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Abstract

When ambulances’ turnaround time (TT) in emergency departments is pro-

longed, it not only affects the victim severely but also causes unavailability of

resources in emergency medical services (EMSs) and, consequently, leaves a lo-

cality unprotected. This problem may worsen with abnormal situations, e.g.,

the current coronavirus disease 2019 (COVID-19) pandemic. Taking this into

consideration, this paper presents a first study on the COVID-19 impact on

ambulances’ TT by analyzing historical data from the Departmental Fire and

Rescue Service of the Doubs (SDIS 25), in France, for three hospitals. Because

the TTs of SDIS 25 ambulances increased, this paper also calculated and ana-

lyzed the number of breakdowns in services, which augmented due to shortage

of ambulances that return on service in time. It is, therefore, vital to have a

decision-support tool to better reallocate resources by knowing the time EMSs

ambulances and personnel will be in use. Thus, this paper proposes a novel

two-stage methodology based on machine learning (ML) models to forecast the

TT of each ambulance in a given time and hospital. The first stage uses a multi-

variate model of regularly spaced time series to predict the average TT (AvTT)

per hour, which considers temporal variables and external ones (e.g., COVID-

19 statistics, weather data). The second stage utilizes a multivariate irregularly
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spaced time series model, which considers temporal variables of each ambulance

departure, type of intervention, external variables, and the previously predicted

AvTT as inputs. Four state-of-the-art ML models were considered in this paper,

namely, Light Gradient Boosted Machine, Multilayer Perceptron, Long Short-

Term Memory, and Prophet. As shown in the results, the proposed methodology

provided remarkable results for practical purposes. The AvTT accuracies ob-

tained for the three hospitals were 90.16%, 97.02%, and 93.09%. And the TT

accuracies were 74.42%, 86.63%, and 76.67%, all with an error margin of ±10

minutes.

Keywords: Firemen, Turnaround time, Emergency medical services,

Forecasting, COVID-19, Service breakdown

1. Introduction

It is well known that the Emergency Department (ED) is one of the most

crowded departments in hospitals [1, 2, 3, 4, 5], where people seek immediate

attention given the severity of their problem and long lines are generated con-

tributing to patient dissatisfaction. What is more, EDs’ overcrowding can have5

a knock-on effect on other external services, such as ambulances. Theoretically,

when an ambulance arrives at the hospital with patient(s), the crew transfers

the patient’s care to the ED staff, completes the necessary reports, and cleans

and restocks the ambulance (e.g., replaces stretcher linens) to return on service.

This total time an ambulance spends at the hospital for handing over patient(s)10

is referred to as turnaround interval [6], which we interchangeably refer to as

the turnaround time (TT) of ambulances throughout this paper.

However, with EDs’ overcrowding, there is a problem referred to as ambu-

lance offload delay (AOD), which occurs when ambulances’ patients cannot be

transferred for immediate care to hospitals’ ED [1, 7]. On the one hand, AOD15

risks patients’ life due to delays to receive adequate treatment and/or diagno-

sis, for example. Besides, AOD affects the emergency medical system (EMS) as

their ambulance and staff will be in use for more time. That is, AOD directly
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increases the ambulances’ TT, which poses a population at risk if other major

incidents occur and they cannot attend to them [8, 2, 4, 9].20

Fire departments are a key component of civil security that ensures the

well-being of the population. In some countries such as France, they are also

responsible for emergency medical services and have been facing a continuous

increase in the number of interventions over the years, which represents a need

for the acquisition of more resources and the optimal reorganization of them [10].25

In this study, we analyzed the Departmental Fire and Rescue Service of the

Doubs (SDIS 25) that currently has 71 centers deployed throughout the Doubs

region. In total there are 573 cities and 440 districts. Its main cities are:

Besançon, its capital, where the nearest hospital is Besançon Regional University

Hospital Center (CHRU), Montbeliard in the north, near the North Franche-30

Comté Hospital (HNFC), and Pontarlier in the south, near the Hospital Center

Intercommunal de Haute-Comté (CHIH).

The SDIS 25 is equipped with specialized engines for each type of interven-

tion and the firefighters have various skills in operating these engines. If there

are not enough resources available for a long period to attend to an intervention,35

either because of the lack of firefighters, the lack of engines or both, a service

breakdown occurs, i.e., the inability to assist within the time limits, which puts

the safety of a certain area or population at risk. For instance, over the years,

it has been observed that most of the breakdowns have occurred in July, since

more people go on vacation during this time, including firefighters, i.e., there40

could be an increase in the number of interventions and with reduced personnel

more breakdowns would be generated [11]. If we add to this the impact of a

natural phenomenon, epidemic or pandemic, centers would be more affected, as

well as their resilience if resources are scarce.

On 12th January 2020, the World Health Organization (WHO) an-45

nounced [12] a novel Coronavirus [13, 14, 15, 16, 17, 18], which was officially

named as ‘COVID-19’ (coronavirus disease 2019) [19] on the 11th of February.

Further, with the spread of COVID-19 across the world, it was declared as a

pandemic [20] on 11th March 2020. In general, multiple measures have been
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reported for dealing with this novel Coronavirus across the world [21, 22, 23, 24].50

In France, as stated in [25], strengthened surveillance of COVID-19 cases was

implemented on 10th January 2020. In their paper, the authors carefully de-

scribed the real-time surveillance system for the first three cases, which were

detected on 24th January 2020. For the scope of this paper, the first official

cases in the Doubs region have been reported on 18th March 2020 as shown in55

daily statistics published by Santé Publique France in [26]. Nevertheless, the

SDIS 25 early started to attend interventions in which patients had symptoms

of the disease by 29th February 2020.

Although numerous measures were taken to secure peoples’ health and well-

being, the COVID-19 pandemic has proven to be quite a challenge, particularly60

to the public health sector [27, 28, 24]. For instance, in several parts of the

world, numerous news reported an increment to the ambulances’ waiting time

in hospitals. In the Texas county US, there are reports of ambulances waiting

about 4-12 hours as hospitals are crowded with coronavirus cases [29]. There

is also a report in France, in which ambulances had to wait about 3 hours in a65

hospital [30]. This increment could lead sometimes to the worst-case scenario,

i.e, patients’ death, as every minute count in such a situation. This is a case,

which was reported in Australia, where two patients have died for long waiting

time in ambulances outside hospitals [31].

1.1. Description of the intervention process70

The process of dealing with an intervention by SDIS 25 is briefly described

as follows:

(a) First, an emergency call is received and the required armament is gathered

to go to the scene.

(b) Once arrived at the scene, if necessary, the victim is taken to the hospital.75

(c) At the hospital, the firefighters wait to transfer the victim to the hospital

and to do the corresponding administrative process.
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(d) Finally, they return to their center and are available again to attend other

interventions.

Each performed step requires a record of the firefighter’s status, which is80

done manually by pressing a button. The firefighter crew chief makes a record

to indicate that they are going to the hospital, another record to indicate when

they arrive at the hospital, and another one to indicate that they are leaving

it. However, there is the possibility of human error, where the firefighter may

have forgotten to record the status and registered it a long time later, or on the85

contrary, where the firefighter may have accidentally recorded too soon.

In addition, an intervention can have several ambulances departing at dif-

ferent times from the scene, depending on the number of victims, or either,

sometimes in the same hour we can have several simultaneous interventions but

of different types. If firefighters spend more time in hospitals, i.e., high TT,90

there will be fewer resources available at the centers to respond immediately to

an incident. Notice that the terms ambulance and firefighter’s ambulance are

used interchangeably throughout this paper.

