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With local differential privacy (LDP), users can privatize their data and thus guarantee privacy properties before transmitting it to the server (a.k.a. the aggregator). One primary objective of LDP is frequency (or histogram) estimation, in which the aggregator estimates the number of users for each possible value. In practice, when a study with rich content on a population is desired, the interest is in the multiple attributes of the population, that is to say, in multidimensional data (𝑑 ≥ 2). However, contrary to the problem of frequency estimation of a single attribute (the majority of the works), the multidimensional aspect imposes to pay particular attention to the privacy budget. This one can indeed grow extremely quickly due to the composition theorem. To the authors' knowledge, two solutions seem to stand out for this task: 1) splitting the privacy budget for each attribute, i.e., send each value with 𝜖 𝑑 -LDP (Spl), and 2) random sampling a single attribute and spend all the privacy budget to send it with 𝜖-LDP (Smp). Although Smp adds additional sampling error, it has proven to provide higher data utility than the former Spl solution. However, we argue that aggregators (who are also seen as attackers) are aware of the sampled attribute and its LDP value, which is protected by a "less strict" 𝑒 𝜖 probability bound (rather than 𝑒 𝜖/𝑑 ). This way, we propose a solution named Random Sampling plus Fake Data (RS+FD), which allows creating uncertainty over the sampled attribute by generating fake data for each non-sampled attribute; RS+FD further benefits from amplification by sampling. We theoretically and experimentally validate our proposed solution on both synthetic and real-world datasets to show that RS+FD achieves nearly the same or better utility than the state-of-the-art Smp solution.

INTRODUCTION 1.Background

In recent years, differential privacy (DP) [START_REF] Dwork | Differential Privacy[END_REF][START_REF] Dwork | Calibrating Noise to Sensitivity in Private Data Analysis[END_REF] has been increasingly accepted as the current standard for data privacy [START_REF] Abadi | Deep Learning with Differential Privacy (CCS '16)[END_REF][START_REF] Aktay | Google COVID-19 community mobility reports: Anonymization process description (version 1[END_REF][START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF][START_REF] Rogers | LinkedIn's Audience Engagements API: A privacy preserving data analytics system at scale[END_REF]. In the centralized model of DP, a trusted curator has access to compute on the entire raw data of users (e.g., the Census Bureau [START_REF] Abowd | The U.S. Census Bureau Adopts Differential Privacy[END_REF][START_REF] Garfinkel | Implementing Differential Privacy for the 2020 Census[END_REF]). By 'trusted', we mean that curators do not misuse or leak private information from individuals. However, this assumption does not always hold in real life [START_REF] Mccandless | World's Biggest Data Breaches & Hacks[END_REF]. To address non-trusted services, with the local model of DP (LDP) [START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF], each user applies a DP mechanism to their own data before sending it to an untrusted curator (a.k.a. the aggregator). The LDP model allows collecting data in unprecedented ways and, therefore, has led to several adoptions by industry. For instance, big tech companies like Google, Apple, and Microsoft, reported the implementation of LDP mechanisms to gather statistics in well-known systems (i.e., Google Chrome browser [START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF], Apple iOS and macOS [START_REF]Learning with privacy at scale[END_REF], and Windows 10 operation system [START_REF] Bolin Ding | Collecting Telemetry Data Privately[END_REF]).

Problem statement

On collecting data, in practice, one is often interested in multiple attributes of a population, i.e., multidimensional data. For instance, in cloud services, demographic information (e.g., age, gender) and user habits could provide several insights to further develop solutions to specific groups. Similarly, in digital patient records, users might be linked with both their demographic and clinical information.

In this paper, we focus on the problem of private frequency (or histogram) estimation on multiple attributes with LDP. This is a primary objective of LDP, in which the data collector decodes all the privatized data of the users and can then estimate the number of users for each possible value. The single attribute frequency estimation task has received considerable attention in the literature [START_REF] Acharya | Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication[END_REF][START_REF] Alvim | Invited Paper: Local Differential Privacy on Metric Spaces: Optimizing the Trade-Off with Utility[END_REF][START_REF] Bolin Ding | Collecting Telemetry Data Privately[END_REF][START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF][START_REF] Kairouz | Discrete distribution estimation under local privacy[END_REF][START_REF] Li | Estimating Numerical Distributions under Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Xiong | A Comprehensive Survey on Local Differential Privacy[END_REF][START_REF] Zhao | Local Differential Privacy with K-anonymous for Frequency Estimation[END_REF] as it is a building block for more complex tasks (e.g., heavy hitter estimation [START_REF] Bassily | Practical locally private heavy hitters[END_REF][START_REF] Bassily | Local, Private, Efficient Protocols for Succinct Histograms[END_REF][START_REF] Wang | Locally Differentially Private Heavy Hitter Identification[END_REF], estimating marginals [START_REF] Fanti | Building a RAPPOR with the Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries[END_REF][START_REF] Peng | A privacypreserving data aggregation of mobile crowdsensing based on local differential privacy[END_REF][START_REF] Ren | LoPub : High-Dimensional Crowdsourced Data[END_REF][START_REF] Zhang | CALM: Consistent adaptive local marginal for marginal release under local differential privacy[END_REF], frequent itemset mining [START_REF] Qin | Heavy Hitter Estimation over Set-Valued Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Frequent Itemset Mining[END_REF]).

In the LDP setting, the aggregator already knows the users' identifiers, but not their private data. We assume there are 𝑑 attributes 𝐴 = {𝐴 1 , 𝐴 2 , ..., 𝐴 𝑑 }, where each attribute 𝐴 𝑗 with a discrete domain D 𝑗 has a specific number of values |𝐴 𝑗 | = 𝑘 𝑗 . Each user 𝑢 𝑖 for 𝑖 ∈ {1, 2, ..., 𝑛} has a tuple v (𝑖) = (𝑣 represents the value of attribute 𝐴 𝑗 in record v (𝑖) . Thus, for each attribute 𝐴 𝑗 , the analyzer's goal is to estimate a 𝑘 𝑗 -bins histogram, including the frequency of all values in D 𝑗 .

Context of the problem

Regarding multiple attributes, as also noticed in the recent survey work on LDP in [START_REF] Xiong | A Comprehensive Survey on Local Differential Privacy[END_REF], most studies for collecting multidimensional data with LDP mainly focused on numerical data (e.g., [START_REF] Duchi | Minimax Optimal Procedures for Locally Private Estimation[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF]). Unlike the single attribute frequency estimation problem (the majority of the works), the multidimensional setting needs to consider the allocation of the privacy budget. To the authors' knowledge, there are mainly two solutions for satisfying LDP by randomizing v. We will simply omit the index notation v (𝑖) in the analysis as we focus on one arbitrary user 𝑢 𝑖 here. On the one hand, due to the composition theorem [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF], users can split the privacy budget for each attribute and send all randomized values with 𝜖 𝑑 -LDP to the aggregator (Spl). The other solution is based on random sampling a single attribute and spend all the privacy budget to send it (Smp). More precisely, each user tells the aggregator which attribute is sampled, and what is the perturbed value for it ensuring 𝜖-LDP; the aggregator would not receive any information about the remaining 𝑑 -1 attributes.

Although the later Smp solution adds sampling error, in the literature [START_REF] Héber | Longitudinal Collection and Analysis of Mobile Phone Data with Local Differential Privacy[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF], it has proven to provide higher data utility than the former Spl solution. However, aggregators (who are also seen as attackers) are aware of the sampled attribute and its LDP value, which is protected by a "less strict" 𝑒 𝜖 probability bound (rather than 𝑒 𝜖/𝑑 ). In other words, while both solutions provide 𝜖-LDP, we argue that using the Smp solution may be unfair with some users. For instance, on collecting multidimensional health records (i.e., demographic and clinical data), users that randomly sample a demographic attribute (e.g., gender) might be less concerned to report their data than those whose sampled attribute is "disease" (e.g., if positive for human immunodeficiency viruses -HIV).

This way, there is a privacy-utility trade-off between the Spl and Smp solutions. With these elements in mind, we formulate the problematic of this paper as: For the same privacy budget 𝜖, is there a solution for multidimensional frequency estimates that provides better data utility than Spl and more protection than Smp?

