4. “Data processing inequality”: Let f :M−→M′, we denote by pf the distribution of f(M) when M ∼ p. We have
for all τ ∈ (0, 1]

Cpf (τ) ≤ Cp (τ) . (63)

The first inequality reads backward, it is less expensive to increase the argument than to increase the factor before Cp. This
inequality is illustrated in Theorem 4.1 with the optimal choice of threshold. The second inequality (61) gives us a lower
bound. Inequalities (62) and (63) will help us to deal with examples that involve several combined processes of missing data
generation such as the database merge model of Section 4.2.3.

Proof. • Proof of (60): For λ ≥ 1, min(pm, λτ) ≤ λmin(pm, τ), this conclude that Cp(λτ) ≤ λCp(τ).

• Proof of (61): We use (60) with λ = 1/τ > 1.

• Proof of (62):

Cp⊗q(τ) =
∑
m,m′

min(pmqm′ , τ)

=
∑
m

∑
m′

qm′ min

(
pm,

τ

qm′

)
=
∑
m

∑
m′

qm′ min

(
pm,min

(
τ

qm′
, 1

))
because pm ≤ 1

≤
∑
m

min

(
pm,

∑
m′

qm′ min

(
τ

qm′
, 1

))
using Jensen inequality

≤ Cp (Cq(τ)) using definition.



• Proof of (63): We will use min(a+ b, c) ≤ min(a, c) + min(b, c) for a, b, c ≥ 0.

Cpf (τ) =
∑

k∈Supp(pf )

min
(
pfk , τ

)

≤
∑

k∈Supp(pf )

min

 ∑
m:f(m)=k

pm, τ


≤

∑
k∈Supp(pf )

∑
m:f(m)=k

min (pm, τ)

≤
∑

m∈Supp(p)

min (pm, τ)

≤ Cp(τ).

C.2. Bernoulli Model

It is assumed that the components of M are independent, and for j ∈ [d], Mj ∼ B(εj) where εj ∈ [0, 1]. The distribution p
of missing value pattern is p = B(ε1)⊗ · · · ⊗ B(εd). Let’s define ε̄ := 1

d

∑d
j=1 εj , the average proportion of missing values.

When ε1 = ε2 = · · · = εd = ε̄, the model is homogenous, otherwise it is heterogenous.

C.2.1. NUMERICAL EXPERIMENTS.

The quantity Cp
(
d
n

)
can be compared graphically for different missing pattern distributions of the Bernoulli model. In

particular, we have chosen d = 4 and

• pA: Homogeneous Bernoulli with ε̄ = 0.5,

• pB : Homogeneous Bernoulli with ε̄ = 0.15,

• pC : Heterogeneous Bernoulli with ε̄ = 0.15 (ε1 = 0.3, ε2 = 0.1, ε3 = 0.05, ε4 = 0.05),

• pD: Homogeneous Bernoulli with ε̄ = 0.10.

Note that pA matches with the uniform distribution over all missing patterns. Figure 4 highlights three key points:

1. The distribution pA, which corresponds to the uniform distribution onM, is the worst in terms of complexity Cp.

2. The complexity seems to increase with the proportion of missing data ε̄ for homogeneous Bernoulli.

3. The comparison between homogeneous and heterogeneous does not seem relevant because pB and pC have the same
proportion of missing values and each has a regime with a better Cp than the other.

C.2.2. PROOF OF PROPOSITION 4.4 ON THE HOMOGENEOUS CASE

Proof. From (15), we must bound |Bs| and δs. For |Bs|, from (Massart, 2007, Proposition 2.5)

|Bs| =
s∑

k=0

(
n

k

)
≤
(
ed

s

)s
. (64)
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Let B ∼ B(ε, d), we have δs = P (B > s). Let t > 0, from Markov inequality

P (B > s) = P
(
tB > ts

)
≤

E
[
tB
]

ts

=
(εt+ (1− ε))d

ts

≤ (εt+ 1)
d

ts

= exp (d log(1 + εt)− s log t)

≤ exp (dεt− s log t) .

The optimal choice t = s
εd , leads to

P (B > s) ≤ εs
(
d

s

)s
. (65)

Combining (65) and (64), we have,

Cp

(
d

n

)
≤
(
εs +

d

n

)(
ed

s

)s
.

C.2.3. HETEROGENEOUS CASE

Under a certain constraint, the same result as in the homogeneous case can be formulated for the heterogeneous case.