1.2. Purpose and contributions

With these elements in mind, the present work proposes a novel methodol-95

ogy based on machine learning (ML) to make predictions for the TT of each

ambulance in a given time and hospital, aiming to provide a decision support

tool for SDIS 25 and EMSs, in general. This way, EMSs can activate various

proactive mediations according to the time their personal and resources will be

in use, aiming to mitigate service breakdown and, consequently, being able to100

save more lives. In other words, for the short-term, such predictions could allow

better allocation of the remaining and available resources if known a priori the

time each ambulance will spend in hospitals. For the medium- to long-term

analysis, such a system can be improved to re-calculate a better hospital op-

tion considering the predicted TT. To summarize, this article proposes 3 main105

contributions described in the following.
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(a) Analysis of the COVID-19 impact on ambulances’ TT and the breakdowns

generated in the fire service. We provide an in-depth analysis of the

COVID-19 impact on the average turnaround time (AvTT) per day in

each hospital during the first semester of 2020 in the Doubs region. Fur-110

ther, we describe the already existing breakdown problems in the fire

service due to long TTs in hospitals. Finally, we show how this prob-

lem worsens with the arrival of COVID-19, demonstrating the need for a

system to prevent breakdowns in the fire service in the face of a pandemic.

(b) Creation of a regularly spaced time series model that represents the aver-115

age hourly turnaround time at each hospital. The model is based on the

history of TTs reported by SDIS 25 ambulances since 2015 for CHRU and

CHIH hospitals, and since 2017 for HNFC, in order to recognize hourly,

daily and weekly trends. To this was added internal explanatory variables

such as the number of interventions by firefighters (a greater increase in120

interventions in a certain period of time may indicate a greater number

of victims attending the hospital) and the suspected cases of COVID-

19 registered by the SDIS 25. External variables such as the number of

COVID-19 cases officially reported in the region; keywords most searched

in Google to retrieve trends; traffic predictions, since a very congested day125

can generate accidents and victims to transport; and meteorological data

were also considered, since many floods usually occur in the region, which

generates material damage and victims. Four state-of-the-art ML mod-

els were considered in this task, i.e., a decision-tree based model (LGBM

- Light Gradient Boosted Machine), a feedforward type neural network130

(MLP - Multilayer Perceptron), a recurrent neural network (LSTM - Long

Short-Term Memory), and a decomposable time series model (Prophet).

(c) Creation of a irregularly spaced time series model to predict the turnaround

time for each intervention and its ambulances. One or more ambulances

belong to an intervention, if the intervention has a long duration, the135

ambulances could go to the hospital at different times of the day. It is
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here where the first model described in (b) will provide us with predicted

information on the AvTT in a given hour as an explanatory variable.

Along with the type of intervention (to recognize the degree of severity

of the incident) and other variables mentioned previously we propose to140

forecast the TT for each ambulance. Because in the previous task (b) the

LGBM model consistently and considerably outperformed the other ML

models, for this task of predicting each ambulance’s TT (not average TT

per hour), we performed experiments with only LGBM.

To the authors’ knowledge, this is the first work that investigates the impact145

of COVID-19 on ambulances’ TT. With our findings, we noticed that SDIS 25

ambulances’ TT increased during the outbreak, which led to more breakdowns

in service due to the shortage of ambulances that would normally return to

service in less time. This way, aiming at providing a decision support tool

for SDIS 25 and EMSs, in general, this paper also proposes a novel ML-based150

methodology to forecast the TT of each ambulance in a given time and hospital.

More precisely, considering that ambulances can arrive at hospitals anytime,

our problem (c) refers to irregularly spaced time series [32], i.e., the spacing

of observation times is not constant (e.g., per day). Thus, we first propose to

reconstruct a regularly spaced time series (i.e., AvTT per hour), which gives us a155

reference on the average time that several ambulances could have been waiting,

and thus, recognize a daily or weekly seasonality. Since not every hour nor every

day SDIS 25 ambulances went to hospitals, a linear interpolation was applied

to complete the dataset. This is because SDIS 25 is not the only institution

to transport victims to hospitals. Finally, besides the prediction of AvTT per160

hour/hospital (b), with the second model (c), we can refine the predictions for

each ambulance, i.e., an irregularly spaced time series problem.

The present paper is organized as follows. Section 1.3 reviews contributions

from related works. Section 2 details the construction of datasets (Subsec-

tion 2.1); the data analysis performed to understand the normal and abnormal165

behaviors in the collected data (Subsection 2.2); the breakdowns generated due
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to long TT periods (Subsection 2.3); the proposed methodology composed of

two forecasting models and their baselines (Subsection 2.4); finally, we describe

the metrics used to evaluate our models (Subsection 2.6). Section 3 presents

the results of the predictive models. Section 4 discusses this research and its170

impact in fire brigade services. Finally, Section 5 shows our conclusions and

future work.

1.3. Literature Review

ED overcrowding has been reported as one of the main causes of AOD [4,

1, 3, 5] since ED staff may not prioritize ambulances’ patients. AOD may lead175

to several risks to patients’ care and directly increases the ambulances’ TT

in hospitals, which puts a population at risk if other major accidents occur

and ambulances are still in use. In [8], the authors conducted a prospective

longitudinal study to analyze the impact of ED overcrowding on firefighters’

AOD. The study identified 21,240 cases where their ambulances were out of180

service due to AOD, which may have a significant effect on their ability to

respond to other calls. As noticed in the survey work on AOD from Li et al. [7],

the impact of AOD on EMS resource availability has received less attention from

the research community.

In [6], the authors coined the term turnaround interval for the total time185

an ambulance spends at the hospital, i.e., transferring patient(s)’ care, complet-

ing paperwork, and reestablishing the equipment for the next call. The authors

conducted a prospective study by analyzing firefighters’ ambulances’ activity on

transferring 122 patients to a hospital. In [33], the authors designed a discrete

event simulation model to evaluate the change on AOD by having dedicated190

ED nurses for ambulances’ handover. Although the authors identified that this

practice may reduce the ambulances’ TT, this would also lead to low staff uti-

lization. In [34], the authors investigated the relationship between ambulances’

TT with patients’ acuity, destination hospital, and time of the day, using one-

year data from 61,094 patients. In [2], the authors have analyzed the impact of195

ED overcrowding and ambulances’ turnaround interval.
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Notice that most aforementioned works have been performed to highlight the

importance of the topic and to identify the relationship between ED overcrowd-

ing and ambulances’ TT, for example. To the authors’ knowledge, there is no re-

search trying to forecast the TT of ambulances in hospitals, as we present in this200

paper, but rather for the prediction of patients’ waiting time in ED [35, 36, 37].

On the other hand, within the context of COVID-19, multiple works have in-

vestigated machine-learning-based solutions to help to fight the outbreak, e.g.,

forecasting of ED volume [38] and forecasting the number of confirmed COVID-

19 cases [39, 40, 41, 42]; we refer the readers to recent survey works on ML205

forecasting models and COVID-19 in [17, 18].