Purpose and contributions

In this paper, we intend to solve the aforementioned problematic by answering the following question: What if the sampling result (i.e., the selected attribute) was not disclosed with the aggregator?

Since the sampling step randomly selects an attribute 𝑗 ∈ [1, 𝑑] (we slightly abuse the notation and use 𝑗 for 𝐴 𝑗 ), we propose that users

v 1 Splitting (Spl) v 2 ... v d-1 Client Side Sampling (Smp) RS+FD Local randomizer (ϵ/d) y 1 y 2 y d-1 y d v 1 v 2 ... v d-1 v d Local randomizer (ϵ) [ j, y j ] v 1 v j j →Uni(d) v 2 ... v d-1 v d Local randomizer (ϵ' > ϵ)
Fake Data Generator v j j →Uni(d) add uncertainty about the sampled attribute through generating 𝑑 -1 fake data, i.e., one for each non-sampled attribute. We call our solution Random Sampling plus Fake Data (RS+FD). Fig. 1 illustrates the overview of RS+FD in comparison with the aforementioned known solutions, namely, Spl and Smp. More precisely, with RS+FD, the client-side has two steps: local randomization and fake data generation. First, an LDP mechanism preserves privacy for the data of the sampled attribute. Second, the fake data generator provides fake data for each 𝑑 -1 non-sampled attribute. This way, the privatized data is "hidden" among fake data and, hence, the sampling result is not disclosed along with the users' report (and statistics).

for i ≠ j:
What is more, we notice that RS+FD can enjoy privacy amplification by sampling [START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF][START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF][START_REF] Chaudhuri | When Random Sampling Preserves Privacy[END_REF][START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF][START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]. That is, if one randomly sample a dataset without replacement using a sampling rate 𝛽 < 1, it suffices to use a privacy budget 𝜖 ′ > 𝜖 to satisfy 𝜖-DP, where

𝑒 𝜖 ′ -1 𝑒 𝜖 -1 = 1
𝛽 [START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]. This way, given that the sampled dataset for each attribute has non-overlapping users, i.e., each user selects an attribute with sampling probability 𝛽 = 1 𝑑 , to satisfy 𝜖-LDP, each user can apply an LDP mechanism with 𝜖 ′ = ln (𝑑 • (𝑒 𝜖 -1) + 1) ≥ 𝜖.

To summarize, this paper makes the following contributions:

• We propose a novel solution, namely, RS+FD for multidimensional frequency estimates under LDP, which is generic to be used with any existing LDP mechanism developed for single-frequency estimation. • Using state-of-the-art LDP mechanisms, we develop four protocols within RS+FD and analyze them analytically and experimentally. • We conducted a comprehensive and extensive set of experiments on both synthetic and real-world datasets. Under the same privacy guarantee, results show that our proposed protocols with RS+FD achieve similar or better utility than using the state-of-the-art Smp solution.

Paper's outline: The remainder of this paper is organized as follows. In Section 2, we revise the privacy notions that we are considering, i.e., LDP, the LDP mechanisms we further analyze in this paper, and amplification by sampling. In Section 3, we introduce our RS+FD solution, the integration of state-of-the-art LDP mechanisms within RS+FD, and their analysis. In Section 4, we present experimental results. In Section 5, we discuss our results and review related work. Lastly, in Section 6, we present the concluding remarks and future directions.

PRELIMINARIES

In this section, we briefly recall LDP (Subsection 2.1), the LDP mechanisms we will apply in this paper (Subsection 2.2), and amplification by sampling (Subsection 2.3).

Local differential privacy

Local differential privacy, initially formalized in [START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF], protects an individual's privacy during the data collection process. A formal definition of LDP is given in the following:

Definition 1 (𝜖-Local Differential Privacy). A randomized algorithm A satisfies 𝜖-LDP if, for any pair of input values 𝑣 1 , 𝑣 2 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(A) and any possible output 𝑦 of A:

Pr[A (𝑣 1 ) = 𝑦] ≤ 𝑒 𝜖 • Pr[A (𝑣 2 ) = 𝑦].
Similar to the centralized model of DP, LDP also enjoys several important properties, e.g., immunity to post-processing (𝐹 (A) is 𝜖-LDP for any function 𝐹 ) and composability [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF]. That is, combining the results from 𝑚 differentially private mechanisms also satisfies DP. If these mechanisms are applied separately in disjointed subsets of the dataset, 𝜖 = 𝑚𝑎𝑥 (𝜖 1 -, . . . , 𝜖 𝑚 )-LDP (parallel composition). On the other hand, if these mechanisms are sequentially applied to the same dataset, 𝜖 = 𝑚 𝑖=1 𝜖 𝑖 -LDP (sequential composition).

LDP mechanisms

Randomized response (RR), a surveying technique proposed by Warner [START_REF] Stanley | Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias[END_REF], has been the building block for many LDP mechanisms.

Let 𝐴 𝑗 = {𝑣 1 , 𝑣 2 , ..., 𝑣 𝑘 𝑗 } be a set of 𝑘 𝑗 = |𝐴 𝑗 | values of a given attribute and let 𝜖 be the privacy budget, we review two stateof-the-art LDP mechanisms for single-frequency estimation (a.k.a. frequency oracles) that will be used in this paper.

Generalized randomized response (GRR).

The k-Ary RR [START_REF] Kairouz | Discrete distribution estimation under local privacy[END_REF] mechanism extends RR to the case of 𝑘 𝑗 ≥ 2 and is also referred to as direct encoding [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF] or generalized RR (GRR) [START_REF] Wang | Locally Differentially Private Frequent Itemset Mining[END_REF][START_REF] Wang | Locally Differentially Private Frequency Estimation with Consistency[END_REF][START_REF] Zhang | CALM: Consistent adaptive local marginal for marginal release under local differential privacy[END_REF]. Throughout this paper, we use the term GRR for this LDP mechanism. Given a value 𝐵 = 𝑣 𝑖 , GRR(𝑣 𝑖 ) outputs the true value 𝑣 𝑖 with probability 𝑝 = 𝑒 𝜖 𝑒 𝜖 +𝑘 𝑗 -1 , and any other value 𝑣 𝑙 for 𝑙 ≠ 𝑖 with probability 𝑞 = 1-𝑝

𝑘 𝑗 -1 = 1 𝑒 𝜖 +𝑘 𝑗 -1 . GRR satisfies 𝜖-LDP since 𝑝 𝑞 = 𝑒 𝜖 .
The estimated frequency f (𝑣 𝑖 ) that a value 𝑣 𝑖 occurs, for 𝑖 ∈ [1, 𝑘 𝑗 ], is calculated as [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Locally Differentially Private Frequent Itemset Mining[END_REF]:

f (𝑣 𝑖 ) = 𝑁 𝑖 -𝑛𝑞 𝑛(𝑝 -𝑞) , (1) 
in which 𝑁 𝑖 is the number of times the value 𝑣 𝑖 has been reported and 𝑛 is the total number of users. In [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF], it is shown that this is an unbiased estimation of the true frequency, and the variance of this estimation is 𝑉 𝑎𝑟

[ f (𝑣 𝑖 )] = 𝑞 (1-𝑞) 𝑛 (𝑝-𝑞) 2 + 𝑓 (𝑣 𝑖 ) (1-𝑝-𝑞) 𝑛 (𝑝-𝑞)
. In the case of small 𝑓 (𝑣 𝑖 ) ∼ 0, this variance is dominated by the first term. Thus, the approximate variance of this estimation for GRR is [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF]:

𝑉 𝑎𝑟 [ f 𝐺𝑅𝑅 (𝑣 𝑖 )] = 𝑒 𝜖 + 𝑘 𝑗 -2 𝑛(𝑒 𝜖 -1) 2 .
(2) 2.2.2 Optimized unary encoding (OUE). For a given value 𝑣, 𝐵 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑣), where 𝐵 = [0, 0, ..., 1, 0, ...0], a 𝑘 𝑗 -bit array in which only the 𝑣-th position is set to one. Subsequently, the bits from 𝐵 are flipped, depending on two parameters 𝑝 and 𝑞, to generate a privatized vector [START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF]. Wang et al. [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF] propose optimized UE (OUE), which selects "optimized" parameters (𝑝 = 1 2 and 𝑞 = 1 𝑒 𝜖 +1 ) to minimize the approximate variance of UE-based mechanisms while still satisfying 𝜖-LDP. The estimation method used in (1) equally applies to OUE. As shown in [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF], the OUE approximate variance is calculated as:

