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Models of convection and segregation in heterogeneous

partially molten crustal roots with a VOF method - Part I:

flow regimes

Aurélie Louis–Napoléon1,2, Thomas Bonometti1, Muriel Gerbault2

Roland Martin2, Olivier Vanderhaeghe2

SUMMARY

We investigate numerically some thermo-mechanical conditions for the development of

crustal scale diapirism and convection in a heterogeneous continental crust independently

from the action of regional tectonics. Here, we consider a hot crust where convection is

generated below a melting front, with unmolten and partially molten domains of specific

temperature and strain-rate dependent power-law rheologies. We take advantage of the

VOF (Volume Of Fluid) method to capture the coalescence and separation of deformable

inclusions in the partially molten domain. The inclusions, of several hundred meters in

size, are more or less dense and more or less viscous with respect to the ambient medium

(they also behave with a power-law rheology). We restrict our study to a 20 Myr time

scale, during which gravitational dynamics may dominate over lateral tectonics and litho-

spheric thermal reequilibration. The motion of these inclusions during the development

of gravitational instabilities allows to define distinct flow regimes that depend on two

Rayleigh numbers denoted RaUM and RaPM , for the unmolten and partially molten rock
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properties, respectively. A ’suspension’ regime occurs at high RaUM and high RaPM , in

which most of the light compositional heterogeneities remain entrained in the convective

cells. In contrast at low RaUM and high RaPM , a ’layering’ regime is characterized by

merging of the light inclusions as floating clusters below the rigid upper crustal lid. This

regime occurs occurs in association with a sharp viscosity gradient at upper-to-middle

crust transitional depths. In these two regimes, the dense inclusions accumulate at the bot-

tom of the partially molten zone. Finally at moderate RaPM , a ’diapiric’ regime reflects

the segregation of the heavy and the light inclusions, respectively downward and upward,

without global convection. These numerical experiments lead to a first order evaluation

of the physical parameters required for the segregation of deformable inclusions of vari-

able densities and convection, in a partially molten crust, and provide insights on the

conditions for the development of migmatite domes. Geological data indicate that these

processes likely occur in a large number of settings from Archean to Phanerozoic times,

and contribute to the differentiation of the continental crust.

Key words: Diapirism, Heat generation and transport , Rheology: crust and lithosphere,

Dynamics: gravity and tectonics, Numerical modelling, Composition and structure of the

continental crust
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1 Introduction

The continental crust is compositionally differentiated into a mafic lower crust, an intermediate middle

crust and a felsic upper crust (Rudnick & Fountain 1995; Mooney et al. 2002). At the grain scale, this

differentiation primarily results from element fractionation during partial melting, magma transfer and

fractional crystallisation (e.g. Sawyer 1994; Brown 1995; Leitch & Weinberg 2002; Vanderhaeghe

2009). Melt segregation and magma transfer from the grain scale to the crustal scale are attested by

the presence of migmatites, dikes, plutons and volcanoes. Moreover, kilometric size domes cored

by migmatites, typical of hot Archean-Proterozoic crust and thermally mature Phanerozoic orogenic

belts, testify of the upward ”en masse” motion of the deep, partially molten root of the crust. These

domes have been attributed to the combined influence of regional tectonics and diapiric gravitational

instabilities (Ramberg 1967; Cruden et al. 1995; Weinberg & Podladchikov 1994; Perchuk et al. 1992;

Van Kranendonk et al. 2004; Whitney et al. 2004; Schenker et al. 2012). More specifically, in several

orogenic contexts, such massive exhumation of the orogenic crustal root has been invoked to develop

independently from tectonics, e.g. during the transition from compressional to extensional regional

tectonics (Ganne et al. 2014; Kruckenberg et al. 2011; Gerbault et al. 2018). Furthermore, some of

migmatite domes have recently been interpreted as reflecting crustal scale convection on a timescale

of Myr to tens of Myr, based on their structural, petrological and geochronological record (Riel et al.

2016; Vanderhaeghe et al. 2018). Crustal convection has been also assessed by numerical modeling

(Babeyko et al. 2002; Schenker et al. 2012; Cao et al. 2016). As a complement to these previous

models, in this paper we investigate thermo-mechanical conditions for the development of crustal

scale diapirism and convection and their impact on the segregation of crustal material, independently

from the action of regional tectonics.

In terms of rheology, a key property of crustal rocks is their heterogeneous composition and their

non-linear behaviour. Decades of laboratory rock experiments have explored the influence of compo-

sition, water, temperature, pressure; various modes of deformation were found to compete at small

scale, such as grain boundary sliding, grain boundary diffusion, dislocation creep, and studies have

managed to upscale these deformation modes as a function of temperature and strain-rate power-law

relationships (e.g. Kohlstedt et al. 1995; Bürgmann & Dresen 2008). The additional complexities
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brought by partial melting leads to an overall drastic decrease in viscosity (Arzi 1978; Vigneresse

1995; Rosenberg & Handy 2005; Vanderhaeghe 2009), which facilitates gravitational destabilisation.

Hence, convection in hot orogenic crust can be viewed as convection below a melting front be-

tween solid (unmolten) and liquid (partially molten) phases. This kind of system has been investigated

for environments such as the Earth’s core and mantle, magma chambers or other types of industrial

fluids (see e.g. Davis et al. 1984; Ulvrová et al. 2012; Esfahani et al. 2018; Favier et al. 2019; Purseed

et al. 2020). It was shown that when compositional heterogeneities evolve in a convective system,

two regimes can occur, namely ’suspension’ or ’layering’ (Sparks et al. 1984; Martin & Nokes 1988;

Höink et al. 2005; Lavorel & Le Bars 2009; Patočka et al. 2020; Sturtz et al. 2021).

During melting, the separation, coalescence and segregation of layers of contrasted compositions

occur. Minerals can aggregate at different scales and form clusters of more or less viscous, more or

less dense material with respect to the surrounding environment. This aggregation depends on ther-

modynamic variables (pressure-temperature) and metamorphic reactions, and can result from the lo-

cal dynamics of initial heterogeneities (Culha et al. 2020) or from porous flow dynamics (Sawyer

1994; Rabinowicz & Ceuleneer 2005; Brown 2010, 1995; Katz & Weatherley 2012; Connolly &

Podladchikov 2015; Riel et al. 2016). Several models have attempted to account for the chemical

and lithological heterogeneities of partially molten crust over large geological time and space scales

by considering an equivalent single phase medium with strongly non-linear rheology (e.g. Gerya &

Burg 2007; Schenker et al. 2012; Cao et al. 2016; Gerbault et al. 2018), and recently by accounting

for two-phase flow in porous media (Schmeling et al. 2019; Keller et al. 2013). Whereas the latter

studies manage to decipher quite well the conditions for melt transport via whole matrix motion or

via localised porous flow, they remain challenging to achieve numerically, and a gap still remains in

bridging the influence of compositional heterogeneities at the intermediate scale, e.g. that of several

hundred meters, between the pore scale and the crustal scale. Hence here, we choose to formulate a

conceptual representation of crustal heterogeneities of sizes of the order of several hundred meters, by

introducing in the models, heterogeneous inclusions of that size. While the continental crust has on

average a composition equivalent to that of a granodiorite, it is in fact very heterogeneous, as a result

of many superimposed sedimentary, magmatic and tectonic processes over time, that lead to a variety

of compositions ranging from mafic to felsic (Dewey 1986; Wedepohl 1995; Rudnick et al. 2003).