In research directly related to firefighters and their processes, Pirklbauer and

Dieter [43] proposed a data-driven forecasting model for the type of firefighter

interventions. The models were built using two-years data, which achieved a

preliminary accuracy of about 61%. On the other hand, our group has proposed210

a multi-forecasting model to the number of firefighter interventions per region

in [10]. In that work, it was noticed that while the number of interventions is

increasing each year, fire departments’ resources are reduced. For this reason,

there is a need to optimize the use of firefighters’ personnel and resources, which

could relieve the pressure on this emergency medical transport system. The215

complete methodology also allows a privacy-preserving publication/sharing of

interventions’ location data, where the Extreme Gradient Boosting technique

was used to forecast the number of interventions per region each day with both

original and privatized data. Also, it is necessary to know the current status of

the fire department’s resources and services in order to develop long and short-220

term reorganization strategies. Thus, in [11], a methodology was created for the

calculation of service ruptures, which allows identifying the types and quantity

of ruptures, as well as the unavailability of resources at a given time. In addition,

with breakage data calculated in the last 3 years, predictive models were built

for the number of daily breakdowns, considering the number of firefighters and225

available engines as the main variables.
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2. Material and Methods

In this section, we describe the collection process of internal and external

variables. Besides, we analyze the recorded ambulances’ TT through the years

and the impact of COVID-19 on ambulances’ TT; and, consequently, the impact230

of COVID-19 and high TTs on the fire service. Further, we present our proposed

methodology for forecasting the TT of each ambulance and AvTT per hour, and

the metrics used to evaluate our models.

2.1. Data Collection

The main source of data comes from the Departmental Fire and Rescue235

Service of the Doubs department, France. It contains a history of ambulances

arrivals collected from January 2015 to June 2020 for CHRU and CHIH hospi-

tals, and from February 2017 to June 2020 for HNFC. For each hospital, two

types of datasets were created:

• Arrivals dataset (Arr-DS). The samples represent the TT of each ambu-240

lance in a hospital at any time of the day. The features are: year, month,

day, day of the week, day of the year, and hour. Also, an indicator to recog-

nize if it is the beginning or end of the week, month, and year. In addition,

it was added three variables that jointly describe the type of intervention,

where each variable represents a set of subcategories. The first variable245

represents the 5 main activities that firefighters cover, for example: res-

cue people, fires, among others. For each activity, there are subcategories

that describe the level of urgency (second variable), for example, in rescue

people, we found 6 subcategories, two of them are “Emergency situation”

and “Special Circumstances of the emergency (public road)”. The third250

variable reports the state of the victim, for example, in “Emergency situ-

ation”, there are 10 subcategories, two of which are “Severe exteriorized

or external hemorrhage” and “Respiratory distress”. Finally, the TT in

minutes (min) recorded was included. In some records, we found TTs

less than 5 minutes, which is very rare, and it is possible that they were255
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caused by a bad manual recording. Therefore, if the TT is less than 5

minutes, we clipped it at 5. Similarly, there were five unusual samples

with TT between 4-7 hours, which were clipped at 90 minutes, since most

TTs (99.7%) had less than or equal to 90 minutes.

• Average turnaround time dataset (AvTT-DS). This dataset has been or-260

ganized by hour, where each hour represents the average TT of all ambu-

lances that arrived at the hospital in that hour. For example, if between

15h and 16h there were 3 ambulances with TTs: 20 min, 15 min, and 30

min, the mean was 21.67 min for 15h. In addition, each sample includes

the following features: year, month, day, day of the week, day of the year,265

hour, an indicator to recognize if it is the beginning or end of the week,

month, and year. And, since 90% of all hospital arrivals have had an

AvTT between 10 and 60 minutes, we set the average minimum and max-

imum with these values. The hours in which there were no arrivals and,

therefore, there was no recorded TT and AvTT, were completed by linear270

interpolation since the TT over the years has been constantly increasing.

In order to discover possible influential external variables, we built another

dataset (External-DS) by hour from “01/01/2015 00:00:00” to “30/06/2020

23:00:00”, where we incorporated variables from the following sources:

• Google Trends. We used the Pytrends1 library to get the hourly trends275

in a scale from 0 to 100 for the keywords in french: ‘H1N1’, ‘coronavirus’,

‘SARS’, ‘Influenza’, ‘COVID-19’, ‘diarrhee’ (diarrhea), ‘grippe’ (flu), ‘vari-

celle’ (chickenpox), ‘incendie’ (fire), ‘inondation’ (flood), ‘greve’ (strike),

‘samu’, and ‘suicide’.

• Bison-Futé [44]. This source gives us the prediction of the traffic level280

for the Doubs region, as indicators from 1 to 4, where 1 means a regular

circulation and 4 means an extremely difficult circulation.

1https://github.com/GeneralMills/pytrends
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• Météo-France [45]. It provides us with historical weather information such

as: precipitation, temperature, barometric trend, pressure, humidity, dew

point, wind direction, wind speed and gust speed.285

• Data Gouv [26]. It is a platform for the diffusion of public data from the

French government, from which we extracted information on the situation

of the COVID-19 pandemic from March 2020 to June 2020 to the region

of Doubs (Department 25). Data prior to this date were completed with

zeros, as there were no statistics reported.290

Other variables included from the primary source were the total number of

interventions recorded in a given hour over the 6 years, and the number of cases

attended with a suspect of COVID-19 per hour from February 2020 to June

2020. This last variable was completed with zeros before February 2020 too.

2.2. Data Analysis295

The dataset at our disposal has 78, 777 interventions where firefighters trans-

ported victims to one of the three aforementioned hospitals. The frequency on

the number of times each hospital received a victim is 55.44% (CHRU), 18.27%

(CHIH), and 26.29% (HNFC), respectively. In order to understand how the

ambulances’ TT are distributed in our dataset, Figure 1 illustrates, for each300

hospital, a histogram with bins of 1 minute and the cumulative number of TT

in hours (y-axis) for each day of the week and hour in the day (x-axis).

In the first column of Figure 1, CHRU, CHIH, and HNFC have right-skewed

distributions with mean and standard deviation (std) values as 18.43 ± 10.68,

14.91± 8.66, and 22.61± 11.26, respectively. In the second column of Figure 1,305

one can notice a similar pattern for the cumulative sum of TT in hours that

firefighters’ ambulances spend in the three hospitals with different peak values,

which depends on the frequency of times each hospital received victims. This

pattern is also noticed in the works [34, 2]. In our case, from 8h in the morning

on, the TT starts to increase and remains high up to 19h when it starts to310

decrease. Also, between 0-6h, the highest cumulative TT is during the weekend,

12



10 20 30 40 50 60 70 80
0

1000

2000

Fr
eq

ue
nc

y

CHRU

0 2 4 6 8 10 12 14 16 18 20 22

50

100

N
b.

 o
f H

ou
rs

CHRU
Mon
Tue
Wed
Thu
Fri
Sat
Sun

10 20 30 40 50 60 70 80
0

500

1000

Fr
eq

ue
nc

y

CHIH

0 2 4 6 8 10 12 14 16 18 20 22

20

40

N
b.

 o
f H

ou
rs

CHIH

10 20 30 40 50 60 70 80
Turnaround Time (min)

0

500

1000

Fr
eq

ue
nc

y

HNFC

0 2 4 6 8 10 12 14 16 18 20 22
Time of the day (h)

25

50

75
N

b.
 o

f H
ou

rs
HNFC

Figure 1: Statistical analysis for the TT of ambulances: each row illustrates a histogram with

bins of 1 minute to the TT frequency distribution (left side) and the cumulative sum of TT

in hours for each day of the week and hour in the day (right side), considering each hospital.

On the left side, the frequencies for the three hospitals follow a positively skewed distribution,

where more than 80% of cases were less than one hour. On the right side, we can deduce that

between 8h and 22h the accumulated time follows the intense human activity while awake,

which is translated as more workload and longer TTs.

i.e., Friday, Saturday, and Sunday. This is because at weekends people tend to

go out more and until the wee hours of the morning, which might lead to more

accidents, more patient visits to hospitals during on-call hours with reduced

staff, and results in a slight increase in ambulances’ TT.315

In addition, as stated in the introduction (Subsection 1.2), this work aims

to study the COVID-19 impact on ambulances’ TT in the three aforementioned

hospitals. First, Table 1 exhibits for each semester (Sem.) of the analyzed years

(2015-2020) and hospital, the following statistics: the total number of arrivals

(Arr.) and the mean±std TT values in minutes.320

As one can notice in Table 1, CHIH has fewer arrivals and a shorter AvTT

per semester whereas CHRU presents more arrivals than the other two hospitals

since it is located in the capital of the territory, and a lower AvTT than HNFC.