𝐵 ′ . More precisely, 𝑃𝑟 [𝐵 ′ [𝑖] = 1] = p if 𝐵 [𝑖] = 1 and 𝑃𝑟 [𝐵 ′ [𝑖] = 1] = q if 𝐵 [𝑖] = 0. This unary-encoding (UE) mechanism satisfies 𝜖-LDP for 𝜖 = 𝑙𝑛 𝑝 (1-𝑞) (1-𝑝)𝑞
𝑉 𝑎𝑟 [ f 𝑂𝑈 𝐸 (𝑣 𝑖 )] = 4𝑒 𝜖 𝑛(𝑒 𝜖 -1) 2 .
(3) 2.2.3 Adaptive LDP mechanism. Comparing ( 2) with (3), elements 𝑘 𝑗 -2 + 𝑒 𝜖 is replaced by 4𝑒 𝜖 . Thus, as highlighted in [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF], when 𝑘 𝑗 < 3𝑒 𝜖 + 2, the utility loss with GRR is lower than the one of OUE. Throughout this paper, we will use the term adaptive (ADP) to denote this best-effort and dynamic selection of LDP mechanism.

Privacy amplification by sampling

One well-known approach for increasing the privacy of a DP mechanism is to apply the mechanism to a random subsample of the dataset [START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF][START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF][START_REF] Chaudhuri | When Random Sampling Preserves Privacy[END_REF][START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF][START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]. The intuition is that an attacker is unable to distinguish which data samples were used in the analysis. Li et al. [START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]Theorem 1] theoretically prove this effect. Theorem 1. Amplification by Sampling [START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]. Let A be an 𝜖 ′ -DP mechanism and S to be a sampling algorithm with sampling rate 𝛽. Then, if S is first applied to a dataset D, which is later privatized with A, the derived result satisfies DP with 𝜖 = ln 1 + 𝛽 (𝑒 𝜖 ′ + 1) .

RANDOM SAMPLING PLUS FAKE DATA

In this section, we present the overview of our RS+FD solution (Subsection 3.1), and the integration of the local randomizers presented in Subsection 2.2 within RS+FD (Subsections 3.2, 3.3, and 3.4).

Overview of RS+FD

We consider the local DP model, in which there are two entities, namely, users and the aggregator (an untrusted curator). Let 𝑛 be the total number of users, 𝑑 be the total number of attributes, k = [𝑘 1 , 𝑘 2 , ..., 𝑘 𝑑 ] be the domain size of each attribute, A be a local randomizer, and 𝜖 be the privacy budget. Each user holds a tuple v = (𝑣 1 , 𝑣 2 , ..., 𝑣 𝑑 ), i.e., a private value per attribute. Client-Side. The client-side is split into two steps, namely, local randomization and fake data generation (cf. Fig. 1). Initially, each user samples a unique attribute 𝑗 uniformly at random and applies an LDP mechanism to its value 𝑣 𝑗 . Indeed, RS+FD is generic to be applied with any existing LDP mechanisms (e.g., GRR [START_REF] Kairouz | Discrete distribution estimation under local privacy[END_REF], UEbased protocols [START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF], Hadamard Response [START_REF] Acharya | Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication[END_REF]). Next, for each 𝑑 -1 non-sampled attribute 𝑖, the user generates one random fake data. Finally, each user sends the (LDP or fake) value of each attribute to the aggregator, i.e., a tuple y = (𝑦 1 , 𝑦 2 , ..., 𝑦 𝑑 ). This way, the sampling result is not disclosed with the aggregator. In summary, Alg. 1 exhibits the pseudocode of our RS+FD solution.

Aggregator. For each attribute 𝑗 ∈ [1, 𝑑], the aggregator performs frequency (or histogram) estimation on the collected data by removing bias introduced by the local randomizer and fake data.

Algorithm 1 Random Sampling plus Fake Data (RS+FD) Privacy analysis. Let A be any existing LDP mechanism, Algorithm 1 satisfies 𝜖-LDP, in a way that 𝜖 ′ = ln (𝑑 • (𝑒 𝜖 -1) + 1). Indeed, we observe that our scenario is equivalent to sampling a dataset D without replacement with sampling rate 𝛽 = 1 𝑑 in the centralized setting of DP, which enjoys privacy amplification (cf. Subsection 2.3). With the local model, users privatize their data locally with a DP model. This way, to satisfy 𝜖-LDP, an amplified privacy parameter 𝜖 ′ > 𝜖 can be used. Limitations. Similar to other sampling-based methods for collecting multidimensional data under LDP [START_REF] Duchi | Minimax Optimal Procedures for Locally Private Estimation[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF], our RS+FD solution also entails sampling error, which is due to observing a sample instead of the entire population. In addition, in comparison with the Smp solution, RS+FD requires more computation on the user side because of the fake data generation part. Yet, communication cost is still equal to the Spl solution, i.e., each user sends one message per attribute. Lastly, while RS+FD utilizes an amplified 𝜖 ′ ≥ 𝜖, there is also bias generated from uniform fake data that may require a sufficient number of users 𝑛 to eliminate the noise.

Input : tuple v = (𝑣

RS+FD with GRR

Client side. Integrating GRR as the local randomizer A into Alg. 1 (RS+FD[GRR]) requires no modification. Initially, on the clientside, each user randomly samples an attribute 𝑗. Next, the value 𝑣 𝑗 is privatized with GRR (cf. Subsection 2.2.1) using the size of the domain 𝑘 𝑗 and the privacy parameter 𝜖 ′ . In addition, for each non-sampled 𝑑 -1 attribute 𝑖, the user also generates fake data uniformly at random according to the domain size 𝑘 𝑖 . Lastly, the user transmits the privatize tuple y, which includes the LDP value of the true data "hidden" among fake data.

Aggregator RS+FD [GRR]. On the server-side, for each attribute 𝑗 ∈ [1, 𝑑], the aggregator estimates f (𝑣 𝑖 ) for the frequency of each value 𝑖 ∈ [1, 𝑘 𝑗 ] as:

f (𝑣 𝑖 ) = 𝑁 𝑖 𝑑𝑘 𝑗 -𝑛(𝑑 -1 + 𝑞𝑘 𝑗 ) 𝑛𝑘 𝑗 (𝑝 -𝑞) , (4) 
in which 𝑁 𝑖 is the number of times the value 𝑣 𝑖 has been reported,

𝑝 = 𝑒 𝜖 ′ 𝑒 𝜖 ′ +𝑘 𝑗 -1
, and 𝑞 =

1-𝑝 𝑘 𝑗 -1 .
Theorem 2. For 𝑗 ∈ [1, 𝑑], the estimation result f (𝑣 𝑖 ) in ( 4) is an unbiased estimation of 𝑓 (𝑣 𝑖 ) for any value

𝑣 𝑖 ∈ D 𝑗 . Proof 2 𝐸 [ f (𝑣 𝑖 )] = 𝐸 𝑁 𝑖 𝑑𝑘 𝑗 -𝑛(𝑑 -1 + 𝑞𝑘 𝑗 ) 𝑛𝑘 𝑗 (𝑝 -𝑞) = 𝑑 𝑛(𝑝 -𝑞) 𝐸 [𝑁𝑖] - 𝑑 -1 + 𝑞𝑘 𝑗 𝑘 𝑗 (𝑝 -𝑞)
.

Let us focus on

𝐸 [𝑁 𝑖 ] = 1 𝑑 (𝑝𝑛𝑓 (𝑣 𝑖 ) + 𝑞(𝑛 -𝑛𝑓 (𝑣 𝑖 ))) + 𝑑 -1 𝑑𝑘 𝑗 𝑛 = 𝑛 𝑑 𝑓 (𝑣 𝑖 )(𝑝 -𝑞) + 𝑞 + 𝑑 -1 𝑘 𝑗 . Thus, 𝐸 [ f (𝑣 𝑖 )] = 𝑓 (𝑣 𝑖 ).
Theorem 3. The variance of the estimation in (4) is: 2 , where

VAR( f (𝑣 𝑖 )) = 𝑑 2 𝛿 (1 -𝛿) 𝑛(𝑝 -𝑞)
𝛿 = 1 𝑑 𝑞 + 𝑓 (𝑣 𝑖 )(𝑝 -𝑞) + (𝑑 -1)
𝑘 𝑗 .