Proposition C.7. Under the assumptions of Theorem 3.1, and the Heterogeneous Bernoulli Model, if

sε̄ (d/n) = 1 ∨

⌊
log
(
n
d

)
log(ε̄−1)

⌋
∧ d ≥ ε̄d,

then

E
[
E
(
TLf̂

(d/n)
)]

. an

(
ed

sε̄ (d/n)

)sε̄(d/n)
d

n
+AFb .



Proof of C.7. Let’s τ = d/n, it is sufficient to show that

Cp (τ) ≤
(

ed

sε̄(τ)

)sε̄(τ)

τ.

We remark that ε 7−→ Entα (B(ε)) = 1
1−α log (εα + (1− ε)α) is concave for α ∈ (0, 1). Thus Renyi entropy of p takes the

form

Entα (p) =

n∑
i=1

Entα (B(εi)) using additivity of Renyi entropy

≤ dEntα (B(ε̄)) using Jensen inequality

=
d

1− α
log (ε̄α + (1− ε̄)α) ,

using Jensen inequality. From Renyi’s bound of Table 1, for all α ∈ (0, 1) this leads to

Cp (τ) ≤ (ε̄α + (1− ε̄)α)
d
τ1−α

≤ (ε̄α + 1)
d
τ1−α

≤ elog(1+ε̄α)dτ1−α

≤ eε̄
αd+(1−α) log(τ).

We can minimize function ψ(α) = ε̄αd+ (1− α) log(τ) on (0, 1):

ψ′(α) = log (ε̄) ε̄αd− log τ.

The first order condition gives us that

log (ε̄) ε̄α
?

d− log τ = 0.

And then,

ε̄α
?

d =
log τ

log ε̄
= sε̄(τ).

Thus,

α? =
log
(
sε̄(τ)
d

)
log (ε̄)

.

We have α? ∈ (0, 1) if and only if dε̄ < sε̄(τ) < d. Under this condition, we have

ψ(α) = sε̄(τ) + log(τ)

1−
log
(
sε̄(τ)
d

)
log (ε̄)


= sε̄(τ) +

log(τ)

log(ε̄)

(
log (ε̄)− log

(
sε̄(τ)

d

))
= sε̄(τ)

(
1 + log

(
dε̄

sε̄(τ)

))
= sε̄(τ) log

(
edε̄

sε̄(τ)

)
.

The upper bound is therefore

Cp (τ) ≤
(
edε̄

sε̄(τ)

)sε̄(τ)

=

(
ed

sε̄(τ)

)sε̄(τ)

ε̄sε̄(τ) =

(
ed

sε̄(τ)

)sε̄(τ)

τ. (66)



C.3. Proof of Proposition 4.5

Proof. We denote by pP (resp. pN ) the distribution of P (resp. N ). Using (63), we have

Cp ≤ CpH⊗pN .

Furthermore, (62) leads to,

Cp

(
d

n

)
≤ CpH

(
CpN

(
d

n

))
≤ hCpN

(
d

n

)
because |Supp(H)| ≤ h

≤
(

ed

sη (d/n)

)sη(d/n)

h
d

n
,

using Proposition 4.4 on CpN .

C.4. Proof of Lemma 4.2

Proof. Let B be a subset ofM, we have

Cp

(
d

n

)
=
∑
m∈M

pm ∧
(
d

n

)
=
∑
m∈B

pm ∧
(
d

n

)
+
∑
m∈Bc

pm ∧
(
d

n

)
≤
∑
m∈B

d

n
+
∑
m∈Bc

pm

≤ |B| d
n

+ P (M ∈ B) .

We obtain equality with B = {m ∈M, pm > d/n}. Thus,

Cp

(
d

n

)
= inf
B⊂M

{
Card(B)

d

n
+ P (M ∈ Bc)

}
.

D. Proof of Section 4.3
The purpose of this part is to establish the lower bounds of Section 4.3.

D.1. Preliminary lemmas.

We consider a set of identifiable models:

PI := {Pµ, µ ∈ I} ,

where Pµ is identifiable and I is a set of parameters. Let X1, ..., Xn be i.i.d. observations of Pµ. We define the quadratic
risk of an estimator µ̂ as:

r(µ, µ̂) := EPµ
[
(µ̂n − µ)

2
]
. (67)

The first step is to lower bound the integrated quadratic risk according to a distribution Π on the set of parameters.