Besides, when looking at the number of arrivals for the first semester, it can be

detected that there was a higher workload in the firemen department for the325
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Table 1: Data analysis, for each hospital, on the number of arrivals (Arr.) and Mean±std TT

values in minutes per semester during 2015-2020.

Sem. Year
CHRU CHIH HNFC

Arr. Mean±std TT Arr. Mean±std TT Arr. Mean±std TT

1st

2015 3,114 17.72±10.24 1,230 14.50±7.84 - -

2016 3,125 17.68±10.36 1,176 14.33±7.64 - -

2017 3,676 17.55±10.31 1,288 13.99±7.43 2,272 22.97±11.12

2018 5,233 18.75±11.37 1,548 15.05±9.41 3,824 22.91±12.18

2019 4,672 18.94±11.66 1,368 15.63±9.80 2,994 22.92±11.90

2020 3,899 20.67±12.57 1,184 15.96±10.51 2,136 24.42±13.19

2nd

2015 2,893 17.59±10.28 1,174 14.69±8.91 - -

2016 3,320 17.77±10.32 1,222 13.88±7.32 - -

2017 4,829 18.93±11.76 1,556 15.04±9.41 3,454 22.07±10.90

2018 5,182 18.56±11.35 1,440 15.50±9.32 3,600 22.04±11.55

2019 3,730 20.08±13.03 1,208 16.52±11.23 2,430 23.25±12.37

years 2018 and 2019 compared to the other years. In the case of 2020, the re-

duced workload was due to a lockdown period2, which decreased the movement

of people and reduced the number of firefighters’ interventions, for example,

fewer traffic accidents. The second semester of each year normally presents a

higher AvTT, which could be due to two holiday periods (Jul-Aug and Dec),330

where people travel more due to vacations. Although the AvTT normally in-

creased for each hospital throughout the years according to its workload, the

AvTT for 2020 is higher than all years and for the 3 hospitals, even with a

reduced workload compared to 2018 and 2019. For instance, hospital CHRU

presented about 9.13% more AvTT in the first semester of 2020 than in the335

first semester of 2019, which is 9 times higher comparing the increment for the

same period for the years 2019 and 2018 (1%). Similarly, hospital HNFC pre-

sented about 6.54% more AvTT in the first semester of 2020 than in the first

semester of 2019, while the years 2017-2019 presented similar AvTTs. This

proves the impact of the pandemic on the increase in ambulances’ TT.340

Furthermore, we now try to comprehend how the on-going pandemic has

2https://en.wikipedia.org/wiki/COVID-19 pandemic in France#Lockdown measures
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made an impact on the ambulances’ AvTT per day on hospitals for 2020 only.

For this purpose, the plot on the top of Figure 2 illustrates for each day (x-axis)

the AvTT in minutes (y-axis) for each hospital. Additionally, at the bottom of

this figure, the plot illustrates the official COVID-19 statistics from two data345

sources, i.e., Data Gouv and the ones reported by the SDIS 25, to search for

evident patterns. More specifically, this plot illustrates the current number of

hospitalized individuals (hosp.), the number of patients in reanimation or critical

care (rean.), the cumulative number of individuals who returned home (ret.

home), and the cumulative number of individuals who died (dead) regarding350

the Data Gouv source, and the number of cases per day attended by the SDIS

25 with a suspicion of COVID-19 (Susp. COVID-19). For both data sources,

there is an indication of the first day with COVID-19 cases.
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Figure 2: Statistical analysis for the AvTT per day considering the COVID-19 impact. The

plot on the top illustrates statistics on the average turnaround time in minutes per day for

2020 and each hospital. The plot on the bottom illustrates the COVID-19 related statistics

provided by Data Gouv and the SDIS 25.

In Figure 2, while the first day with suspicious cases of COVID-19 is

29/02/2020 reported by the SDIS 25, the date with official cases is almost three355

weeks later, on 18/03/2020. However, one can notice that as soon as the SDIS 25

starts to take a significant number of people with the symptoms of the disease to
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hospitals in March (after 10/03/2020), the AvTT per day starts to increase for

CHRU and HNFC. This increment is more remarkable, for the three hospitals,

after the first official cases have been reported. Furthermore, the peak period of360

hospitalized cases occurred approximately from the middle to the end of April.

In such conditions, there were more hospitalized patients in which some of them

started to need more and even intensive care as the number of cases in reani-

mation indicates. When comparing the AvTT distributions of the 3 hospitals

and the number of discharged cases (Ret. home), we find an inverse correlation,365

given that as hospital resources are freed up, AvTTs decrease. The opposite

case can be found when comparing the AvTT of the 3 hospitals and the number

of hospitalized cases (Hosp.), where the 4 distributions follow a similar pattern,

indicating that there is a positive correlation between the variables, i.e., as the

number of hospitalized patients increased, the hospitals became saturated and370

their response time to receive new patients was affected. This generated larger

TTs for the ambulances, leaving them unavailable to attend other interventions

and limiting the resources of the fire brigade. In short, a chain effect on the

availability of resources.

To complement Figure 2, Table 2 exhibits the AvTT per hospital and month375

for 2020 highlighting in italic font the highest value per hospital. Comparing

the highest AvTT and the lowest one per hospital, considerable increments were

noticed. For instance, hospital CHRU presented about 24.96% more AvTT in

April than in January, hospital CHIH present about 42.68% more AvTT in April

than in February, and hospital HNFC presented about 29.13% more AvTT in380

May than in February. In general, for each hospital, the period pre-pandemic

(January and February) presented low AvTT while months March, April, and

May (during-peak-pandemic) had peak-values, which is in accordance with the

number of hospitalized cases and reanimation ones in Figure 2. Subsequently,

in June (post-peak-pandemic) and for each hospital, the AvTT had an inter-385

mediate value between the two aforementioned periods. This can be due to

the increasing number of patients that returned home and did not need special

care as the ‘ret. home’ curve in Figure 2 indicates. Proportionally, the number
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of hospitalized and reanimation cases started to decrease, which alleviates the

healthcare system.390

Table 2: Data analysis, for each hospital, on the mean±std TT values in minutes per month

during 2020.

January February March April May June

CHRU 18.34±7.75 18.93±8.39 21.88±10.62 22.90±9.12 21.55±8.89 20.38±9.45

CHIH 14.92±6.81 14.15±4.95 16.38±6.64 20.19±10.55 17.44±6.20 16.32±7.86

HNFC 23.29±10.63 21.11±7.22 25.15±11.27 24.24±9.02 27.26±9.92 24.38±9.77

With these elements in mind, it is now evident that the COVID-19 pandemic

has affected the ambulances’ TT in hospitals of Doubs-France. This increment

might affect the SDIS 25 service to the population as their staff and resources

would be in use for more time. That is, as a chain-like effect, this would incre-

ment the number of breakdowns for the fire brigade when needing to prepare for395

future interventions, as presented in the work [11]. In the next Subsection 2.3,

we present and discuss an analysis of the service breakdown during 2020 to

validate the negative impact of the COVID-19 pandemic to SDIS 25.

2.3. Service Breakdown Analysis

Besides an in-depth analysis of the COVID-19 impact on ambulances’ TT400

in hospitals of Doubs France, we also present an study on the chain-like effect

that high TT had on the fire service. Following the work in [11], we applied the

methodology for the breakage calculation for the months of March to June 2020,

considering only the public service breakdowns of the type “Rescue People”.