(5)

Proof 3

Thanks to (4) we have

VAR( f (𝑣 𝑖 )) = VAR(𝑁 𝑖 )𝑑 2 𝑛 2 (𝑝 -𝑞) 2 . ( 6 
)
Since 𝑁 𝑖 is the number of times value 𝑣 𝑖 is observed, it can be defined as 𝑁 𝑖 = 𝑛 𝑧=1 𝑋 𝑧 where 𝑋 𝑧 is equal to 1 if the user 𝑧, 1 ≤ 𝑧 ≤ 𝑛 reports value 𝑣 𝑖 , and 0 otherwise. We thus have VAR(𝑁 𝑖 ) = 𝑛 𝑧=1 VAR(𝑋 𝑧 ) = 𝑛 VAR(𝑋 ), since all the users are independent. According to the probability tree in Fig. 2,

𝑃 (𝑋 = 1) = 𝑃 (𝑋 2 = 1) = 𝛿 = 1 𝑑 𝑞 + 𝑓 (𝑣 𝑖 )(𝑝 -𝑞) + (𝑑 -1) 𝑘 𝑗 . We thus have VAR(𝑋 ) = 𝛿 -𝛿 2 = 𝛿 (1 -𝛿) and, finally, VAR( f (𝑣 𝑖 )) = 𝑑 2 𝛿 (1 -𝛿) 𝑛(𝑝 -𝑞) 2 . ( 7 
)

RS+FD with OUE

Client side. To use UE-based protocols (OUE in our work) as local randomizer A in Alg. 1, there is, first, a need to define the fake data generation procedure. We propose two solutions: (i) RS+FD[OUEz] in Alg. 2, which applies OUE to 𝑑 -1 zero-vectors, and (ii) RS+FD[OUE-r] in Alg. 3, which applies OUE to 𝑑 -1 one-hotencoded fake data (uniform at random). We note that, on the one hand, introducing fake data through privatizing zero-vectors introduces less noise as there is only one parameter to perturb each bit, i.e., 𝑃𝑟 [0 → 1] = 𝑞. On the other hand, starting with zero-vectors RS+FD Fake data 

𝐵 ′ = 𝑣 𝑙 ≠𝑖 1 -1/ 𝑘 𝑗 𝐵 ′ = 𝑣 𝑖 1/ 𝑘 𝑗 1 -1 / 𝑑 True data 𝐵 = 𝑣 𝑙 ≠𝑖 𝐵 ′ = 𝑣 𝑖 𝑞 𝐵 ′ = 𝑣 𝑖 𝑝 𝐵 = 𝑣 𝑖 𝐵 ′ = 𝑣 𝑙 ≠𝑖 𝑞 𝐵 ′ = 𝑣 𝑖 𝑝 1 / 𝑑
Input : tuple v = (𝑣
f (𝑣 𝑖 ) = 𝑑 (𝑁 𝑖 -𝑛𝑞) 𝑛(𝑝 -𝑞) , (8) 
in which 𝑁 𝑖 is the number of times the value 𝑣 𝑖 has been reported, 𝑛 is the total number of users, 𝑝 = 1 2 , and 𝑞 = 1 Thus,

𝐸 [ f (𝑣 𝑖 )] = 𝑓 (𝑣 𝑖 ).
Theorem 5. The variance of the estimation in (8) is:

VAR( f (𝑣 𝑖 )) = 𝑑 2 𝛿 (1 -𝛿) 𝑛(𝑝 -𝑞) 2 , where 𝛿 = 1 𝑑 (𝑑𝑞 + 𝑓 (𝑣 𝑖 )(𝑝 -𝑞)) . (9) 
The proof for Theorem 5 follows Proof 3 and is omitted here. In this case, 𝛿 follows the probability tree in Fig. 3.

RS+FD

Fake data

𝐵 𝑖 = 0 Aggregator 

𝐵 ′ 𝑖 = 0 1 -𝑞 𝐵 ′ 𝑖 = 1 𝑞 1 -1 / 𝑑 True data 𝐵 𝑖 = 0 𝐵 ′ 𝑖 = 0 1 -𝑞 𝐵 ′ 𝑖 = 1 𝑞 𝐵 𝑖 = 1 𝐵 ′ 𝑖 = 0 1 -𝑝 𝐵 ′ 𝑖 = 1 𝑝 1 / 𝑑
f (𝑣 𝑖 ) = 𝑁 𝑖 𝑑𝑘 𝑗 -𝑛 𝑞𝑘 𝑗 + (𝑝 -𝑞)(𝑑 -1) + 𝑞𝑘 𝑗 (𝑑 -1)) 𝑛𝑘 𝑗 (𝑝 -𝑞)
, [START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF] in which 𝑁 𝑖 is the number of times the value 𝑣 𝑖 has been reported, 𝑝 = 1 2 , and 𝑞 = 1

𝑒 𝜖 ′ +1
. Theorem 6. For 𝑗 ∈ [1, 𝑑], the estimation result f (𝑣 𝑖 ) in ( 10) is an unbiased estimation of 𝑓 (𝑣 𝑖 ) for any value 𝑣 𝑖 ∈ D 𝑗 . Proof 6

𝐸 [ f (𝑣 𝑖 )] = 𝐸 𝑁 𝑖 𝑑𝑘 𝑗 -𝑛 𝑞𝑘 𝑗 + (𝑝 -𝑞)(𝑑 -1) + 𝑞𝑘 𝑗 (𝑑 -1)) 𝑛𝑘 𝑗 (𝑝 -𝑞) = 𝑑𝐸 [𝑁 𝑖 ] 𝑛(𝑝 -𝑞) - (𝑝 -𝑞)(𝑑 -1) + 𝑞𝑑𝑘 𝑗 𝑘 𝑗 (𝑝 -𝑞)
.

We have successively

𝐸 [𝑁 𝑖 ] = 𝑛 𝑑 (𝑝 𝑓 (𝑣 𝑖 ) + 𝑞(1 -𝑓 (𝑣 𝑖 ))) + 𝑛(𝑑 -1) 𝑑 ( 𝑝 𝑘 𝑗 + 𝑘 𝑗 -1 𝑘 𝑗 𝑞) = 𝑛 𝑑 (𝑓 (𝑣 𝑖 ) (𝑝 -𝑞) + 𝑞)) + 𝑛(𝑑 -1) 𝑑𝑘 𝑗 (𝑝 -𝑞 + 𝑘 𝑗 𝑞).
Thus,

𝐸 [ f (𝑣 𝑖 )] = 𝑓 (𝑣 𝑖 ).
Theorem 7. The variance of the estimation in (10) is:

VAR( f (𝑣 𝑖 )) = 𝑑 2 𝛿 (1 -𝛿) 𝑛(𝑝 -𝑞) 2
, where

𝛿 = 1 𝑑 𝑞 + 𝑓 (𝑣 𝑖 )(𝑝 -𝑞) + (𝑑 -1) 𝑘 𝑗 𝑝 + (𝑘 𝑗 -1)𝑞 . (11) 
The proof for Theorem 7 follows Proof 3 and is omitted here. In this case, 𝛿 follows the probability tree in Fig. 4. 