Lemma D.1. We consider the class of models

P :=
{
Pµ ∼ N (µ, σ2), µ ∈ R

}
,

with σ2 known. Let λ > 0 and consider Π ∼ N (0, λ2) as a prior distribution for µ. Then

inf
µ̂

Eµ∼Π [r (µ̂, µ)] =
λ2σ2

σ2 + λ2n
, (68)

where the infinimum is over all σ(X1, ..., Xn)-measurable estimator µ̂.

Proof.

inf
µ̂

Eµ∼Π [r (µ̂, µ)] = inf
µ̂

Eµ∼Π

[
Eµ
[
(µ̂− µ)

2
]]

= inf
µ̂

E
[
E
[
(µ̂− µ)

2 |X1, ..., Xn

]]
= E

[
(E [µ|X1, ..., Xn]− µ)

2
]

= V [E [µ|X1, ..., Xn]] ,

because Bayes estimator E [µ|X1, ..., Xn] is optimal for the integrated Risk and unbiased. According prior Π, (µ,X1, ..., Xn)
is a gaussian vector with the following covariance matrix,

Γ =


λ2 λ2 · · · λ2

λ2 λ2 + σ2 · · · λ2

...
...

. . .
...

λ2 λ2 · · · λ2 + σ2

 .

Thus, the variance of E [µ|X1, ..., Xn] is

V [E [µ|X1, ..., Xn]] = λ2 −
(
λ2, · · · , λ2

) λ2 + σ2 · · · λ2

...
. . .

...
λ2 · · · λ2 + σ2


−1 λ2

...
λ2


= λ2 −

(
λ2, · · · , λ2

) (
σ2In + λuuT

)−1

 λ2

...
λ2

 ,

where u = (1, ..., 1)T . The Sherman-Morrison formula (see (Petersen et al., 2008) for example) gives

(
σ2In + λuuT

)−1
=

1

σ2
In +

λ2uuT /σ2

1 + λ2uTu
σ2

=
1

σ2
In +

λ2uuT

σ2 + λ2n
.

Thus,

V [E [µ|X1, ..., Xn]] = λ2 −
(
nλ4

σ2
+

n2λ4

σ2 + λ2n

)
=

λ2σ2

σ2 + λ2n
.

Thus,

inf
µ̂

Eµ∼Π

[
Eµ
[
(µ̂− µ)

2
]]

=
λ2σ2

σ2 + λ2n
.



Remark D.2. Using the comparison between minimax and Bayes risks, this result can be used to prove that

inf
µ̂

sup
µ∈R

r (µ̂, µ) ≥ λ2σ2

σ2 + λ2n
.

We obtain the classical result of the minimax estimation of a Gaussian mean where λ→∞:

inf
µ̂

sup
µ∈R

r (µ̂, µ) =
σ2

n
.

Note that this lower bound is only valid when there are no constraints on the parameter space. However, we are interested in
guarantees when µ is bounded, this is the purpose of the following result.

Lemma D.3. Let λ > 0 and Π ∼ N (0, λ2). Then

|Eµ∼Π[r (µ, TRµ̂)]− Eµ∼Π[r (TRµ, TRµ̂)]| ≤ 8λ2e−
1
4 (Rλ )

2

. (69)

Proof.

|Eµ∼Πr (µ, TRµ̂)− Eµ∼Πr (TRµ, TRµ̂)| ≤
∣∣∣(TRµ̂+R)

2
Π [µ < −R] + (TRµ̂−R)

2
Π [µ > R]

∣∣∣
+

∣∣∣∣∣
∫
|µ|>R

(TRµ̂+ µ)
2
dΠ

∣∣∣∣∣
≤
∫
|µ|>R

(
6R2 + 2µ2

)
dΠ

≤ 8EΠ

[
1|µ|>Rµ

2
]

(70)

≤ 8
√

Π (|µ| > R)EΠ [µ4] (71)

≤ 8

√
e−

R2

2λ2 × 3
σ4

n2
(72)

≤ 8λ2e−
1
4 (Rλ )

2

.

We have used Cauchy Schwarz inequality in (71), moment and tail upper bound of Gaussian distribution in (72).

D.2. Minimax estimation of a value per missing pattern

We consider the following Problem,

Y = f?(M) + ε, (73)

with f? a deterministic function of the missing pattern M. We define P̃p(σ,R) as the set of P that satisfies:

1. P(M = m) = pm.

2. ε ∼ N (0, σ2) and ε is independent of M .