Public service breakdowns occur when there are no adapted engines, firemen,405

or both in the centers. This means that no adapted armament is available for a

certain period of time to respond to an incident.

Figure 3 shows the average breakage time in seconds per day for the months

mentioned above comparing the years 2019 and 2020. One can notice small

peaks during the months of March and June, which are periods before and after410

the peak of the pandemic, respectively. However, in the first week of April, there
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is a peak break of almost 2 hours, which corresponds to the increased TT for

ambulances in hospitals presented in Figure 2. What is more, April and May

have more days with longer breakdown times. As previously analyzed, during

these 2 months there were more cases of COVID-19 in the Doubs region, which415

reveals that there was certainly a chain reaction effect that left the fire service

vulnerable, and as a consequence, a certain sector of the population as well.
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Figure 3: Average breakage time in seconds per day for 2020, considering service public

breakdowns of the type “rescue people”.

In more detail, Figures 4 and 5 illustrate the causes of the breakdowns during

the first semester of the years 2019 and 2020, respectively. One can notice that

for January and February of both years, the results are close. However, in420

March 2020 there is notable increment in the number of breakdowns due to lack

of engines, which is the starting month with increasing COVID-19 cases. On the

other hand, April and May show a lower number of breakdowns, which is because

there were fewer interventions during the lockdown period2 as people spent more

time in their homes. However, according to Figure 3, the breakdown time was425

longer, as the available adapted engine spent more time in hospitals. Also, from

March to June 2020, it can be seen that there were few or no breakdowns due to

the lack of firefighters. The reason behind this is that firefighters and especially

volunteers were at home and showed more availability, and there were not as

many simultaneous interventions as in 2019.430

For this reason, this study aims at developing ML models for forecasting

the TT of ambulances. Such knowledge is paramount for EMSs, as they could

better prepare themselves for future interventions and avoid breakdowns on the
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Figure 4: Causes of public service breakdowns of the type “rescue people” by month in 2019.
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Figure 5: Causes of public service breakdowns of the type “rescue people” by month in 2020.

service as previously analyzed. Such data-driven systems should be of high

confidence in order to adequately assist in decision-making solutions in real-life.435

Moreover, these systems should also be robust enough to abnormal situations

such as natural disasters or even the current COVID-19 pandemic.

2.4. Proposed Methodology

2.4.1. Overview

The present research proposes a new methodology based on ML techniques440

for predicting the TT of each ambulance related to a hospital. The approach is

composed of two time series models (i.e., regular and irregular). Figure 6 de-

scribes the interaction of both models that are created in two stages as explained

in the following:

Stage 1: Predicting the average turnaround time per hour at each hospital. To445

predict the TT for an ambulance, a valuable input would be the approximate

waiting time that patients may be having in a hospital. However, we do not
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have internal hospital data to make this prediction. Also, we may consider as

entry the AvTT in a given hour for ambulances from different public and private

organizations. However, we do not have a record of all of them or their flow.450

But, what we do have is the history of ambulances arrivals over the years of

the fire department of Doubs. So, from this history we generated a regularly

spaced time series per hour, which is the AvTT-DS. In this way, it is possible

to capture trends and seasonality over time, for example: over the years the

AvTT per hour has been increasing, during the day the AvTT is higher than455

at night, etc. Then, we developed a predictive model of AvTT for the next

hour, considering external variables from External-DS, that can influence long

waiting periods.

Stage 2: Predicting the turnaround time for an ambulance. This stage involves

the construction of an irregularly spaced time series model, using the Arr-DS460

generated from the arrival history, it contains temporal characteristics and the

type of intervention. Likewise, we included the External-DS and the AvTT

predicted in the first stage. The objective is to forecast the TT of a specific

ambulance, that is, at the moment an ambulance warns that it will go to the

hospital, we make the prediction to know its approximate TT in a certain hos-465

pital. In this way, firefighters will be able to establish better strategies with

their resources.

To evaluate the proposed methodology, the months April, May, and June

2020 were selected as the testing set for each hospital, since these are the months

with a higher number of COVID-19 cases (peak-pandemic period), as previously470

analyzed in Subsection 2.2. For CHRU and CHIH hospitals the training set

starts from January 2015 until March 2020, and for HNFC the training set is

from February 2017 to March 2020.

During the hyperparameter search process, which is developed independently

for each model (AvTT and TT), each iteration tests a different configuration475

throughout the training cycle. Since we use time series models, in which there

is a dependency in prior time steps that allows recognizing the increase in TT

over hours and days, the cross-validation-based training process for both models
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Figure 6: The proposed methodology is based on ML techniques to predict the TT of an

ambulance in a given hour and hospital. The first stage (dashed line flow) is based on a

multivariate model of regularly spaced time series to predict the AvTT of the next hour in

each hospital. The second stage (solid line flow) is a multivariate irregularly spaced time series

model, which considers temporal variables of each ambulance departure, type of intervention,

external variables and the previously predicted AvTT as inputs. For example, to predict the

TT of ambulances departing to a hospital at 2:25h, 13:47h and 18:15h, the predicted AvTTs

for 2h, 13h and 18h (highlighted) are used, respectively.

was a rolling-origin evaluation [32, 46] (a.k.a. forward chaining). This is a

more realistic approach to re-train time series models with data that becomes480

available each time (e.g., hour or day) for further predictions. More specifically,

our models are first fitted with the training set (with data until March 2020)

for each hospital, making predictions one-step-ahead for all the hours of a day

with the AvTT model, and per ambulance departure with the TT model for

a day. This way, for all days in the testing set (April, May, and June 2020),485

the training set is expanded to include all the known values of each day and

the process is repeated, i.e., the training set is updated day by day. Besides,

all the predictions of each model (i.e., the three months selected as the testing

set) in an iteration are stored, and in the end, we compute the models’ metrics.
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For the hyperparameter tuning process, we used the root mean square error490

as the guiding metric. Thus, a new hyperparameter configuration is generated

and the search process is repeated during a given number of iterations. The

pre-processing and modeling of each model, AvTT and TT, are described in the

following two subsections.

2.4.2. AvTT model: pre-processing and modeling495

The dataset for the regularly spaced time series model, that will forecast the

AvTT per hour, was organized as follows:

• We took the AvTT-DS and for each sample we added 3 moving averages

of AvTT as features, using a window size of 2 hours back.

• Also, the AvTT of the last 24 hours were added as features.500

• Finally, we complete the dataset with the features of the External-DS,

according to the previous hour, since in real life these are data that we

can obtain previously.

The structure can be seen in Figure 7, where each line represents a sample

by hour with its identifier (Hour ID), and the columns illustrate the predictors505

and the target, in yellow and orange, respectively. Next, all features were

standardized using Scikit-Learn’s [47] StandardScaler function, except by the

target, which is the AvTT per hour in minutes.

In the search for the best model that gives us more accurate results, we

compared the performance of various intelligent approaches such as traditional510

neural networks (MLP and LSTM), decision trees (LGBM), and a framework

specifically oriented to time series (Prophet). Each technique is briefly described

as follows:

• Light Gradient Boosted Machine (LGBM) [48]. It is a novel gradient

boosting decision tree algorithm, which uses the leaf-wise tree growth515

strategy to significantly reduce calculation speed and memory consump-

tion.
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Figure 7: Illustrated example of the input data structure used for the AvTT model. In

gray the hour identifier (Hour ID), in yellow the explanatory variables such as time, traffic,

weather, statistics of COVID-19 cases from Data Gouv, trends in Google, number of assisted

interventions, AvTT of the previous 24 hours, etc. And in orange, the AvTT to predict.