The propension of these different rock types to melt is also variable (Thompson & Connolly 1995)
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and this inherited layering at scales of meters to kilometers is further enhanced by partial melting and

melt/solid segregation (Brown 1995; Vanderhaeghe et al. 2003; Kisters et al. 2009; Toé et al. 2013).

From a modeling view point, the influence of rigid inclusions on fluid flow has been explored at the

scale of magma-chambers (Suckale et al. 2012; Yamato et al. 2015; Shibano et al. 2013) or at that of the

whole mantle (Patočka et al. 2020), but seldom at the crustal scale (Deubelbeiss & Kaus 2008). In fact

no previous model has explicitly incorporated deformable compositional heterogeneities in a partially

molten crust, most probably because numerical codes encounter issues with mass conservation and

numerical diffusion at layers interfaces (Deubelbeiss & Kaus 2008; Schmeling et al. 2008; Suckale

et al. 2010; Hillebrand et al. 2014; Pusok et al. 2017; Heister et al. 2017). This motivates the use of a

Volume-Of-Fluid (VOF) method, dedicated to the conservation of compositional interfaces. Recently,

Puckett et al. (2018); Robey & Puckett (2019); Louis-Napoléon et al. (2020) have shown that the VOF

method is relevant to model interfaces separating chemical compositions in geological contexts. As

an alternative to the VOF method, the Level-Set method (Osher & Sethian 1988; Sethian & Smereka

2003) was employed by Suckale et al. (2010) to model the flow dynamics of magmatic chambers. This

method uses a fix grid like the VOF method. It captures the interfaces dynamics by solving a transport

equation for the signed distance function, also called level-set, while in the VOF method the transport

equation deals with the phases volume fraction. The level-set method, when coupled with the ghost

fluid method (Fedkiw et al. 1999), is particularly accurate when specific processes occur at materials

interfaces (e.g. phase change, surface tension).

Here, we take advantage of the VOF method to capture the coalescence and separation of de-

formable inclusions of several hundred meters in size; we incorporate three different fluid-phase com-

positions which all obey to temperature and strain-rate dependent properties. Because the actual distri-

bution of heterogeneities is variable in the continental crust in terms of amplitude, length-scales, and

interconnectivity, we set up models of an orogenic crustal domain containing an ad-hoc distribution

of chemical heterogeneities, which are topologically isolated rather than interconnected. We investi-

gate the consequences of such crustal heterogeneity on the dynamics of buoyancy-driven flow. At the

onset of our simulations, partial melting is absent, but it initiates at given solidus-liquidus temperature

thresholds resulting from the applied internal and basal heat sources.

We explore the interaction between convective flow and inclusions motion with evolving Rayleigh

numbers, as a consequence of basal and internal heating. Our purpose here is to describe with two-
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dimensional (2D) simulations the resulting regimes of suspension and segregation of light and heavy

inclusions in association with convective flow. An application to the specific case of Naxos’s domes

(Greece) is provided in a companion paper (Louis-Napoleon et al., part II, in prep). Here, the physical

framework is first described (section 2), then the numerical setup is presented (section 3). Note that

the mathematical details of the VOF method are available in Louis-Napoléon et al. (2020), hence it is

only briefly exposed here. We present in section 4 various model cases of a partially molten crust, first

without, then with heterogeneities. We discuss our results in Section 5, with a synthetic representation

of the observed regimes, and propose some guidelines to help identifying these regimes on the field.

Finally, conclusions and perspectives are drawn in Section 6.

2 Physical model

2.1 System of equations

In the present work, we consider the motion of a fluid whose properties may change due to partial

melting, and inside which spatial heterogeneities may appear. The local properties (density, viscosities)

vary as a function of temperature and strain rate. A schematic representation of the flow we intend to

investigate is displayed in Figure 1. In order to capture the motion of the various fluid phases, we

introduce local indicators denoted by their volume fractions Ci (subscript i defines the phase).

The general set of governing equations describes the transport of the volume fractions, mass,

momentum and energy, respectively expressed as:

∂Ci
∂t

+ U · ∇Ci = −∇ · (UrCr), (1)

∇ · U = 0, (2)

ρref
∂U
∂t

+ ρrefU · ∇ U = −∇P + ρ̃g +∇ · [µ̃(∇U + (∇U)T )], (3)

∂T

∂t
+ U · ∇T = ∇ · (κ(T )∇T ) +

Hr

Cp(T )
, (4)

where U, P , T are the local velocity, pressure and temperature of the fluid, respectively, and g is

the gravitational acceleration. Note that the r.h.s. of Eq. (1) is artificially added to reduce the effects

of numerical smearing of the interface in the present numerical approach, namely OpenFOAM. We
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refer the reader to Berberović et al. (2009) and Louis-Napoléon et al. (2020) for more details about

OpenFOAM and the numerical approach.
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Figure 1. Schematic representation of the numerical setup. At time t = 0 Myr, the basal temperature is switched

from TH = 600oC to TH+ = 1000oC. First, heat diffuses from the base of the domain across the bulk equivalent

domain (BED, blue and red regions). As melting occurs phase properties evolve as prescribed with the critical

melt fraction MS , which separates the unmolten medium (UM ) from the partially molten medium (PM ) in the

BED. Note that convection may develop at this stage. In a second modeling step, spatial heterogeneities are ac-

counted for (black and white inclusions, for heavy, more viscous, and light, less viscous material, respectively).

These inclusions become active only when the melt fraction exceeds the critical fraction MS : they may then

segregate vertically or be carried away within the convective cells.

In Eq. (3), ρref and ρ̃ are the reference and the local density, respectively, while µ̃ is the local

dynamic viscosity. These quantities are detailed below. In Eq. (4), κ(T ) is the thermal diffusivity (in

m2.s−1), Hr is the radioactive heating (in W.kg−1) and Cp(T ) is the heat capacity (in m2.s−2.K−1).

Here, we use the Boussinesq approximation that describes the temperature-dependency of density, and
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which appears only in the gravitational term ρ̃g of Eq. (3), namely:

ρ̃ = ρref × [1− α(T − Tref )], (5)

where α is the thermal expansion coefficient assumed constant in the present work (α = 3×10−5K−1)

and Tref is a reference temperature here defined as the temperature imposed at the top of the domain,

namely Tref = TC = 300oC at depth 10 km.