3. maxm∈M |f?(m)| ≤ R

We denote by Pf the probability that satisfies the two first conditions with f? = f . We have the following minimax result
on the estimation of f?.

Proposition D.4. Let R, σ, c > 0 such that c ≤ 16e−
1
4 (Rσ )

2

, then

inf
f̂

sup
P∈P̃(σ,R)

E
[(
f̂(M)− f?(M)

)2
]
≥ (1− c)σ2Cp

(
1

n

)
. (74)



Proof. Step 1: Comparison with integrated risk and decomposition.

Let f̂ a estimator of f?. Without loss of generality, we can assume that f̂ belongs to BR := {f |∀m ∈M, |f(m)| ≤ R}.
Note Π a prior distribution for f?.

sup
P∈P̃(σ,R)

EP

[(
f̂(M)− f?(M)

)2
]

= sup
f?∈BR

EPf?

[(
f̂(M)− f?(M)

)2
]

≥ Ef?∼ΠEPf?

[(
f̂(M)− TRf?(M)

)2
]
.

We denote by EΠ = Ef?∼ΠEPf? .

sup
P∈P(σ,R)

EP

[(
f̂(M)− f?(M)

)2
]
≥ EΠ

[(
f̂(M)− TRf?(M)

)2
]

≥ −
∣∣∣∣EΠ

[(
f̂(M)− TRf?(M)

)2
]
− EΠ

[(
f̂(M)− f?(M)

)2
]∣∣∣∣

+EΠ

[(
f̂(M)− f?(M)

)2
]
.

(75)

Step 2: Lower bound of the first term.

We choose Π =
⊗

m∈MN (0, λ2
m) where 0 ≤ λm ≤ σ. Conditioning by M and using Fubini theorem, we obtain,

EΠ

[(
f̂(M)− f?(M)

)2
]

= Ef?∼Π

∑
m∈M

pmEPf?

[(
f̂(m)− f?(m)

)2
]

=
∑
m∈M

pmEΠ

[(
f̂(m)− f?(m)

)2
]

=
∑
m∈M

pmE
[
EΠ

[(
f̂(m)− f?(m)

)2
]
| (Mi)i∈[n]

]
≥
∑
m∈M

pmE
[
EΠ

[(
E
[
f?(m)|(Yi)i∈[n]

]
− f?(m)

)2] | (Mi)i∈[n]

]
(76)

=
∑
m∈M

pmE
[
EΠ

[
(E [f?(m)|(Yi)i∈Em ]− f?(m))

2
]
| (Mi)i∈[n]

]
(77)

=
∑
m∈M

pmE
[
EΠ [V [f?(m)|(Yi)i∈Em ]] | (Mi)i∈[n]

]
.

We have used variational definition of E
[
f(m)|(Yi)i∈[n]

]
in (76) and for a prior distribution Π, Yi and Yj are independent

provided that Mi 6= Mj in (77). Using Lemma D.1, we obtain,

EΠ

[(
f̂(M)− f?(M)

)2
]
≥
∑
m∈M

pmE
[

λ2
mσ

2

σ2 + λ2
m |Em|

]
.

Using Jensen inequality (and Lemma A.1 with |Em| ∼ B(n, pm)), we have

EΠ

[(
f̂(M)− f?(M)

)2
]
≥
∑
m∈M

pm
λ2
mσ

2

σ2 + λ2
mnpm

. (78)

Step 3: Lower bound of the second term.



Using Lemma D.3, for A =

∣∣∣∣EΠ

[(
f̂(M)− TRf?(M)

)2
]
− EΠ

[(
f̂(M)− f?(M)

)2
]∣∣∣∣ , we have

A ≤
∑
m∈M

pm

∣∣∣∣EΠ

[(
f̂(m)− TRf?(m)

)2
]
− EΠ

[(
f̂(m)− f?(m)

)2
]∣∣∣∣

≤
∑
m∈M

pm8λ2
me
− 1

4 ( R
λm

)
2

≤ c

2

∑
m∈M

pmλ
2
m, (79)

with c ≤ 16e−
1
4 (Rσ )

2

and since λm ≤ σ.

Step 4: Choice of λm and conclusion.

Combining (78) and (79) in (75), we obtain

sup
P∈P̃(σ,R)

EP

[(
f̂(M)− f?(M)

)2
]
≥
∑
m∈M

pm
λ2
mσ

2

σ2 + λ2
mnpm

− c

2

∑
m∈M

pmλ
2
m.