• Multilayer Perceptron (MLP). It is an artificial neural network of the feed-

forward type, since the information flows through several neurons orga-

nized in interconnected layers classified as: input, intermediate (which can520

be more than one) and output [49]. In this study, we used the implementa-

tion developed by Scikit-learn library, where the activation function con-

sidered was Rectified Linear Unit (ReLu), and the optimization algorithm

for learning information was Adaptive Moment Estimation (Adam) [50].

• Long Short-Term Memory (LSTM) [51]. It is a type of recurring neural525

network that overcomes the vanishing gradient problem. Inside its cell

memory unit, the learning process is controlled by three gates: input,

forget and output, which give it the ability to forget part of the previ-

ous memory and add new information. In this study, we used the Keras

library [52] to build our own architecture.530

• Prophet [53]. It is a forecasting tool for time series data, where trends are

fit with a certain seasonality, depending on the additive or multiplicative

model selected. Furthermore, it allows the addition of changepoints such

as holidays, and is robust enough to missing data.

To navigate the hyperparameter space and pick the most optimal set, it535

was used the HYPEROPT library [54] with 50 iterations for each technique
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described previously. This library is based on Bayesian optimization and the

selected logic was the algorithm Tree Parzen Estimator suggest (tpe.suggest),

which instead of modeling the probability of an observation given a new configu-

ration, models two density functions according to a defined percentile, to finally540

estimate the expected improvement of a given run. The root mean square error,

described in Subsection 2.6, was used as a metric to guide the search for the

best configuration per technique.

2.4.3. TT model: pre-processing and modeling

The dataset for the irregularly spaced time series model, that will predict545

the TT for each ambulance, was constructed as follows:

• We took the Arr-DS and added the features of the External-DS, according

to a previous hour, since these features come from sources that export their

data online and by hour.

• Since the AvTT model runs earlier, it will give us the average prediction550

for the current hour, in which an ambulance is on the scene and reports

that it will go to the hospital. In this way, the predicted AvTT will

be used as a predictor when we forecast the real turnaround time of a

specific ambulance. In addition, the AvTT per hour of the last 48 hours

were added in order to improve the model’s ability to recognize daily555

seasonality.

The structure can be seen in Figure 8, where each line represents an am-

bulance departure to the hospital with its identifier (Departure ID), and the

columns in yellow and orange exemplify the predictors and the target, respec-

tively. Next, all features were standardized using Scikit-Learn’s StandardScaler560

function, except for the three variables that describe the type of intervention,

which are categorical and were encoded using One-Hot-Encoding (OHE) func-

tion from Scikit-Learn library too. The target, which is the TT of an ambulance,

was kept in its original format (minutes).
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Figure 8: Illustrated example of the input data structure used for the TT model. In gray

the depart identifier, in yellow the explanatory variables such as the type of intervention, the

predicted AvTT for the present hour and the AvTT of the last 48h, time variables, Google

trends, traffic, weather, etc. And in orange, the TT of the ambulance to predict.

To build the time series models, it was chosen the LGBM technique, because565

of its robustness and execution speed. To find the best set of hyperparameters,

we performed 100 iterations using tpe.suggest from HYPEROPT technique. The

loss function used was the root mean square error described in Subsection 2.6.

2.5. Baseline models

Two straightforward baseline models are used to compare the effectiveness of570

the proposed methodology. The first baseline is to compare with the multivariate

regularly spaced time series model from Subsection 2.4.2. The second baseline

is to compare with the multivariate irregularly spaced time series model from

Subsection 2.4.3.

2.5.1. Baseline: AvTT per hour575

The baseline model to predict the AvTT per hour (BSAvTT) uses the Arr-

DS, where the TT of ambulances until the previous day are averaged by hour,

and these values are used as a prediction for each hour during the current day.

At the end of each day, if there were ambulances transporting victims to the

hospital, the average for each hour is updated.580

2.5.2. Baseline: TT for an ambulance

The baseline model for predicting the TT of an ambulance at a given hour

and hospital (BSTT) considers adding the External-DS features, according to

25



a previous hour, to each ambulance in the Arr-DS. In this solution, we do not

consider as features any AvTT per hour of previous or predicted hours.585

Similar to the standardization described in Subsection 2.4.3, predictors were

transformed into features using the StandardScaler and One-Hot-Encoder from

Scikit-Learn’s library. The target kept its original value in minutes. The tech-

nique used for the modeling was LGBM and for the optimization of hyperpa-

rameters was HYPEROPT with its tpe.suggest algorithm, 100 iterations, and590

the root mean square error as the loss function described in Subection 2.6

2.6. Metrics

Let yi be the real output, ŷi be the predicted output, and n be the total

number of samples, for i ∈ [1, n]. In this paper, the models were evaluated using

the metrics described in following.595

• Mean absolute error (MAE): MAE measures the averaged absolute dif-

ference between real and predicted values and is calculated as: MAE =

1
n

∑n
i=1 |yi − ŷi|.

• Root mean squared error (RMSE): RMSE measures the square root

average of the squares of the errors and is calculated as: RMSE =600

1
n

√∑n
i=1 (yi − ŷi)

2
.

• Accuracy with margin of error ±10 (ACC10): ACC10 is the ratio of num-

ber of correct predictions, with a maximum margin of error ±10, to the

total number of input samples. Let f(yi, ŷi) be a function that f(yi, ŷi) = 1

if ŷi ∈ {yi± 1, yi± 2, ..., yi± 10} and 0 otherwise. ACC10 is calculated as:605

ACC10 = 1
n

∑n
i=1 f(yi, ŷi) · 100(%). For example, if yi = 35 and ŷi = 28

or ŷi = 41, f(yi, ŷi) = 1 in both cases.

3. Results

In this section, it is first analyzed the results for the time series model to

predict AvTT per hour and hospital (Subsection 3.1). Further, we analyze610
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results for the main goal of this work, i.e., to predict the TT for each ambulance

(Subsection 3.2) transporting victims to hospitals.

3.1. Forecasting the average turnaround time of ambulances per hour

To predict the AvTT of ambulances per hour and hospital during April, May,

and June 2020, respectively, the baseline BSAvTT and four ML-based models615

were evaluated, namely LGBM, MLP, LSTM, and Prophet. Table 3 presents

the metrics, discussed in Subsection 2.6, for each model and hospital, where the

best results are highlighted in italic font. Both MAE and RMSE metrics express

model prediction error in units of the variable of interest AvTT (minutes).

In Appendix A, Table A.5 indicates the range of each hyperparameter we620

considered in the Bayesian optimization, as well as the best configurations used

to train and evaluate the models. The search space for each technique was

established with previous empirical experiments that helped to limit the search

and define the most influential hyperparameters. The latter are shown in the

table for each technique while those that do not appear keep their default values.625

In the case of LGBM, the maximum number of boosted trees was 1000 with a

maximum depth of 12, and subsets of samples and features were greater than

50% of the complete dataset. In the case of neural networks such as MLP, 2

dense layers were established, where the number of neurons varied for each layer.

Unlike LSTM, where the number of layers and neurons were initially defined, and630

the variations occurred at the batch size and learning rate level. In the case of

Prophet, the default number of n changepoints is 25, and it was modified to vary

up to 100 in order to recognize the changes in the trends of the TTs over hours,

days, weeks, months and years, Similarly, varying the seasonality prior scale

allows us to experiment with different sizes of fluctuations over time.635

Moreover, to highlight the effectiveness of the techniques in some peak val-

ues, Figure 9 illustrates for each hospital and two days (48h), the comparison

of each ML model to forecasting the AvTT of ambulances per hour in different

days. Lastly, Figure 10 illustrates for each hospital, the time series results for

the period with more breakdowns in service (last weeks of April and the first640
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Table 3: Prediction results for the AvTT of ambulances per hour and hospital by ML tech-

nique.