The effect of latent heating related to melting and crystallisation processes is accounted for via the

dependence of κ and Cp on temperature, following Whittington et al. (2009):

κ(T ) =

∣∣∣∣∣∣∣
(

567.3

T
− 0.062

)
· 10−6 if T < 846 K,

(0.732− 1.35× 10−4T ) · 10−6 if T > 846 K,

(6)

Cp(T ) =

∣∣∣∣∣∣∣
902.7 + 0.387T − 22.6× 10−6T−2 if T < 846 K,

1037.6 + 0.146T − 216.7× 10−6T−2 if T > 846 K.
(7)

The influence of latent heat could alternatively be explicitly incorporated in the resolution of the

heat equation (4). Its influence is actually tested in Appendix 3, following the explicit expression of

Ulvrová et al. (2012); with differences of about 10% observed in the flow regimes, and acknowledging

that this is of the order of the range of influence of other thermal parameters such as using an identical

κ and Cp amongst different material phases, we assume in the following that latent heat varies only

via the dependency of κ and Cp on temperature as described in Eqs. 6 and 7, respectively.

2.2 Implementation of partial melting and heterogeneities

2.2.1 Partial melting

As a first approximation, the volumetric fraction of melt M is assumed to increase linearly with tem-

perature, in a way similar to Gerya & Yuen (2003) or Burg & Gerya (2005) :

M =
T − Tsol
Tliq − Tsol

, (8)

where Tsol and Tliq are the solidus and liquidus temperatures of the considered rock, respectively. As a

first approximation, Tsol and Tliq are prescribed as constant values Tsol = 600oC and Tliq = 1000oC.

Here and following the above mentioned studies, we assume distinct fluid properties according to a

critical value of the melt fraction denoted MS , cf. sections 2.2.3 and 2.2.4 below. Note also that the
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1000oC limit is imposed along the bottom boundary of the model domain, so that full melting condi-

tions actually never occur inside the model domain. A more precise parametrization of the temperature

and pressure dependency of melt would be necessary in an effort to better fit natural crustal melting

systems.

2.2.2 Heterogeneities

We define a ”carrying fluid” phase, referred to as the bulk equivalent domain (BED, phase 1) and

which may melt partially. We distinguish it from two other discrete fluid phases (2 and 3) that bracket

the BEDs properties with extrema density and viscosity properties. These fluid phases 2 and 3 are

inserted as circular inclusions throughout the model domain (Fig. 1), with phase 2 shown in white,

being less dense and less viscous, and phase 3 shown in black, more dense and more viscous. With a

VOF method, these three fluid phases of distinct compositions are defined by three volume fractions

0 ≤ Ci ≤ 1 (i = 1, 2, 3) as :

• Fluid 1 = bulk equivalent domain (BED) (C1 = 1, C2 = C3 = 0),

• Fluid 2 = light and low viscosity inclusions (C1 = 0, C2 = 1, C3 = 0),

• Fluid 3 = heavy and stiff inclusions (C1 = C2 = 0, C3 = 1).

When the system is unmolten (M < MS), inclusions are mostly passive, i.e they behave like

the bulk equivalent medium. Then, as the system is heated up and M increases up to M ≥ MS , the

inclusions become active as their density and viscosity differ more and more from those of the BED.

As briefly described in the introduction, these two sets of inclusions (”material phases”) are sup-

posed to represent a key heterogeneity scale of partially molten orogenic crust. This means that any

kind of heterogeneous property arising at smaller scale is volume averaged into either one or the other

of these two inclusions properties. Obviously, a multitude of processes occur at small scale and are

related to thermo-chemical reactions, segregation and fluid percolation; while it is not our aim to ac-

count directly for these subscale processes in our study, we assume that their cumulated influence on

mechanical properties (density and viscosity) characterises heterogeneities at the scale just above, e.g.

that of our inclusions. Our choice of a several hundred meters size for these heterogeneities rises from

various theoretical and field studies for orogenic felsic crust (e.g. Brown 2010; Edmonds et al. 2019).

It allows to study the influence of characteristic size heterogeneities on the macroscale flow dynam-
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ics, without dealing with the complexities of sub-scale thermal, chemical and mechanical deformation

mechanisms, nor a huge set of poorly constrained parameters.

2.2.3 Viscosity

Experimental studies have shown that the viscosity of felsic rocks at mid-crustal depths depends non-

linearly on temperature and strain rate, and on composition (Kirby 1985; Kohlstedt et al. 1995; Ranalli

1995; Bürgmann & Dresen 2008). Since these rocks are composed of many minerals, several mech-

anisms of plastic deformation compete at a given time, such as cataclasis, grain boundary diffusion,

Peierls locking mechanism, or dislocation creep. With no partial melting or less than a critical amount

(M < MS), the viscosity of crustal rocks µUM , is defined with a power-law relationship on the

temperature and the second invariant of the deviatoric strain-rate ε̇ =
√

(tr(ε̇2)− tr2(ε̇)/3) /2 with

ε̇ = (∇U + (∇U)T )/2 in s−1), following Chen & Morgan (1990). Here, material incompressibility is

assumed
(
tr(ε̇) =

∑3
i=1 ε̇ii = 0

)
. While metamorphic and melting reactions do produce variations in

volume, at first order these variations may be considered negligible at the several hundred meter scale

of the inclusions considered here; their density contrast encompasses these related processes.

Experimental studies have also investigated the influence of partial melting on rock rheology (Arzi

1978; Van der Molen & Paterson 1979; Rutter et al. 2006; Rushmer 2001, and references therein). One

of the consequences of partial melting is a sharp decrease in viscosity µ̃ with melt fraction M . Studies

report a first percolation threshold around 10% where the molten domain becomes interconnected

within the solid matrix that maintains its coherency, and a second percolation threshold around 30%

where the molten domain becomes a fluid continuum within which discontinuous fragments of the

solid matrix float (Maaløe 1992; Vanderhaeghe 2009; Vigneresse 1995).

Here in our models, we approximate this transition with a single viscosity jump determined by an

arbitrary volumetric melt fraction threshold, MS . MS for felsic rocks then stands in between 10%

and 30%, and these two extreme values will be tested further below. At high melt fraction (M >

MS), the viscosity of partially molten felsic rock µPM becomes strongly dependent on M . Various

laws have been proposed in the literature (Rosenberg & Handy 2005; Caricchi et al. 2007; Takei &

Holtzman 2009; Rey et al. 2009; Rutter et al. 2011), and here we choose the formula provided by

Bittner & Schmeling (1995). In summary, we adopt two viscosity laws that depend on the volumetric

melt fraction M : if M < MS , the viscosity is equal to µUM and if M > MS , the viscosity is equal to



Convection and segregation in heterogeneous partially molten crustal roots with a VOF method - Part I 11

µPM :

µ̃ =

∣∣∣∣∣∣∣∣
µUM = 0.25× 106 × (0.75A)−

1
n [max(ε̇min, ε̇)]