We choose {
λ2
m = σ2

pmn
if pm > 1/n,

λ2
m = σ2 if pm ≤ 1/n.

The condition λm ≤ σ holds and pmλ2
m = σ2 min (pm, 1/n) , thus

sup
P∈P(σ,R)

EP

[(
f̂(M)− f?(M)

)2
]
≥
∑
m∈M

pm
σ2 min (pm, 1/n)

1 + min (pm, 1)
− c

2
σ2

∑
m∈M

min (pm, 1/n)

≥
∑
m∈M

pm
σ2 min (pm, 1/n)

2
− c

2
σ2

∑
m∈M

min (pm, 1/n)

≥ σ2

2
(1− c)Cp (1/n) .

D.3. Proof of Section 4.3

Proof of Theorem 4.7. The idea is to reduce the prediction problem on class Pp(R, σ) to an estimation problem on class
P̃p(R/d, σ) and then use Proposition D.4. We denote by m0 the missing pattern without missing values.

Let a ∈ [−1, 1]M, we consider Pa ∈ Pp(R, σ) which satisfies:

1. β0 = Ram0

2. β = R (1/d, ..., 1/d)
T .

3. For all m 6= m0, X|M = m ∼ δµ(m) where µ(m)
mis(m) = (am−am0

)(1, 0, ..., 0)T and µ(m)
obs(m) = 0 (δ denote the Dirac

distribution).

These problems satisfy Assumption 9 with γ = 2.

Step 1: Recall that the Bayes predictor is given by

f?m
(
Xobs(m)

)
= E

[
Y |Xobs(m),M = m

]
= E [〈X,β〉 |X,M = m]

=
〈
Xobs(m), βobs(m)

〉
+ E

[〈
Xmis(m), βmis(m)

〉
|X,M = m

]



Using X|M = m ∼ δµ(m) , we have
f?m
(
Xobs(m)

)
= Ram.

We have f?m R−lipschitz for `∞-norm (because fm is constant) and |f?m(0)| ≤ R then Pa satisfies Assumption 10 with
B = R and B2(γ + 1) ≤ 3R2.

Step 2: Problem reduction. For Pa, Xobs(M) = 0 Pa-a.s., then there are no information in Xobs(M), all the information
is contained in the missing patterns and Z =

(
Xobs(M),M

)
= (0,M) Pa-a.s. i.e. we can ignore Xobs(M). The Bayes

predictor is
f?(M) = RaM ,

and
Y = f?(M) + ε.

This corresponds to Problem (73), and varying a ∈ [−1, 1]M, we obtain the set P̃p(R/d, σ). Thus, using Proposition D.4

max
P∈Pp(σ,R)

EP

[(
f?(Z)− f̂(Z)

)2
]

= max
a∈[−1,1]M

EPa

[(
f?(M)− f̂(M)

)2
]

= max
P∈P̃p(R/d,σ)

EP

[(
f?(M)− f̂(M)

)2
]

≥ (1− c)σ
2

2
Cp

(
1

n

)
.

Proof of Corollary 4.8. We will use the same method as in the previous proof. We need to find a subclass of problem MAR
included in Pp(σ,R). Let a ∈ [−1, 1]M, we denote by Pa the following problem.

1. X1 ∼ N (0, 1).

2. M = h(X1) a.s. where h satisfies P (h(X1) = m) = pm.

3. X2:d|X1 ∼ δµ(h(X1)) where µ(h(X1))
mis(m) = ah(X1)(1, 0, ..., 0)T and µ(h(X1))

(obs(m) = 0.

4. β = R (0, 1/(d− 1), ..., 1/(d− 1))
T .

By construction, Pa is MAR, and Assumption 9 holds with γ = 1. With this new choice of Pa, the rest of the proof is
similar to the proof of Theorem 4.7.

E. Details on numerical experiments of Section 5
The codes of our numerical experiments are all available on a github.com/AlexisAyme/minimax_linear_na.

E.1. Details on data generation setting

In order for the simulations to be reproducible, here are the useful parameters to generate the dataset of Section 5.

Let U ∈ R8×8 be the diagonal matrix per block with each block equal to (1)i,j∈[2]. For all scenarios β = (1, 1, 1, 1, 1, 1, 1, 1)
and β0 = 0.

(a) MCAR µ = (1, 1, 1, 1, 1, 1, 1, 1), Σ = U , and σ = 0.1.

(b) MAR Σ = U on corresponding block and σ = 0.5.