Hospital Metric BSAvTT LGBM MLP LSTM Prophet

CHRU

RMSE 9.70 7.36 7.78 8.77 7.70

MAE 6.82 4.94 5.49 6.05 5.34

ACC10 83.29% 90.16% 88.05% 84.02% 88.46%

CHIH

RMSE 9.08 3.79 4.27 4.85 4.00

MAE 5.60 1.76 2.60 2.75 2.15

ACC10 86.81% 97.02% 96.79% 95.28% 96.98%

HNFC

RMSE 10.08 5.97 6.77 7.88 6.66

MAE 7.58 3.52 4.45 5.53 4.55

ACC10 77.24% 93.09% 91.30% 86.22% 91.48%

weeks of May 2020), according to Figure 3, during the COVID-19 peak-period.

This figure considers only the LGBM model, according to the best results of

Table 3, and the baseline BSAvTT.

One can notice in Table 3 that all ML-based methods consistently and con-

siderably outperform the baseline BSAvTT model. Among the four ML-based645

models, LGBM presented the best performance for all metrics and hospitals.

Similar metric results were achieved by MLP and Prophet. Additionally, LGBM

provided faster execution time than neural network-based methods (MLP and

LSTM) and Prophet. For hospital CHIH, LGBM provided lower estimation

error with RMSE = 3.79 and MAE = 1.76 minutes, which naturally led to650

more correct predictions, considering a margin of error of ±10 minutes, and

ACC10 = 97.02%. These results demonstrate that it is possible to forecast

the AvTT of ambulances in hospitals per hour with good accuracy for practical

purposes, i.e., 97% of the time, the error is less than or equal to 10 minutes. Sim-

ilarly, although not as good as for hospital CHIH, hospitals CHRU and HNFC655

present ACC10 metric higher than 90% with RMSE about 6 to 7 minutes.

One can notice in Figure 9 that ML-based models follow the AvTT hourly

trend, as well as some peak values. In Figure 10, while LGBM presents accurate

prediction results for the AvTT of ambulances for all three hospitals, BSAvTT

presents poor predictions following a similar pattern for them through the days.660
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Figure 9: Comparison between the real and the predicted AvTT for ambulances per hour in

each hospital, namely CHRU, CHIH, and HNFC, respectively, by each ML technique and the

baseline BSAvTT.

Due to COVID-19, the TTs of ambulances increased during some periods (cf.

Figure 2), and therefore, using only the average per hour resulted in poor per-

formance.

3.2. Forecasting the turnaround time for each ambulance

To predict the TT of each ambulance in a given time and hospital during665

April, May, and June 2020, respectively, the baseline BSTT and our proposed

methodology were evaluated. In both cases, LGBM is the modeling technique.
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Figure 10: Comparison between the real hourly AvTT, the predictions of the best model

obtained with the LGBM technique and the predictions of the baseline model BSAvTT, for

each hospital (CHRU, CHIH and HNFC). It is observed that the AvTT predicted by LGBM

better recognizes the patterns of the mean times and their variation through time, while the

BSAvTT maintains a more constant pattern.

In our proposal, there are additional predictors such as the AvTT predicted by

the first (and best) regularly spaced multivariate time series model, i.e., also us-

ing LGBM, as well as past AvTTs for recognizing average daily trends. Table 3670

presents the metrics, discussed in Subsection 2.6, for each model and hospital,

where the best results are highlighted in italic font. Both MAE and RMSE

metrics express model prediction error in units of the variable of interest TT
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(minutes). In Appendix A, Table A.6 indicates the range of each hyperparame-

ter we considered in the Bayesian optimization, as well as the best configurations675

used to train and evaluate the models. The description of the LGBM search

space follows the one made in section 3.1

Table 4: Prediction results for the TT using the proposed methodology and the BSTT model.

Hospital Metric BSTT Proposed methodology

CHRU

RMSE 13.42 12.92

MAE 8.74 8.31

ACC10 73.96 74.42

CHIH

RMSE 13.99 10.53

MAE 7.70 5.37

ACC10 82.97 86.63

HNFC

RMSE 13.31 11.70

MAE 9.58 7.74

ACC10 68.02 76.67

Moreover, Figure 11 illustrates the comparison of each model to forecasting

the ambulance’s TT in a given time and hospital, in different periods during the

COVID-19 outbreak. Notice that there might be several or no ambulance in a680

given hour in the hospital. Also, this figure plots the ambulances’ TT according

to the moment in which they reported that they were going to the hospital.

As one can notice in Table 4, the proposed methodology consistently out-

performs the straightforward BSTT model. While for hospital CHRU the dif-

ference is small and favoring our methodology, for hospital CHIH and HNFC,685

our proposal considerably outperforms the baseline model. For instance, our

proposed methodology provided a lower estimation error with RMSE = 10.53

and MAE = 5.37 minutes for hospital CHIH, which naturally led to more cor-

rect predictions by achieving ACC10 = 86.63%. Similarly, hospitals CHRU and

HNFC present ACC10 metric around 75% with RMSE about 12 to 13 minutes.690

These results demonstrate that it is possible to forecast the TT of ambulances

in a given time and hospital with good accuracy for practical purposes, i.e., 86%

of the time, the error is less than or equal to 10 minutes for CHIH, for example.

These results are also reflected in Figure 11, where our proposed methodology
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Figure 11: Comparison between the real TT of each ambulance for each hospital (CHRU,

CHIH and HNFC), the predictions of the proposed methodology and the predictions of the

baseline model BSTT.

recognizes high- and low-peak TTs of ambulances. On the other hand, BSTT695

tends to underestimate the TTs for many ambulances by forecasting values

around a mean value.

4. Discussion

Extended waiting times to transfer patient(s) from ambulances to EDs (i.e.,

AOD) and eventually, high TTs for ambulances, may lead to numerous con-700

sequences for patients’ care, financial losses, and unavailability of providing

32



adequate emergency medical services [7, 3, 9, 8, 4], for example. In this paper,

we analyzed ambulances’ TT from January 2015 to June 2020 on two hospi-

tals (CHRU and CHIH), and from February 2017 to June 2020 on one hospital

(HNFC), for the SDIS 25 fire department in Doubs, France. Although one can705

find works in the literature investigating the TTs of ambulances [6, 34, 2, 33], we

included in our analysis (Subsection 2.2) the impact of COVID-19 in the TTs

of ambulances in a larger longitudinal study. Further, we analyzed the negative

impact due to COVID-19, which increased the TTs of firefighters’ ambulances

and, consequently, generated more breakdowns in services (Subsection 2.3).710

The study in [34] identified a high correlation between patient acuity and TT.

In our case, there are three variables related to the type of intervention, in which

the latter is the severity level of the victim. Taking this into consideration and

for the first time, this research proposed a ML-based methodology (cf. Figure 6)

to forecast the TT for each ambulance in a given time and hospital, using as715

a reference the forecasting of AvTT per hour for ambulances in hospitals, its

type of intervention, and external variables. Indeed, forecasting the TT of an

ambulance in a given time and hospital could provide valuable information for

SDIS 25, and in general, for EMSs. For instance, EMSs could activate proactive

decision-making with the available resources and personnel in order to be able720

to save more lives. Further, if there are policies on ambulance diversion, EMSs

may consider diverging their ambulances to other EDs whose TT is smaller

to provide adequate care to the ambulances’ patient(s), as well as, returning

on service in less time. Besides, the predicted AvTT for ambulances in the

next hour(s) could provide approximate information for ambulances’ TT, which725

hospitals and EMSs services may consider as a reference value, and use as a

predictor in a second model as we propose.