RS+FD Fake data

𝐵 𝑖 = 0 𝐵 ′ 𝑖 = 0 1 -𝑞 𝐵 ′ 𝑖 = 1 𝑞 1 -1/ 𝑘 𝑗 𝐵 𝑖 = 1 𝐵 ′ 𝑖 = 0 1 -𝑝 𝐵 ′ 𝑖 = 1 𝑝 1/ 𝑘 𝑗 1 -1 / 𝑑 True data 𝐵 𝑖 = 0 𝐵 ′ 𝑖 = 0 1 -𝑞 𝐵 ′ 𝑖 = 1 𝑞 𝐵 𝑖 = 1 𝐵 ′ 𝑖 = 0 1 -𝑝 𝐵 ′ 𝑖 = 1 𝑝 1 / 𝑑

Analytical analysis: RS+FD with ADP

In a multidimensional setting with different domain sizes for each attribute, a dynamic selection of LDP mechanisms is preferred (as in Subsection 2.2.3). Because our estimators in ( 4), [START_REF] Héber | Forecasting the number of firefighter interventions per region with local-differential-privacybased data[END_REF], and ( 10) are unbiased, their variance is equal to the mean squared error (MSE) that is commonly used in practice as an accuracy metric [START_REF] Wang | Improving utility and security of the shufflerbased differential privacy[END_REF][START_REF] Wang | Locally Differentially Private Frequency Estimation with Consistency[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF]. In this work, we analyze the approximate variances VAR 1 for RS+FD[GRR] in (5) and VAR 2 for RS+FD[OUE-z] in [START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF], in which 𝑓 (𝑣 𝑖 ) = 0. This is, first, because under the local model of DP, the real frequency 𝑓 (𝑣 𝑖 ) is unknown and, second, because in real life the vast majority of values appear very infrequently. Notice that this is common practice in the literature (e.g., cf. [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF]), which provides an approximation for the variance of the protocols. Assume there are 𝑑 ≥ 2 attributes with domain size k = [𝑘 1 , 𝑘 2 , ..., 𝑘 𝑑 ] and a privacy budget 𝜖 ′ . For each attribute 𝑗 with domain size 𝑘 𝑗 , to select RS+FD[GRR], we are then left to evaluate if VAR 1 ≤ VAR 2 . This is equivalent to check whether,

𝑑 2 𝛿 1 (1 -𝛿 1 ) 𝑛(𝑝 1 -𝑞 1 ) 2 - 𝑑 2 𝛿 2 (1 -𝛿 2 ) 𝑛(𝑝 2 -𝑞 2 ) 2 ≤ 0, ( 12 
) in which 𝑝 1 = 𝑒 𝜖 ′ 𝑒 𝜖 ′ +𝑘 𝑗 -1 , 𝑞 1 = 1-𝑝 1 𝑘 𝑗 -1 , 𝑝 2 = 1 2 , 𝑞 2 = 1 𝑒 𝜖 ′ +1 , 𝛿 1 = 1 𝑑 𝑞 1 + 𝑑-1 𝑘 𝑗
, and 𝛿 2 = 𝑞 2 . In other words, if [START_REF] Bassily | Practical locally private heavy hitters[END_REF] is less than or equal to zero, the utility loss is lower with RS+FD[GRR]; otherwise, if [START_REF] Bassily | Practical locally private heavy hitters[END_REF] is positive, RS+FD[OUE-z] should be selected. Throughout this paper, we will refer to this dynamic selection of our protocols as RS+FD [ADP].

For the sake of illustration, Fig. 5 illustrates a 3D visualization of ( 12) by fixing 𝜖 ′ = ln(3) and 𝑛 = 20000, and by varying 𝑑 ∈ [START_REF] Abowd | The U.S. Census Bureau Adopts Differential Privacy[END_REF][START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF] and 𝑘 𝑗 ∈ [START_REF] Abowd | The U.S. Census Bureau Adopts Differential Privacy[END_REF][START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF], which are common values for real-world datasets (cf. Subsection 4.1). In this case, one can notice in Fig. 5 that neither RS+FD [GRR] nor RS+FD[OUE-z] will always provide the lowest variance value, which reinforces the need for an adaptive mechanism. For instance, with the selected parameters, for lower values of 𝑘 𝑗 , RS+FD[GRR] can provide lower estimation errors even if 𝑑 is large. On the other hand, as soon as the domain size starts to grow, e.g., 𝑘 𝑗 ≥ 10, one is better off with RS+FD[OUE-z] even for small values of 𝑑 ≥ 3, as its variance in [START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF] does not depend on 𝑘 𝑗 . 

EXPERIMENTAL VALIDATION

In this section, we present the setup of our experiments in Subsection 4.1, the results with synthetic data in Subsection 4.2, and the results with real-world data in Subsection 4.3.

Setup of experiments

Environment. All algorithms were implemented in Python 3.8.5 with NumPy 1.19.5 and Numba 0.53.1 libraries. The codes we developed and used for all experiments are available in a Github repository 1 . In all experiments, we report average results over 100 runs as LDP algorithms are randomized. Synthetic datasets. Our first set of experiments are conducted on six synthetic datasets. The distribution of values in each attribute follows an uniform distribution, for all synthetic datasets. Real-world datasets. In addition, we also conduct experiments on four real-world datasets with non-uniform distributions.

• Nursery. A dataset from the UCI machine learning repository [START_REF] Dua | UCI Machine Learning Repository[END_REF] with 𝑑 = 9 categorical attributes and 𝑛 = 12960 samples. The domain size of each attribute is k = [3, 5,

, respectively. • Adult. A dataset from the UCI machine learning repository [START_REF] Dua | UCI Machine Learning Repository[END_REF] with 𝑑 = 9 categorical attributes and 𝑛 = 45222 samples after cleaning the data. The domain size of each attribute is k = [7, 16,

, respectively. • MS-FIMU. An open dataset from [START_REF] Héber | Mobility modeling through mobile data: generating an optimized and open dataset respecting privacy[END_REF] with 𝑑 = 6 categorical attributes and 𝑛 = 88935 samples. The domain size of each attribute is k = [3,

, respectively. • Census-Income. A dataset from the UCI machine learning repository [START_REF] Dua | UCI Machine Learning Repository[END_REF] with 𝑑 = 33 categorical attributes and 𝑛 = 299285 samples. The domain size of each attribute is k = [9, 52, 47, 17, 3, ..., 43,

Evaluation and metrics. We vary the privacy parameter in a logarithmic range as 𝜖 = [ln(2), ln(3), ..., ln(7)], which is within range of values experimented in the literature for multidimensional data (e.g., in [START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF] the range is 𝜖 = [0.5, ..., 4] and in [START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF] the range is 𝜖 = [0.1, ..., 10]). We use the MSE metric averaged per the number of attributes 𝑑 to evaluate our results. Thus, for each attribute 𝑗, we compute for each value 𝑣 (𝑖) ∈ D 𝑗 the estimated frequency f (𝑣 𝑖 ) and the real one 𝑓 (𝑣 𝑖 ) and calculate their differences. More precisely,

𝑀𝑆𝐸 𝑎𝑣𝑔 = 1 𝑑 ∑︁ 𝑗 ∈ [1,𝑑 ] 1 |D 𝑗 | ∑︁ 𝑣 ∈ D 𝑗 (𝑓 (𝑣 𝑖 ) -f (𝑣 𝑖 )) 2 . ( 13 
)
Methods evaluated. We consider for evaluation the following solutions (cf. Fig. 1) and protocols:

• Solution Spl, which splits the privacy budget per attribute 𝜖/𝑑 with a best-effort approach using the adaptive mechanism presented in Subsection 2.2. 

Results on synthetic data

Our first set of experiments were conducted on six synthetic datasets. Fig. 6 (first two synthetic datsets), Fig. 7 (third and fourth synthetic datsets), and Fig. 8 (last two synthetic datasets) illustrate for all methods, the averaged 𝑀𝑆𝐸 𝑎𝑣𝑔 (y-axis) according to the privacy parameter 𝜖 (x-axis).

Impact of the number of users. In both Fig. 6 and Fig. 7, one can notice that the 𝑀𝑆𝐸 𝑎𝑣𝑔 is inversely proportional to the number of users 𝑛. With the datasets we experimented, the 𝑀𝑆𝐸 𝑎𝑣𝑔 decreases one order of magnitude by increasing 𝑛 in one order of magnitude too. In comparison with Smp, the noise in our RS+FD solution comes mainly from fake data as it uses an amplified 𝜖 ′ ≥ 𝜖. This suggests that, in some cases, with appropriately high number of user 𝑛, our solutions may always provide higher data utility than the state-of-the-art Smp solution (e.g., cf. Fig. 8).