(c) GPMM. (X,M) is distributed according to Assumption 8 with σ = 1 and

• pm1
= 0.6, m1 = (0, 1, 0, 1, 0, 0, 0, 0), µm1

= (0, 5, 4,−1, 0, 0, 0, 0), and Σm1
= U .

• pm2
= 0.3, m2 = (1, 0, 1, 1, 0, 0, 0, 0), µm2

= (1, 3, 0, 2, 0, 0, 0, 0), and Σm2
= (1)i,j∈[8].

• pm3
= 0.02, m3 = (0, 1, 1, 1, 0, 0, 0, 0), µm3

= (0, 5, 4,−1, 0, 0, 0, 0), and Σm3
= I8.

• pm4
= 0.02, m4 = (1, 1, 0, 1, 0, 0, 0, 0), µm4

= (0, 5, 0,−1, 0, 0, 0, 0), and Σm4
= I8.

• pm5
= 0.02, m5 = (1, 1, 0, 0, 0, 0, 0, 0), µm5

= (0,−10, 7,−1, 0, 0, 0, 0), and Σm5
= I8.

• pm6 = 0.02, m6 = (0, 1, 0, 0, 0, 0, 0, 0), µm6 = (0, 9, 0,−1, 0, 0, 0, 0), and Σm6 = I8.

• pm7 = 0.02, m7 = (0, 0, 1, 0, 0, 0, 0, 0), µm7 = (3, 0, 0,−1, 0, 0, 0, 0), and Σm7 = I8.

E.2. Training Time

Figure 5 corresponds to the training time of the simulations in Section 5 and are associated with the curve in Figure 3.
NeuMiss has a much more limiting training time than other methods. The most time-efficient method is also the most biased.
Indeed, Cst-imp+LR does not adapt to any scenario (see Figure 3). The training times are similar for the other methods, but
MICE+LR is only relevant for scenario (a).
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Figure 5. Training time w.r.t. the number of training sample.

E.3. Additional experiments

E.3.1. HIGH DIMENSIONAL SCENARIO

In this section, we assess the numerical performances of pattern-by-pattern regressors, more specifically when the ambient
dimension of the input increases. To illustrate the theoretical generalization bounds, and to show that our methods can
leverage from low-entropic missing pattern distributions, we consider a GPMM in which we make d vary, from 10 to 100,
while keeping a same “complexity” of the missing pattern distribution. To this end, for each dimension d, we generate
50d samples always containing only 4 missing patterns: m1,m2,m3,m4 randomly generated with 50% missing values.
According to the GPMM model, the distribution of X given M = mi, for i = 1, 2, 3, 4, is N (µmi ,Σmi), such that for all
missing patterns µi = 0, and

• pm1
= 0.4, β1 = β, and Σm1

= I;

• pm2 = 0.3, β2 = 0, and Σm2 = Td;

• pm3 = 0.2, β3 = −β, and Σm3 = Td;

• pm4 = 0.1, β4 = 2β, and Σm4 = Td,
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Figure 6. Risk w.r.t. the dimension d. The number of training sample is n = 50d.
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Figure 7. Risk w.r.t. the number of training samples.

where β = ((1/2)j)j∈[d] and Td is a symmetric Toeplitz matrix with coefficients ((1/2)j)j∈[d]. The results are gathered
in Figure 6. Despite the MNAR feature of the generated data, our pattern-by-pattern methods perform well in this
setting, regardless of the increasing dimension: this highlights the compatibility of pattern-by-pattern regressors with
high-dimensional scale provided that the “complexity” of the missing pattern distribution remains bounded.

E.3.2. REAL DATASET

We ran experiments on the real superconductivity dataset (d = 81) by simulating missing patterns corresponding to the
aggregation of 2 datasets (complying with the example developed in Section 4.2.3 choosing η = 0) and constructed as
follows. First a clustering on the outputs (yi)i is performed resulting into two groups of data, the first (resp. second) one
containing observations with high (resp. low) outputs. The first dataset associated to high outputs does not contain any
missing entries in the input variables. The second one, associated to low outputs, presents a single missing pattern in which
only half of the input variables are observed, in particular the ones that are the least correlated to the output y.

Figure 7 shows the results: our proposed predictors behave well in any sample size regimes, outperforming 2-step strategies.
This exemplifies that even in cases easy in appearance where only two missing patterns are surveyed, pattern-by-pattern
regressors remain relevant, being able to efficiently grasp complex dependency between the missing pattern distribution and
the output.