These data-driven systems should be of high confidence in order to assist ad-

equately as a decision-support tool in real-life. Moreover, these systems should

also be robust enough to abnormal situations such as natural disasters and pan-730

demics. For instance, in adverse cases such as the current COVID-19 pandemic,

the need for such a kind of information (ambulances’ TT and AvTT) becomes
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vital since healthcare systems may saturate. While our work was motivated

to include the impact of the novel COVID-19 pandemic, our solutions are not

limited to it. Indeed, these forecasting models could help other private or public735

EMSs to forecast the TT of their ambulances and AvTT of hospitals, as well as

to future abnormal situations.

To evaluate our proposed methodology, experiments were performed for the

period of April, May, and June of 2020, which considers the peak-period of the

COVID-19 first wave in the Doubs Region (cf. Figure 2) and a high number740

of breakdowns in the SDIS 25 service (cf. Figures 3 and 5). As shown in the

results, it is possible to accurately forecast the TT of each ambulance in a given

time and hospital, as well as, to forecast the AvTT of ambulances per hour

and hospital. On the one hand, our proposed methodology achieves ACC10

metrics ranging from ∼ 75% (CHRU) to ∼ 87% (CHIH), considering a margin745

of error of ±10 minutes, which are promising accuracies for practical purposes

to forecasting the TT of an ambulance. In addition, the multivariate regularly

spaced time series model trained with LGBM achieves ACC10 higher than 90%

for all three hospitals for predicting AvTT.

In our experiments, it is remarkable the improvement of the results with750

the proposed methodology, for such complex and important tasks, comparing

to straightforward prediction models such as the baselines BSAvTT and BSTT.

On the one hand, BSAvTT is a straightforward solution that considers only the

historical data of ambulances’ TT and averages the TT per hour for prediction.

Even though this is an intuitive solution that hospital staff and/or EMS could755

think of applying, we demonstrate that training multivariate time series models

based on ML result in much higher performance. For instance, external variables

such as meteorological (bad weather may results in more traffic accidents, floods,

etc), temporal (day of the week/year, holiday or not), trends (google search for

disease-related keywords), are variables that may lead to reasons of overcrowding760

in hospitals’ EDs. On the other hand, BSTT is a straightforward model that one

might consider applying by using only the historical data of ambulances’ TT,

external variables (traffic, weather, etc.), and variables related to the incident
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(type, hour, etc.). However, we demonstrate that adding the predicted AvTT of

ambulances for the hour an ambulance is going to the hospital and past AvTTs,765

leads to much higher performance for this complex task.

Finally, the present work has some key limitations that are described in

the following. We analyzed and build our models using the data of SDIS 25.

Although it may represent a sufficient amount of samples, other emergency

medical services in France also transport victims to hospitals’ EDs. In addition,770

there was no data from hospitals such as a history of all ambulances’ TT, patient

flow and the number of doctors on duty, for example. These variables could be of

high importance as they are internal to hospitals, which would help ML models

to better forecast the TT of each ambulance and AvTT for ambulances.

5. Conclusion and Future Work775

This paper presents a first study on the impact of the current COVID-

19 pandemic on the firefighter ambulances’ TT on hospitals in the region of

Doubs-France. A significant increase in the AvTT per day has been identified

in 2020 as soon as the number of official and suspected cases of the disease

began to rise. Additionally, in comparison with previous years, this increment780

is not normal, which strengthens the claim that the AvTT per day increased

due to the COVID-19 pandemic. A direct and negative chain-like effect is the

increment of breakdowns on the firefighters’ service in 2020 due to the lack of

ambulances and personnel in the centers of the SDIS 25. Therefore, it is vital to

have some data-driven system to forecast the TT that will have an ambulance in785

a certain hospital, as we propose in this paper. This prediction could be made

at the moment when the personnel report that they will go to the hospital. This

would help fire brigades, and in a global context, EMSs to activate proactive

decision-making with the available resources in order to allow saving more lives.

For future work, we will extend our analyses and forecasting to the sec-790

ond semester of 2020, which includes the current second wave of COVID-19 in

France. Also, we aim to improve the proposed methodology by adding new
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features and analyzing their influence (i.e., feature selection), and to test with

other ML techniques. Finally, there is also another direction for further research,

and that is about finding the nearest hospital with a shorter TT, considering795

internal hospital data.
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[44] Bison-Futé, Les prévisions de trafic, available online: https://www.biso

n-fute.gouv.fr (accessed on 02 July 2020).

42
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Appendix A. Settings used during modeling

Table A.5: Search space for hyperparameters by technique and the best configuration obtained

for predicting AvTT per hour for each hospital.

Technique Search space
Best configuration

CHRU CHIH HNFC

LGBM

max depth: [1-12] 6 12 5

n estimators: [50-1000] 143 808 768

num leaves: [31-100] 40 61 45

learning rate: [0.001-1] 0.8498 0.0103 0.0094

subsample: [0.5-1] 0.99 0.92 0.5

colsample bytree: [0.5-1] 0.94 0.6 0.63

MLP

Dense layers: 2 2 2 2

nb neurons: [100-500] (100, 302) (125, 325) (362, 562)

alpha: [0.00001-0.01] 0.000029 0.003674 0.000034

learning rate init: [0.0001-0.1] 0.0355 0.003611 0.000543

max iter: [50-200] 154 86 177

tol: [0.00001-0.01] 0.003731 0.002888 0.000661

momentum: [0.00001-0.01] 0.0073 0.006057 0.00479

Early stopping: 20 20 20 20

LSTM

LSTM layers and neurons: 1, (110) 1, (110) 1, (110) 1, (110)

Dense layers and neurons: 2, (128, 1) 2, (128, 1) 2, (128, 1) 2, (128, 1)

Activation function: ReLU ReLU ReLU ReLU

Dropout: 0.5 0.5 0.5 0.5

Loss function: ‘mse’ ‘mse’ ‘mse’ ‘mse’

Optimizer: Adam Adam Adam Adam

Early stopping: 15 15 15 15

Max. epochs: 100 100 100 100

Batch size: [40-250] 93 142 112

Learning rate: [0.005-0.01] 0.00841 0.00595 0.00894

Prophet

n changepoints: [20-100] 45 75 35

seasonality prior scale: [0-50] 36.82 18.17 12.13

holidays prior scale: [0-50] 23.47 22.42 34.77
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Table A.6: Search space for hyperparameters in LGBM and the best configuration obtained

according to the method applied for predicting the TTs of each ambulance.

Method LGBM search space
Best configuration

CHRU CHIH HNFC

BSTT

max depth: [1-12] 2 1 1

n estimators: [50-1000] 978 820 678

num leaves: [31-100] 98 59 99

learning rate: [0.001-1] 0.0034 0.0099 0.0157

subsample: [0.5-1] 0.78 0.68 0.55

colsample bytree: [0.5-1] 0.86 0.89 0.92

Proposed methodology

max depth: [1-12] 6 2 9

n estimators: [50-1000] 150 129 401

num leaves: [31-100] 94 46 75

learning rate: [0.001-1] 0.1888 0.0956 0.0299

subsample: [0.5-1] 0.72 0.65 0.79

colsample bytree: [0.5-1] 0.73 0.76 0.5

45



Hi
ghlights

• Analysis of the ambulances’ turnaround time for three hospitals from 2015-2020.
• Breakage calculation in the fire department ambulance service during COVID-19.
• Predicting the ambulances’ average turnaround time in a given hour and hospital.
• Predicting the turnaround time for each intervention and its ambulances.
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