Impact of the number of attributes. One can notice the effect on increasing 𝑑 comparing the results of Fig. 6 (𝑑 = 5) and Fig. 7 (𝑑 = 10) while fixing 𝑛 and k (uniform number of values). For instance, even though there are twice the number of attributes, the accuracy (measured with the averaged MSE metric) does not suffer much. This is because the amplification by sampling ( 𝑒 𝜖 ′ -1 𝑒 𝜖 -1 = 1 𝛽 [START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]) depends on the sampling rate 𝛽 = 1 𝑑 , which means that the more attributes one collects, the more the 𝜖 ′ is amplified, i.e., 𝜖 ′ = ln (𝑑 • (𝑒 𝜖 -1) + 1); thus balancing data utility.

Besides, in Fig. 8, one can notice a similar pattern, i.e., increasing the number of attributes from 𝑑 = 10 (left-side plot) to 𝑑 = 20 (righthand plot), with varied domain size k, resulted in only a slightly loss of performance. This, however, is not true for the Spl solution, for example, in which the 𝑀𝑆𝐸 𝑎𝑣𝑔 increased much more in order of magnitude than our RS+FD solution.

Comparison with existing solutions. From our experiments, one can notice that the Spl solution always resulted in more estimation error than our RS+FD solution and than the Smp solution, which is in accordance with other works [START_REF] Héber | Longitudinal Collection and Analysis of Mobile Phone Data with Local Differential Privacy[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF]. Besides, our RS+FD[GRR], RS+FD[OUE-z], and RS+FD[ADP] protocols achieve better or nearly the same performance than the Smp solution with a best-effort adaptive mechanism Smp[ADP], which uses GRR for small domain sizes 𝑘 and OUE for large ones. Although this is not true with RS+FD[OUE-r], it still provides more accurate results than Spl[ADP] while "hiding" the sampled attribute from the aggregator.

Globally, on high privacy regimes (i.e., low values of 𝜖), our RS+FD solution consistently outperforms the other two solutions Spl and Smp. By increasing 𝜖, Smp[ADP] starts to outperform RS+FD[OUE-r] while achieving similar performance than our RS+FD[GRR], RS+FD[OUE-z], and RS+FD[ADP] solutions. In addition, one can notice in Fig. 7, for example, the advantage of RS+FD[ADP] over our protocols RS+FD[GRR] and RS+FD[OUE-z] applied individually, as it adaptively selects the protocol with the smallest approximate variance value. 

Results on real world data

Our second set of experiments were conducted on four real-world datasets with varied parameters for 𝑛, 𝑑, and k. Fig. 9 (Nursery), Fig. 10 (Adult), Fig. 11 (MS-FIMU ), and Fig. 12 (Census-Income) illustrate for all methods, averaged 𝑀𝑆𝐸 𝑎𝑣𝑔 (y-axis) according to the privacy parameter 𝜖 (x-axis).

The results with real-world datasets follow similar behavior than with synthetic ones. For all tested datasets, one can observe that the 𝑀𝑆𝐸 𝑎𝑣𝑔 of our proposed protocols with RS+FD is still smaller than the Spl solution with a best-effort adaptive mechanism Spl [ADP]. As also highlighted in the literature [START_REF] Héber | Longitudinal Collection and Analysis of Mobile Phone Data with Local Differential Privacy[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF], privacy budget splitting is sub-optimal, which leads to higher estimation error.

On the other hand, for both In general, these results help us answering the problematic of this paper (cf. Subsection 1.3) that for the same privacy parameter 𝜖, one can achieve nearly the same or better data utility with our RS+FD solution than when using the state-ofthe-art Smp solution. Besides, RS+FD enhances users' privacy by "hiding" the sampled attribute and its 𝜖-LDP value among fake data. On the other hand, there is a price to pay on computation, in the generation of fake data, and on communication cost, which is similar to the Spl solution, i.e., send a value per attribute.

LITERATURE REVIEW AND DISCUSSION

In recent times, there have been several works on the local DP setting in both academia [START_REF] Acharya | Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication[END_REF][START_REF] Alvim | Invited Paper: Local Differential Privacy on Metric Spaces: Optimizing the Trade-Off with Utility[END_REF][START_REF] Bassily | Local, Private, Efficient Protocols for Succinct Histograms[END_REF][START_REF] Kairouz | Discrete distribution estimation under local privacy[END_REF][START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF][START_REF] Xiong | A Comprehensive Survey on Local Differential Privacy[END_REF] and practical deployment [START_REF] Bolin Ding | Collecting Telemetry Data Privately[END_REF][START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF][START_REF] Kessler | SAP HANA goes private[END_REF][START_REF]Learning with privacy at scale[END_REF]. Among many other complex tasks (e.g., heavy hitter estimation [START_REF] Bassily | Practical locally private heavy hitters[END_REF][START_REF] Bassily | Local, Private, Efficient Protocols for Succinct Histograms[END_REF][START_REF] Wang | Locally Differentially Private Heavy Hitter Identification[END_REF], marginal estimation [START_REF] Fanti | Building a RAPPOR with the Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries[END_REF][START_REF] Peng | A privacypreserving data aggregation of mobile crowdsensing based on local differential privacy[END_REF][START_REF] Ren | LoPub : High-Dimensional Crowdsourced Data[END_REF][START_REF] Zhang | CALM: Consistent adaptive local marginal for marginal release under local differential privacy[END_REF], frequent itemset mining [START_REF] Qin | Heavy Hitter Estimation over Set-Valued Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Frequent Itemset Mining[END_REF]), frequency estimation is a fundamental primitive in LDP and has received considerable attention for a single attribute [START_REF] Acharya | Hadamard Response: Estimating Distributions Privately, Efficiently, and with Little Communication[END_REF][START_REF] Alvim | Invited Paper: Local Differential Privacy on Metric Spaces: Optimizing the Trade-Off with Utility[END_REF][START_REF] Héber | Forecasting the number of firefighter interventions per region with local-differential-privacybased data[END_REF][START_REF] Bolin Ding | Collecting Telemetry Data Privately[END_REF][START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF][START_REF] Kairouz | Discrete distribution estimation under local privacy[END_REF][START_REF] Wook | Application of Local Differential Privacy to Collection of Indoor Positioning Data[END_REF][START_REF] Li | Estimating Numerical Distributions under Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF][START_REF] Xiong | A Comprehensive Survey on Local Differential Privacy[END_REF][START_REF] Zhao | Local Differential Privacy with K-anonymous for Frequency Estimation[END_REF]. However, concerning multiple attributes, as also noticed in the survey work on LDP in [START_REF] Xiong | A Comprehensive Survey on Local Differential Privacy[END_REF], most studies for collecting multidimensional data with LDP mainly focused on numerical data [START_REF] Duchi | Minimax Optimal Procedures for Locally Private Estimation[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF]. For instance, in [START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF], the authors propose sampling-based LDP mechanisms for real-valued data (named Harmony and Piecewise Mechanism) and applied these protocols in a multidimensional setting using state-of-the-art LDP mechanisms from [START_REF] Bassily | Local, Private, Efficient Protocols for Succinct Histograms[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF] for categorical data. On the other hand, regarding categorical attributes, in [START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF], the authors prove for OUE (as well as to optimal local hashing -OLH) that sending 1 attribute with the whole privacy budget 𝜖 results in less variance than splitting the privacy budget 𝜖/𝑑 for all attributes. The authors in [START_REF] Héber | Longitudinal Collection and Analysis of Mobile Phone Data with Local Differential Privacy[END_REF] prove and validate experimentally that reporting a single attribute with 𝜖-LDP resulted in less estimation error than splitting the privacy budget when using GRR. However, in the aforementioned works [START_REF] Héber | Longitudinal Collection and Analysis of Mobile Phone Data with Local Differential Privacy[END_REF][START_REF] Thông | Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy[END_REF][START_REF] Wang | Collecting and Analyzing Multidimensional Data with Local Differential Privacy[END_REF][START_REF] Wang | Locally Differentially Private Protocols for Frequency Estimation[END_REF][START_REF] Wang | Local Differential Privacy for data collection and analysis[END_REF], the sampling result is known by the aggregator. That is, each user samples a single attribute 𝑗, applies a local randomizer to 𝑣 𝑗 , and sends to the aggregator the tuple 𝑦 = ⟨𝑗, 𝐿𝐷𝑃 (𝑣 𝑗 )⟩ (i.e., Smp). While one can achieve higher data utility (cf. Figs. [START_REF] Héber | Mobility modeling through mobile data: generating an optimized and open dataset respecting privacy[END_REF][START_REF] Héber | Longitudinal Collection and Analysis of Mobile Phone Data with Local Differential Privacy[END_REF][START_REF] Héber | Forecasting the number of firefighter interventions per region with local-differential-privacybased data[END_REF][START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF][START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF][START_REF] Balle | The Privacy Blanket of the Shuffle Model[END_REF][START_REF] Bassily | Practical locally private heavy hitters[END_REF] with Smp than splitting the privacy budget among 𝑑 attributes (Spl), we argue that Smp might be "unfair" with some users. More precisely, users whose sampled attribute is socially "more" sensitive (e.g., disease or location), might hesitate to share their data as the probability bound 𝑒 𝜖 is "less" restrictive than 𝑒 𝜖/𝑑 . For instance, assume that GRR is used with k=2 (HIV positive or negative) and the privacy budget is 𝜖 = 𝑙𝑛(7) ∼ 2, the user will report the true value with probability as high as 𝑝 ∼ 87% (even with 𝜖 = 1, this probability is still high 𝑝 ∼ 73%). On the other hand, if there are 𝑑 = 10 attributes (e.g., nine demographic and HIV test), with Spl, the probability bound is now 𝑒 𝜖/10 and 𝑝 ∼ 55%.