1
n
−1 exp( Q

nRT ) if M < MS ,

µPM =
3∑
i=1

Ciµ
0
i exp

[
2.5 +

(
1−M
M

)0.48

(1−M)

]
if M ≥MS ,

(9)

where A is a pre-exponential factor (Pa−n.s−1), Q is the activation energy (J.mol−1) and n is

the power law exponent, all depending on rock composition. When not stated otherwise, we set Q =

1.54× 105 J.mol−1 and n = 2.3. R is the universal gas constant (R = 8.314 J.mol−1.K−1), and µ0
i

is a constant viscosity which also depends on rock composition. Note that, for n > 1, the viscosity

increases with decreasing strain rate. Because µUM is unbounded in the limiting case of vanishing

strain rate, stagnation points at very large viscosities may occur. Here, we fix a minimal value for

the strain rate ε̇min = 10−16s−1. We verified that this value does not change the results significantly

within the range 10−16 ≤ ε̇min ≤ 10−14 s−1, in line with Patočka et al. (2019)’s discussion on the

effect of an upper viscosity cut-off for Arrhenius type viscosity models using a rigid free-slip top

boundary condition (Appendix 4.2).

2.2.4 Density

The density explicitly depends on rock composition, melt fraction and temperature. More specifically,

the local effective density ρ̃ is defined as ρ̃ = ρref × [1− α(T − Tref )] while ρref is computed as:

ρref =

3∑
i=1

Ci × [ρS0
i (1−M) + ρL0

i M ], (10)

where ρS0
i and ρL0

i are the densities of the unmolten and molten rock in fluid i, respectively.

Note that density does not depend on MS (in contrast to viscosity) and is only controlled by the

melt fraction. Therefore, the inclusions may have a density different from that of the BED whatever

the value of M , even below MS . However this has no impact on the system’s dynamics since when

M < MS , the BED’s viscosity remains too high for the inclusions to move, whatever their density.

In the context of felsic orogenic crust, petrological information shows that metamorphism and

melting change the bulk density of rock domains by only about 50 to 200 kg/m3 at the several hundred

meters scale encompassed by our heterogeneous inclusions; note that at smaller scale these matrix

melt extraction processes are crucial for thermochemical models (e.g. Ganne et al. 2014; Toé et al.
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2013). Furthermore, analyses from partially molten felsic rock on field outcrops also display moderate

density variations (Bousquet et al. 1997; Hacker et al. 2003).

2.3 Dimensionless equations and dimensionless numbers

In this section, we make equations (1)-(4) dimensionless in order to highlight the three independent

dimensionless numbers of the problem. Due to the complex rheology of the fluids considered here, we

propose a generalization of the classical dimensionless numbers (e.g. Rayleigh, Prandtl, Archimedes,

Rayleigh-Roberts numbers), used in Louis-Napoléon et al. (2020) for instance, to situations where the

fluid obeys a non-Newtonian rheology of power-law type.

2.3.1 Dimensionless equations

The local viscosity defined in equation (9) depends on both the local strain rate and temperature (either

directly or indirectly via the use of the local melt fraction M ). Without loss of generality, viscosity

can be thus written in a compact form as :

µ̃ = Keff (T )ε̇
1
n
−1, (11)

where n is the power-law factor, Keff is a so-called consistency (in kg/(m.s2−1/n)) which is noth-

ing but the dynamic viscosity when n = 1 and ε̇ =
√

(tr(ε̇2)− tr2(ε̇)/3) /2 (where ε̇ = (∇U +

(∇U)T )/2 is the strain-rate tensor). Equations (1)-(4) are scaled using a time T , a height L, a velocity

U , a pressure P and a temperature T defined as:

T = q−1 =

(
2Keff

∆ρgH

)n
, L = H, U = qH, P = ρ(qH)2, T = ∆T, (12)

where H is the depth of the considered domain, ∆ρ and ∆T are the characteristic density difference

and temperature difference in the system. Note that with the units of Keff in kg/(m.s2−1/n), the term

in parenthesis in the expression of T has units of s1/n, so that T is in s, whatever the value of n. Here,

we choose ∆ρ = ρS0
1 − ρL0

1 and ∆T = Tliq − Tsol since they can be defined a priori. Note that

the state equation (5) allows us to write |∆ρ/ρ| = |α∆T |, so that we can express the characteristic

dimensionless time T as a function of the temperature difference:

T = q−1 =

(
2Keff

∆ρgH

)n
=

(
2Keff

ραg∆TH

)n
. (13)
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Using the following dimensionless variables (denoted by an asterisk):

t∗ =
t

T , x∗i =
xi
H
, U∗ =

U

qH
, P ∗ =

P

ρ(qH)2
, g∗ =

g

q2H
, (14)

equations (1)-(4) can finally be rewritten as:

∂Ci
∂t∗

+ U∗ · ∇∗Ci = −∇∗ · (U∗rCr), (15)

∇∗ · U∗ = 0, (16)

∂U∗

∂t∗
+ U∗ · ∇∗U∗ = −∇∗P ∗ + g∗ +∇∗ ·

[
2

Ar
(∇∗U∗ + (∇∗U∗)T )

]
, (17)

∂T ∗

∂t∗
+ U∗ · ∇∗T ∗ =

2

Ra
∆∗T ∗ +

2RaH
Ra2

, (18)

with

Ar =
2ρq2− 1

nH2

Keff
(generalized Archimedes number), (19)

Ra =
2q

κ/H2
(generalized Rayleigh number), (20)

RaH =
2qH4Hr

κ2Cp∆T
(generalized Rayleigh-Roberts number). (21)

Note that the Prandtl number is absent from equations (15)-(18), however it can be shown that this

number is a function of Ra and Ar, respectively, as:

Pr =
Ra

Ar
=

Keff

ρκq1− 1
n

(generalized Prandtl number). (22)

2.3.2 Range of parameters: Natural field versus simulations

Typical values of material properties for a hot orogenic crust are given in Table 1 (Ranalli 1995; Burov

& Gerya 2014). These values allow to compute a range of possible Keff = [KPM
eff ,K

UM
eff ], deduced

from Eqs. (9). We estimate :∣∣∣∣∣∣∣∣
KUM
eff = 0.25× 106 × (0.75A)−

1
n × exp( Q

nRTUM
),

KPM
eff = µ0 × exp

[
2.5 +

(
1−MS

MS

)0.48

(1−MS)

]
.

(23)
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where TUM is the characteristic mean temperature in the unmolten layer, here computed as TUM =

(TMs + T0o)/2 = (720 + 0)/2 = 360oC (as explained in more details in section 3.3).

In order to have a first order estimate of the dimensionless parameters introduced in the previous

section, we further assume the characteristic length scale to be H = 35 km (the total thickness of the

crustal domain is HT = H + 10 = 45 km). This leads to the range of ”natural field” parameters given

in Table 2.