Motivated by this privacy-utility trade-off between the solutions Spl and Smp, we proposed a solution named random sampling plus fake data (RS+FD), which generates uncertainty over the sampled attribute in the view of the aggregator. In this context, since the sampling step randomly selects an attribute with sampling probability 𝛽 = 1 𝑑 , there is an amplification effect in terms of privacy, a.k.a. amplification by sampling [START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF][START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF][START_REF] Chaudhuri | When Random Sampling Preserves Privacy[END_REF][START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF][START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF]. A similar privacy amplification for sampling a random item of a single attribute has been noticed in [START_REF] Wang | Locally Differentially Private Frequent Itemset Mining[END_REF] for frequent itemset mining in the LDP model too. Indeed, amplification is an active research field on DP literature, which aims at finding ways to measure the privacy introduced by non-compositional sources of randomness, e.g., sampling [START_REF] Balle | Privacy amplification by subsampling: tight analyses via couplings and divergences[END_REF][START_REF] Balle | Privacy profiles and amplification by subsampling[END_REF][START_REF] Chaudhuri | When Random Sampling Preserves Privacy[END_REF][START_REF] Prasad Kasiviswanathan | What Can We Learn Privately?[END_REF][START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF], iteration [START_REF] Vitaly Feldman | Privacy Amplification by Iteration[END_REF], and shuffling [START_REF] Balle | The Privacy Blanket of the Shuffle Model[END_REF][START_REF] Erlingsson | Encode, shuffle, analyze privacy revisited: Formalizations and empirical evaluation[END_REF][START_REF] Erlingsson | Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity[END_REF][START_REF] Wang | Improving utility and security of the shufflerbased differential privacy[END_REF].

CONCLUSION AND PERSPECTIVES

This paper investigates the problem of collecting multidimensional data under 𝜖-LDP for the fundamental task of frequency estimation. As shown in the results, our proposed RS+FD solution achieves nearly the same or better performance than the state-of-the-art Smp solution. In addition, RS+FD generates uncertainty over the sampled attribute in the view of the aggregator, which enhances users' privacy. For future work, we suggest and intend to investigate if given a reported tuple y one can state which attribute value is "fake" or not by seeing the estimated frequencies. Indeed, we intend to investigate this phenomenon in both single-time collection and longitudinal studies (i.e., throughout time) by extending RS+FD with two rounds of privatization, i.e., using memoization [START_REF] Bolin Ding | Collecting Telemetry Data Privately[END_REF][START_REF] Erlingsson | RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[END_REF].
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 1 Figure 1: Overview of our random sampling plus fake data (RS+FD) solution in comparison with two known solutions, namely, Spl and Smp, where 𝑈 𝑛𝑖 (𝑑) = 𝑈 𝑛𝑖 𝑓 𝑜𝑟𝑚({1, 2, ..., 𝑑 }).
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 2 Figure 2: Probability tree for Eq. (4) (RS+FD[GRR]).
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 +14 For 𝑗 ∈ [1, 𝑑], the estimation result f (𝑣 𝑖 ) in (8) is an unbiased estimation of 𝑓 (𝑣 𝑖 ) for any value 𝑣 𝑖 ∈ D 𝑗 . Proof 4 𝐸 [ f (𝑣 𝑖 )] = 𝐸 𝑑 (𝑁 𝑖 -𝑛𝑞) 𝑛(𝑝 -𝑞) = 𝑑 (𝐸 [𝑁 𝑖 ] -𝑛𝑞) 𝑛(𝑝 -𝑞) = 𝑑 𝑛(𝑝 -𝑞) 𝐸 [𝑁 𝑖 ] -𝑑𝑞 𝑝 -𝑞 . We have successively 𝐸 [𝑁 𝑖 ] = 𝑛 𝑑 (𝑝 𝑓 (𝑣 𝑖 ) + 𝑞(1 -𝑓 (𝑣 𝑖 ))) + (𝑑 -1)𝑛𝑞 𝑑 = 𝑛 𝑑 (𝑓 (𝑣 𝑖 )(𝑝 -𝑞) + 𝑑𝑞) .

Figure 3 :

 3 Figure 3: Probability tree for Eq. (8) (RS+FD[OUE-z]).

Figure 4 :

 4 Figure 4: Probability tree for Eq. (10) (RS+FD[OUE-r]).

Figure 5 :

 5 Figure 5: Analytical evaluation of (12) that allows a dynamic selection between RS+FD[GRR] with variance VAR 1 and RS+FD[OUE-z] with variance VAR 2 . Parameters were set as 𝜖 ′ = ln(3), 𝑛 = 20000, 𝑑 ∈ [2, 10], and 𝑘 𝑗 ∈ [2, 20].
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  For the first two synthetic datasets, we fix the number of attributes 𝑑 = 5 and the domain size of each attribute as k = [10, 10, ..., 10] (uniform), and vary the number of users as 𝑛 = 50000 and 𝑛 = 500000. • Similarly, for the third and fourth synthetic datasets, we fix the number of attributes 𝑑 = 10 and the domain size of each attribute as k = [10, 10, ..., 10] (uniform), and vary the number of users as 𝑛 = 50000 and 𝑛 = 500000. • Lastly, for the fifth and sixth synthetic datasets, we fix the number of users as 𝑛 = 500000. Next, we set the number of attributes 𝑑 = 10 with domain size of each attribute as k = [10, 20, ..., 90, 100] for one dataset, and we set the number of attributes 𝑑 = 20 with domain size of each attribute as k = [10, 10, 20, 20, ..., 100, 100] for the other.

Figure 6 :

 6 Figure 6: Averaged MSE varying 𝜖 on the synthetic datasets with 𝑑 = 5, uniform domain size k = [10, 10, ..., 10], and 𝑛 = 50000 (left-side plot) and 𝑛 = 500000 (right-side plot).

Figure 7 :

 7 Figure 7: Averaged MSE varying 𝜖 on the synthetic datasets with 𝑑 = 10, uniform domain size k = [10, 10, ..., 10], and 𝑛 = 50000 (left-side plot) and 𝑛 = 500000 (right-side plot).

Figure 8 :

 8 Figure 8: Averaged MSE varying 𝜖 on the synthetic datasets with 𝑛 = 500000: the first with 𝑑 = 10 and domain size k = [10, 20, ..., 90, 100] (left-side plot), and the other with 𝑑 = 20 and domain size k = [10, 10, 20, ..., 100, 100] (right-side plot).

Figure 9 :

 9 Figure 9: Averaged MSE varying 𝜖 on the Nursery dataset with 𝑛 = 12960, 𝑑 = 9, and domain size k = [3, 5, 4, 4, 3, 2, 3, 3, 5].