In the present work, most of the material properties used in the simulations are identical to those

in nature, namely the acceleration due to gravity, material densities and their differences, temperatures

and their differences, the coefficient of thermal expansion and the thermal diffusivity. In the end, only

the height of the systemH and the characteristic viscosity (Keff , i.eA or µ0
i ) are different between the

real world and the simulations. In particular, we set the value of H and (A,µ0
i ) so as to have Ar ≈ 1

while being in similarity relative to Ra. This choice significantly reduces computational time. Indeed,

Louis-Napoléon et al. (2020) showed that the dynamics of crustal diapirs is correctly reproduced as

long as Ar . 1. To illustrate this, the results for various Archimède numbers for one of our main

models described below are displayed in Appendix 4.3 . It is important to note that having a larger

Ar in the simulations than in nature while keeping the same Ra implies having a smaller Pr in the

simulations than in nature (see the last column in Table 2). Nevertheless we verified that Pr was still

large enough to be representative of high-Prandtl flows (Krishnamurti 1970).

In practice, we first define the height of the simulation domain. For instance, the ratio between the

height of the ”natural field” crustal domain, denotedHfield and that of the simulation domain, denoted

Hsim is set to 105. This leads to a mesh-element size of 100 m in a 2D mesh of 494 × 350 cells in

total. Knowing the height, the viscosity can then be computed from the ratio between the field and

the simulation Archimedes numbers, namely Arfield (for example Arfield = 10−15) and Arsim = 1,

Table 1. Typical values of material properties in a hot orogenic crust (Ranalli 1995; Burov & Gerya 2014).

The critical melt fraction value is chosen according to Dufek & Bergantz (2005).These values are used in our

simulations and lead to the dimensionless parameters provided in Table 3.

Parameter α ρS0 ρL0 A Q n Hr µ0 MS Tsol κ(Tsol) Cp(Tsol)

Units K−1 kg.m−3 kg.m−3 Pa−n.s−1 J.mol−1 µW.kg−1 Pa.s K m2.s−1 m.s−2.K−1

Value 3× 10−5 2800 2700 3.2× 10−4 1.54× 105 2.3 1.75 5× 1015 0.3 873 6× 10−7 1220
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Table 2. Range of the dimensionless parameters controlling the present problem (field and simulation values),

with input parameters provided in Table 1.

Time scale Archimedes Rayleigh Rayleigh-Roberts Prandtl

q−1 (years) Ar = 2ρq2−
1
nH2

Keff
Ra = 2q

κ/H2 RaH = 2qH4Hr

κ2Cp∆T Pr = Ra
Ar

Natural field 642 [10−22; 10−15] [147; 105] [103; 104] [1020; 1023]

Simulations − [10−10; 10−1] [147; 105] [103; 104] [105; 1010]

respectively:

Kfield
eff

Ksim
eff

=

(
Arfield

Arsim

)− 1
2n
(
Hfield

Hsim

) 2n+1
2n

. (24)

Using n = 1 in (24), we can write µfield0 /µsim0 = (Arfield/Arsim)−1/2(Hfield/Hsim)3/2, which

leads to µsim0 = µfield0 /1015. Knowing all the other parameters, we can now relate the time, length

and velocity scales in the field to those in the numerical simulation using Eqs. (12).

3 Numerical implementation, method and setup

3.1 The VOF method

We employ the 3D code OpenFOAM (version 4.1 is used here), based on finite volumes with a VOF

method, which ensures mass conservation. Domain decomposition and the Message Passing Interface

(MPI) library are used to increase the computational speed. It was previously tested for a variety

of crustal problems in both 2D and 3D by comparing several Rayleigh-Taylor and Rayleigh-Bénard

model results with both analytical solutions and analogue experiments (Louis-Napoléon et al. 2020).

The reader is referred to this paper for more details about the numerical code.

3.2 Model Setup

The general model description used for our calculations is illustrated in figure 2. The 50 km ×35 km

size model was designed to study fluid dynamics during the melting of an orogenic crust heated in-

ternally by radiogenic decay and from below, in a context of removal of the lithospheric mantle, but

also perhaps in that of an Archean crust subjected to a higher geothermal gradient. The inclusions of

radius 300 m occupy 6 cells, given our choice of grid cell sizes of 100 m as stated above. They are set
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in staggered rows of inter-distances of three radii (in between vertice centers). Crustal thickness is set

constant and equal to 45 km, which might apply to a thickened Phanerozoic orogenic crust but also

to the evolution of an Archean craton (Vanderhaeghe et al. 2019; Artemieva & Mooney 2001). The

first 10 km are not simulated, because they are much more rigid than the rest of the modeled domain.

Instead we assume a rigid free-slip boundary condition at depth 10 km (Fig. 2), a reasonable choice

considering that convection below a stagnant lid is little affected by the lid’s rather elastic deformation

(e.g. Patočka et al. 2019). The initial thermal structure of the crust corresponds to a linear temperature

profile of 300°C at 10 km depth and 600°C at 45 km depth (at the bottom of the crust). The velocity

boundary conditions are set free slip at the upper boundary and no slip at the bottom boundary. Left

and right velocity and thermal boundaries are set periodic. Note that as shown for instance by Patočka

et al. (2019), the use of periodic lateral border boundary conditions allows to eliminate the locking of

convection cells, which may appear if impermeable free-slip borders were used instead. At the onset

of the model (t = 0+), the temperature at the base of the crust is instantaneously increased from

TH = 600 °C to TH+ = 1000 °C and is kept constant to this latter value during all the computation;

this simulates the effect of thinning of the lithospheric mantle as a result of either mantle delamination

or slab retreat beneath the orogenic crust (Royden 1996; Vanderhaeghe & Duchêne 2010). No lateral

motion is applied to the model (periodic slip along lateral boundaries). The rheology of the crust is as-

sumed to be controled by a dominantly quartzitic composition, hence the power-law creep parameters

of quartz are chosen (Ranalli 1995), as specified in Table A1.

In addition, the numerical models simulate partial melting by i) decreasing the density with in-

creasing melt fraction, ii) decreasing the effective viscosity when the volumetric melt fraction M >

MS , and iii) accounting for variations in thermal diffusion and heat capacity according to equations

(6) and (7) above. The volumetric melt fraction increases linearly with temperature according to (8).

Density, viscosity and melting relationships are employed for all three fluid phases, with specific

physical parameters for each phases. Other processes associated with partial melting such as sub-scale

solid-melt segregation processes (porous scale modes of fluid percolation). However, note that the

approximation of heterogeneous inclusions implicitly accounts for the fact that rocks with different

compositions might have distinct density and viscosity evolutions with temperature, which induces

heterogeneous behaviour in the system.
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Figure 2. Numerical setup : domain size, grid size, and boundary conditions (see text for details). The melting

front (M = MS) forms initially at the base of the model domain due to the imposition of the thermal boundary

condition, and it activates the black and white inclusions as it migrates progressively upwards over time.