Figure 10 :

 10 Figure 10: Averaged MSE varying 𝜖 on the Adult dataset with 𝑛 = 45222, 𝑑 = 9, and domain size k = [7, 16, 7, 14, 6, 5, 2, 41, 2].

Figure 11 :

 11 Figure 11: Averaged MSE varying 𝜖 on the MS-FIMU dataset with 𝑛 = 88935, 𝑑 = 6, and domain size k = [3, 3, 8, 12, 37, 11].

Figure 12 :

 12 Figure 12: Averaged MSE varying 𝜖 on the Census-Income dataset with 𝑛 = 299285, 𝑑 = 33, and domain size k = [9, 52, 47, 17, 3, ..., 43, 43, 43, 5, 3, 3, 3, 2].

  1 , 𝑣 2 , ..., 𝑣 𝑑 ), domain size of attributes k = [𝑘 1 , 𝑘 2 , ..., 𝑘 𝑑 ], privacy parameter 𝜖, local randomizer A. Output : privatized tuple y = (𝑦 1 , 𝑦 2 , ..., 𝑦 𝑑 ). 1: 𝜖 ′ = ln (𝑑 • (𝑒 𝜖 -1) + 1) ⊲ amplification by sampling [31] 2: 𝑗 ← 𝑈 𝑛𝑖 𝑓 𝑜𝑟𝑚 ( {1, 2, ..., 𝑑 }) ⊲ Selection of attribute to privatize 3: 𝐵 𝑗 ← 𝑣 𝑗 4: 𝑦 𝑗 ← A (𝐵 𝑗 , 𝑘 𝑗 , 𝜖 ′ ) ⊲ privatize data of the sampled attribute 5: for 𝑖 ∈ {1, 2, ..., 𝑑 }/𝑗 do 𝑦 𝑖 ← Uniform( {1, ..., 𝑘 𝑖 }) ⊲ generate fake data

	⊲ non-sampled attributes
	6:

7: end for return : y = (𝑦 1 , 𝑦 2 , ..., 𝑦 𝑑 ) ⊲ sampling result is not disclosed

  1 , 𝑣 2 , ..., 𝑣 𝑑 ), domain size of attributes k = [𝑘 1 , 𝑘 2 , ..., 𝑘 𝑑 ], privacy parameter 𝜖, local randomizer OUE. Output : privatized tuple B ′ = (𝐵 ′ 1 , 𝐵 ′ 2 , ..., 𝐵 ′ 𝑑 ). sampled attribute if the perturbation probability 𝑞 is too small. Studying this effect is out of the scope of this paper and is left as future work. Aggregator RS+FD[OUE-z]. On the server-side, if fake data are generated with OUE applied to zero-vectors, as in Alg. 2, for each attribute 𝑗 ∈ [1, 𝑑], the aggregator estimates f (𝑣 𝑖 ) for the frequency of each value 𝑖 ∈ [1, 𝑘 𝑗 ] as:

1: 𝜖 ′ = ln (𝑑 • (𝑒 𝜖 -1) + 1) ⊲ amplification by sampling

[START_REF] Li | On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy[END_REF] 

2: 𝑗 ← 𝑈 𝑛𝑖 𝑓 𝑜𝑟𝑚 ( {1, 2, ..., 𝑑 })

⊲ Selection of attribute to privatize 3: 𝐵 𝑗 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑣 𝑗 ) = [0, 0, ..., 1, 0, ...0] ⊲ one-hot-encoding 4: 𝐵 ′ 𝑗 ← 𝑂𝑈 𝐸 (𝐵 𝑗 , 𝜖 ′ )

⊲ privatize real data with OUE 5: for 𝑖 ∈ {1, 2, ..., 𝑑 }/𝑗 do ⊲ non-sampled attributes 6: 𝐵 𝑖 ← [0, 0, ..., 0]

⊲ initialize zero-vectors 7: 𝐵 ′ 𝑖 ← 𝑂𝑈 𝐸 (𝐵 𝑖 , 𝜖 ′ ) ⊲ randomize zero-vector with OUE 8: end for return : B ′ = (𝐵 ′ 1 , 𝐵 ′ 2 , ..., 𝐵 ′ 𝑑 ) ⊲ sampling result is not disclosed Algorithm 3 RS+FD[OUE-r] Input : tuple v = (𝑣

1 , 𝑣 2 , ..., 𝑣 𝑑 ), domain size of attributes k = [𝑘 1 , 𝑘 2 , ..., 𝑘 𝑑 ], privacy parameter 𝜖, local randomizer OUE. Output : privatized tuple B ′ = (𝐵 ′ 1 , 𝐵 ′ 2 , ..., 𝐵 ′ 𝑑 ). 1: 𝜖 ′ = ln (𝑑 • (𝑒 𝜖 -1) + 1) ⊲ amplification by sampling [31] 2: 𝑗 ← 𝑈 𝑛𝑖 𝑓 𝑜𝑟𝑚 ( {1, 2, ..., 𝑑 }) ⊲ Selection of attribute to privatize 3: 𝐵 𝑗 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑣 𝑗 ) = [0, 0, ..., 1, 0, ...0] ⊲ one-hot-encoding 4: 𝐵 ′ 𝑗 ← 𝑂𝑈 𝐸 (𝐵 𝑗 , 𝜖 ′ ) ⊲ privatize real data with OUE 5: for 𝑖 ∈ {1, 2, ..., 𝑑 }/𝑗 do ⊲ non-sampled attributes 6: 𝑦 𝑖 ← Uniform( {1, ..., 𝑘 𝑖 }) ⊲ generate fake data 7: 𝐵 𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑦 𝑖 ) ⊲ one-hot-encoding 8: 𝐵 ′ 𝑖 ← 𝑂𝑈 𝐸 (𝐵 𝑖 , 𝜖 ′ ) ⊲ randomize fake data with OUE 9: end for return : B ′ = (𝐵 ′ 1 , 𝐵 ′ 2 , ..., 𝐵 ′ 𝑑 ) ⊲ sampling result is not disclosed may not suffice to "hide" the

  3, i.e., Spl[ADP]. • Solution Smp, which randomly samples a single attribute and use all the privacy budget 𝜖 also with the adaptive mechanism, i.e., Smp[ADP]. • Our solution RS+FD, which randomly samples a single attribute and uses an amplified privacy budget 𝜖

	-RS+FD[OUE-z] (Alg. 2);
	-RS+FD[OUE-r] (Alg. 3);
	-RS+FD[ADP] presented in Subsection 3.4 (i.e., adaptive
	choice between RS+FD[GRR] and RS+FD[OUE-z]).

′ ≥ 𝜖 while generating fake data for each 𝑑 -1 non-sampled attribute:

-RS+FD[GRR] (Alg. 1 with GRR as local randomizer A);

  Adult and MS-FIMU datasets, our solutions RS+FD[GRR], RS+FD[OUE-z], and RS+FD[ADP] achieve nearly the same performance (sometimes better on high privacy regimes, i.e., low 𝜖) than the Smp solution with the best-effort adaptive mechanism Smp[ADP]. For the Nursery dataset, with small number of users 𝑛, only RS+FD[OUE-z] and RS+FD[ADP] are competitive with Smp[ADP]. Lastly, for the Census dataset, with a large number of attributes 𝑑 = 33, increasing the privacy parameter 𝜖 resulted in a small gain on data utility for our solutions RS+FD[GRR] and RS+FD[OUE-r]. On the other hand, both of our solutions RS+FD[OUE-z] and RS+FD[ADP] achieve nearly the same or better performance than Smp[ADP]. Moreover, one can notice that using the approximate variance in (12) led RS+FD[ADP] to achieve similar or improved performance over our RS+FD[GRR] and RS+FD[OUE-z] protocols applied individually. For instance, for the Adult dataset, with RS+FD[ADP] it was possible to outperform Smp[ADP] 3x more than with RS+FD[GRR] or RS+FD[OUE-z] (similarly, 1x more for the MS-FIMU dataset). Besides, for the Census-Income dataset, RS+FD[ADP] improves the performance of the other protocols applied individually on high privacy regimes while accompanying the RS+FD[OUE-z] curve on the lower privacy regime cases.

https://github.com/hharcolezi/ldp-protocols-mobility-cdrs
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