Our model setting involves non-negligible density variations over the several tens of kilometers

over which the inclusions travel. Whether they are submitted to significant local expansion and con-

traction due to hydrostatic pressure variations during motion is recalled in appendix 4.4.

3.3 Dimensional numbers in the unmolten and partially molten layer

In the presence of a melting front, the domain can be divided in two regions occupied by the unmolten

and the partially molten media, respectively. Because of their different rheologies, it appears reason-

able to define two Rayleigh numbers denoted RaUM and RaPM for these unmolten and partially

molten domains, respectively. The choice of a representative thickness for each of these domains is

not straight-forward given the fact that they evolve in space in a complementary way one with respect

to the other. Hence, for both Rayleigh numbers we assume an equal value corresponding to half of

the physical domain’s total height (HT = 45 km), HT /2. Besides, one can estimate the characteristic

variation in temperature for each of these domains, which are separated by the melting front tempera-

ture TMs . This temperature can be deduced from the choice of Ms and other values (cf. Table 1); here,

T(Ms=0.3) = 720oC. Hence, we define for RaUM , ∆TUM = TMs − T0o , where temperature spans

from the Earth’s surface to that of the melting front. For RaPM , we define ∆TPM = T1000o − TMs

spanning from the melting front temperature to the maximum temperature at the base of the model
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domain. Consequently, using Eq. (13) and replacing H by HT /2 and ∆T by either ∆TUM or ∆TPM

in Eq. (20), RaUM and RaPM are defined as:

RaUM =
H2
T

2κUM

(
ραg∆TUMHT

4KUM
eff

)n
, RaPM =

ραg∆TPM (HT /2)3

κPMKPM
eff

, (25)

where KUM
eff and KPM

eff are defined in Eq. (23) while κUM and κPM are the thermal diffusivities

computed with the characteristic mean temperature in each layer, namely κUM = κ((TMs + T0o)/2)

and κPM = κ((TMs+T1000o)/2), respectively. Note that forRaPM , n = 1 hence it no longer appears

in its definition. Values of RaUM and RaPM are given for each model case in Tables A1 and 3.

4 Numerical Results

First we identify the behavior of the system with partial melting alone, without compositional het-

erogeneities. This allows to compare the evolution of the melting front with previous studies, and to

describe the various regimes of the flow dynamics. When compositional heterogeneities are inserted

in a second step, in the next section, our results reveal similar main flow regimes.

4.1 Convection with partial melting alone

First, a reference case is presented, with which the main flow characteristics are described. Then a

flow regimes diagram is proposed. A complementary parametric study is provided in Appendix 1.

4.1.1 Reference case

The reference case is named I0M1H0 and its input parameters are provided in Table A1. Figure 3

presents the temporal evolution of the system’s main variables, e.g. horizontally averaged temperature

and viscosity, position of the melting front and average vertical velocity . We observe at first a diffusive

stage in Figure 3a between t = 0 and t = 2.4 Myr (red star). Then from 2.4 to 4.0 Myr, a first

convective stage develops (blue star). The melting front deforms with a wavelength λconv ∼ 10 km.

Convection cells first lengthen in the vertical dimension but maintain a constant width, and then, they

merge to form cells of wavelength λconv ∼ 25 km (green star). From 10.1 Myr, the convection cells

merge again to form a large convection cell with a height to width ratio of almost 1 : 1 (purple star).
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Finally, the melting front stabilizes around depth 15.5 km. Recall that the temperature at the top is

imposed, which impedes further upward migration of the melting front.

Figure 3e shows the time evolution of the mean absolute vertical velocity |Uy| of the system.

Each change in thermal regime (or convective stage) is accompanied by a velocity jump until the last

convective stage is reached. In this last stage, the mean vertical velocity becomes roughly constant and

is denoted |Uy|f . This mean velocity can be compared to the theoretical value estimated by Kraich-

nan (1962) and validated by Shibano et al. (2013) based on laboratory experiments. This prediction

assumes constant kinematic viscosity (ν) and thermal diffusion (κ), and is expressed by:

|Uy|theo = 2

(
αg∆Tκ2

ν

)1/3

. (26)

We apply this formula to the stabilized system once the cells sizes reach a 1:1 ratio. The average

temperature of the convective layer below the melting front is Tavg ≈ 884oC, which gives κ(884oC) =

5.7 × 10−7 m2.s−1 and ν(884oC) = 2.9 × 1013 m2.s−1 (from Equations (6), (7) and (9)). With

α = 3 × 10−5 K−1, g = 9.81 m.s−2 and ∆T = T+
H − Tavg, we obtain |Uytheo| ≈ 4.7 cm.yr−1,

which is relatively close to our numerically measured value |Uy|f ≈ 5 cm.yr−1. This slight difference

between the theoretical velocity and the modeled velocity might be due to our choice of the position

of the melting front, as the upper bound of the thickness of the convective layer.

The melting front’s average depth evolution is displayed Fig. 3a. It is found proportional to ∼

t0.5 in the diffusive stage, and proportional to ∼ t in the first and second convective stages. This

characteristic behaviour is qualitatively consistent with the results of Favier et al. (2019); convection of

the melting domain evolves in different stages accompanied by velocity jumps, until the flow stabilizes

into a unique convection cell of ratio almost 1:1.

Vasil & Proctor (2011) showed that in a system with a moving melting front, the critical Rayleigh

number Rac above which convection occurs is modified compared to the classical Rayleigh-Bénard

problem ; a morphological mode grows as soon as RaPM (1−MS)

(
hc
H

)3

> Rac ∼ 1295.78. This

relationship can be rewritten to express the theoretical thickness required for the onset of convection

: hc = H ×
(

Rac
RaPM (1−MS)

)1/3

. Here RaPM ≈ 4 × 105, MS = 0.3 and H = 35 km, which

provides htheoc ∼ 6.6 km. This value is close to the one observed in our simulations, where hc ≈ 8 km

at the end of the diffusive stage (hc is the distance over which the melting front traveled, Fig. 3).
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Figure 3. Case I0M1H0 (cf. Table A2 for parameters). a) time evolution of the melting front. Stars locate the

snapshots in b). b) snapshots at different times: distribution of viscosity, isotherms (in Celsius degree) and melt-

ing front (thick red line). c-d) vertical profile of the horizontally-averaged temperature and viscosity, respectively

(stars indicate melting front location). e) time evolution of the mean vertical velocity.

Now we analyze this configuration in terms of the temporal evolution of cycles and convection
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cells. Therefore, three passive markers are placed in the model and record local characteristics over

time (Fig. 4). These markers might be assimilated to the zircons studied by Vanderhaeghe et al. (2018)

in Naxos’s migmatite domes, and constitute a key argument for crustal scale convection (a more de-

tailed comparison will be developed in paper part II). The markers periods (τ ) associated to the con-

vective cycles range between 0.2 and 0.5 Myr for the three markers on display. The markers velocity

norm over time (Fig. 4a) displays four plateaus corresponding to the four flow stages described above

with the mean velocity |Uy|. The markers positions (Fig. 4b, upper panel) illustrate the change in con-

vective regime with time, from rather elongated convective cells of size l× h ≈ 5× 15 km during the

first convective stage (blue curve), to 5×26 km during the second stage (purple curve), and large cells

of size 25×20 km (cyan curve) in the last stage. Within one convective stage, low velocities correspond

to horizontal displacements occurring at the upper and lower limits of the convective cells, whereas

high velocities correspond to vertical displacements at the lateral borders of the convective cells. Note

also that the red marker records lower velocities than the blue marker, because of its location nearer to

the center of a cell than at its edges.

b

I0M1H0

I1M1H0

a

I0M1H0

I1M1H0

Figure 4. a) Temporal evolution of the position and velocity of markers for two model cases. In case

I0M1H0 (upper panel), they are initially located at (x, y) = (14.1,−38.4), (31.2,−34.8), (34.4,−42) km,

respectively for the blue, red and green curves. In case I1M1H0 (lower panel), they are initially located at

(x, y) = (34.4,−42), (31.2,−34.8) , (20.0,−29.8) km, respectively for the blue, red and green curves. b) Lo-

cation of a marker over time. The star locates its initial position at (x, y) = (14.1,−38.4) km (in case I0M1H0)

and (x, y) = (20.0,−29.8) km (in case I1M1H0).
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4.1.2 Flow regimes with melting alone and without heterogeneities

In the reference model described above, we obtained four stages of flow evolution that evolve during

the chosen 20 Myr of total model time. Recall that this time window is defined arbitrarily considering

that, except for a few examples, the duration of Phanerozoic orogenies is on the order of a few tens

of Myr. Accordingly, this choice of 20 Myr allows to capture the time scale over which gravitational

instabilities may dominate over other forcing boundary conditions associated to plate tectonics. When

modifying various input parameters, model cases evolve towards a variety of flow regimes that we

describe below. Figure 5 summarizes these three flow regimes in the parameter space (RaUM , RaPM )

(computed a priori using Eq. 25), with melting alone (i.e. without heterogeneities) :

• a) No convection : RaPM . 2.103 - The Rayleigh number of the partially molten layer RaPM

is too low to allow for convection, and the thermal regime remains diffusive.

• b) Global convection : RaPM & 2.103 and RaUM & 10 - Here, both the Rayleigh numbers

of the unmolten medium and partially molten medium are sufficiently high to allow for the medium

to convect at depths greater than the melting front. In the final convection stage, the thickness of the

partially molten layer reaches a constant value equal to the entire domain thickness (from depth 45

km) minus the thickness of the upper cold and unmolten lid (at depth 15 km, approximately). Although

after 20 Myr the final convection stage is identical for all model cases in this regime, during the first

convection regime the cell sizes may differ.

• c) ’Confined’ convection : RaPM & 2.103 and RaUM . 10 - When the Rayleigh number of

the partially molten domain is high and that of the unmolten domain is low, the melting front stagnates

at a deeper depth. Thus, the thickness of the partially molten zone is smaller and the convection cells

still cannot merge after 20 Myr. They eventually would after a much longer time, since this regime

tends to evolve towards the global convection regime. This point is further discussed in section 5.

Note that the model’s aspect ratio does not influence these cells width (illustrated in Appendix 4.1).

It is useful to distinguish this regime here, because the development and duration of either narrow or

broad convection cells appears a key control on the formation of migmatite domes at the base of the

upper crust.
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Figure 5. Convective regimes diagram with melting alone, as a function of the Rayleigh numbers RaUM and

RaPM defined in the layers above and below the melting front, respectively (see text for details). Three regimes

are identified, after 20 Myr of applied basal heating: the diffusive regime (no convection) at small RaPM

(< 2×103), the global convective regime at high RaPM (> 2×103) and high RaUM (> 10), in which a single

convective cell reaches the maximum size of about 30 km, and the local convective regime, at small RaUM

(< 10), in which the convective regime stabilizes into several vertically elongated cells of width 15 km and

height 25 km. These two convection regimes are illustrated with their viscosity and isotherms distributions.

4.2 Convection with partial melting and heterogeneities

In this section, we study the influence of rheological heterogeneities in a model setting that is otherwise

similar to the setting described above without heterogeneities. As in the previous section, we first

describe a reference model, with various evolution stages. Then we illustrate the influence of a range

of parameters on the observed flow regimes.
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4.2.1 Reference case

The reference model I1M1H0 has the same initial and rheological parameters as those of the refer-

ence model without heterogeneities (section 4.1, I0M1H0) except that it contains inclusions. These

inclusions are distributed throughout the domain as shown Fig. 2, section 3.2 (see Table 3 for details).

The different flow stages with time are illustrated in Fig. 6. First at t ≤ 2.3 Myr, the diffusive

stage occurs (the average velocity is zero). It is characterized by the upward propagation of the melting

front as a straight line, at a speed proportional to the square root of time. Meanwhile, the inclusions

that are located under the melting front segregate: the light inclusions rise while the heavy ones sink.

However, note that they are also entrained within the convective flow. While some heavy inclusions

settle onto the domain’s base as soon as 2.1 Myr, the light inclusions still ’mix’ in the flow at 20 Myr.

From 2.3 ≤ t ≤ 8 Myr, a first convective stage develops to form convection cells of size∼ 15 km,

between 45 and 30 km depth (the position of the melting front evolves linearly with time). After

t ≥ 8 Myr, these cells merge to form convective cells 50 km wide (second convective stage), between

45 and 15 km depth. Note that the transition between convective stages (or regimes) is not marked by

a sharp jump in the mean velocity, which contrasts with the reference model without heterogeneities

(Fig. 3e).

Let us make a brief comparison between the two reference cases of partial melting without and

with inclusions, respectively named I0M1H0 (Fig. 3) and I1M1H0 (Fig. 6). The diffusive stage is

identical in both cases: the presence of inclusions does not impact heat diffusion. The transition be-

tween the diffusive and the convective stages occurs in both cases around ∼ 2.5 − 3 Myr, although

it is less abrupt in the case with inclusions. This means that the critical Rayleigh number is the same

in both cases. In the first convective stage (t . 5 Myr), five cells form in the case without inclusions

whereas three form in the case with inclusions. In the last convection stage (t & 10 Myr), the melting

front stabilizes at a depth of 19 km in the case with inclusions, against 15.5 km in the case without

inclusions. In addition, the convective layer thickness is smaller in the case with inclusions because

the black inclusions have formed a viscous layer between depths 45 and 40 km. Note that the heavy

inclusions settle preferentially below upwellings (Fig. 6b, from 10 Myr), in line with the findings of

Patočka et al. (2020).



Convection and segregation in heterogeneous partially molten crustal roots with a VOF method - Part I 25

Figure 6. Case I1M1H0 (cf. Table 3 for parameters). a) time evolution of the melting front. Stars locate the

snapshots in b). b) snapshots at different times: distribution of viscosity, isotherms (in Celsius degrees) and

melting front (thick red line). On the right half of the model domain, light and heavy inclusions are plotted

in white and black, respectively. c-d) vertical profile of the horizontally-averaged temperature and viscosity,

respectively (stars indicate melting front location). e) time evolution of the mean vertical velocity.
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The mean vertical velocities are two to three times lower in the case with inclusions (1.8 cm.yr−1

against 5 cm.yr−1) which shows that their presence has the consequence of reducing the average

convection velocity (and its maximum and minimum values). In addition, the inclusions presence

slightly increases the period of the convective cycles (1 Myr against 0.5 Myr without inclusions).

These observations are illustrated in Fig. 4 which presents the dynamics of three markers initially

placed at depth y < −30 km. They display a convective period of the order of a million years, with

ascent rates of the order of 1− 5 cm.yr−1.

4.2.2 Flow regimes in a crust with compositional heterogeneities

Various simulations with partial melting and heterogeneities were performed to identify flow regimes

in the parameter space (RaUM , RaPM ), defined in Eq. (25). The obtained flow regimes are summa-

rized in Table 3 and displayed Fig. 7.

In most cases, we can describe these flow regimes with respect to three typical domains: i) a

floating lid of lighter inclusions located at the top of the convection cells, ii) a bulk fluid domain (the

BED) containing suspending inclusions in the core of the convection cells, and iii) a layer of heavier

inclusions deposited at the base of the convection cells. More specifically, the fate of the inclusions

varies with the flow regimes, dividing the parameter space in four regions:

a) No motion - When RaPM . 2× 102, convection is absent (purely diffusive regime) and the

viscosity in the unmolten and partially molten media is so high that no significant motion occurs

within the simulated time window of 20 Myr.

b) Diapirism - When 2× 102 . RaPM . 4× 103 and RaUM . 10, convection is still absent,

however, the viscosity in the BED domain is low enough so that the inclusions can move by more

than one radius during the 20 Myr period considered here, thanks to Archimedes’s buoyancy force.

This basic segregation mode leads to upward motion of the light inclusions, which end up floating at

the top of the partially molten layer and form a layer (layer i). At the same time, the heavy inclusions

sink on to the domain’s base (layer iii). In between these layers, the BED domain becomes empty of

inclusions and remains in a diffusive thermal regime (layer ii).



Convection and segregation in heterogeneous partially molten crustal roots with a VOF method - Part I 27

Table 3. Physical parameters of the runs performed with partial melting and inclusions. Note that vs is the

Stokes velocity of the inclusions, here defined as vs = 2
9
|ρi6=1−ρ1|gr2

KPM
eff

with KPM
eff ≈ 35µ0

1 (see eq. 23). Some of

the simulations names are associated with a link to the corresponding movie.

Case Viscosity Density Heat source Incl. radius Incl. thickness Prefactor
i µ0

i ρL0
i Hr r h A RaUM RaPM vs

Pa.s kg.m−3 µW.kg−1 m km Pa−n.s−1 mm.yr−1

I1M1H0 1 5 × 1015 2700 1.75

300 35 3.2 × 10−4 100 3 × 104
2 5 × 1014 2600 2 3.6

(reference) 3 5 × 1016 2900 0.9 7.2

I1M1H1

1 2.5 × 1016 2700 1.75

300 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2600 2 0.7
3 2.5 × 1017 2900 0.9 1.4

I1M1H2

1 5 × 1016 2700 1.75

300 35 3.2 × 10−4 100 3 × 103
2 5 × 1015 2600 2 0.35
3 5 × 1017 2900 0.9 0.7

I1M1H3

1 2.5 × 1016 2700 1.75

300 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 2 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H4

1 2.5 × 1016 2700 1.75

300 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H5

1 2.5 × 1016 2700 1.75

300 7 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H6

1 2.5 × 1016 2700 1.75

600 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 5.6
3 2.5 × 1017 2900 0.9 5.6

I1M1H7

1 2.5 × 1016 2700 1.75

300 35 7.8 × 10−6 2.4 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H8

1 2.5 × 1016 2700 1.75

300 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1014 2600 10 0.7
3 2.5 × 1018 2900 0.9 1.4

I1M1H9

1 2.5 × 1016 2700 1.75

300 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1013 2600 10 0.7
3 2.5 × 1019 2900 0.9 1.4

I1M1H10

1 2.5 × 1016 2700 1.75

300 50 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H11

1 2.5 × 1016 2700 1.75

900 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 12.6
3 2.5 × 1017 2900 0.9 12.6

I1M1H12

1 2.5 × 1016 2700 1.75

150 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 0.35
3 2.5 × 1017 2900 0.9 0.35

I1M1H13

1 2.5 × 1016 2700 1.75

300 ≤ r ≤ 1800 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 -
3 2.5 × 1017 2900 0.9 -

I1M1H15

1 2.5 × 1016 2700 1.75

Layer 7 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 -
3 2.5 × 1017 2900 0.9 -

I1M1H16

1 2.5 × 1016 2700 1.75

1200 35 3.2 × 10−4 100 6 × 103
2 2.5 × 1015 2500 10 22.4
3 2.5 × 1017 2900 0.9 22.4

I1M1H17

1 2.5 × 1016 2700 1.75

300 35 1.6 × 10−4 50 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H18

1 2.5 × 1016 2700 1.75

300 35 3.2 × 10−6 1 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H19

1 5 × 1016 2700 1.75

300 35 7.8 × 10−6 2.4 3 × 103
2 5 × 1015 2500 10 0.7
3 5 × 1017 2900 0.9 0.7

https://youtu.be/1YsKAMUPNr4
https://youtu.be/kv0IS19f8TM 
 https://youtu.be/6GIW33tH8s8 
 https://youtu.be/55NiL4LP9gI 
https://youtu.be/ohVJwCTWP_Y 
 https://youtu.be/yFbfLhIMaMM 
 https://youtu.be/Q0dNkw6UvwA 
https://youtu.be/sIXgSgzBYm8
https://youtu.be/pHzBzjf0ZQ0
 https://youtu.be/ERuqFAl-yec 
https://youtu.be/cWHy0jLL0R0 
 https://youtu.be/BPq9tmbc5gg 
https://youtu.be/v_lh_pbi5xM
https://youtu.be/EmL1nnl0qPI
https://youtu.be/6gR38r2qCCk
https://youtu.be/jHbx5oQUXds
https://youtu.be/wPf2RF_xU60
https://youtu.be/ZHL9QK2ChMg
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Case Viscosity Density Heat source Incl. radius Incl. thickness Prefactor
i µ0

i ρL0
i Hr r h A RaUM RaPM vs

Pa.s kg.m−3 µW.kg−1 m km Pa−n.s−1 mm.yr−1

I1M1H20

1 2.5 × 1017 2700 1.75

300 35 7.8 × 10−6 2.4 6 × 102
2 2.5 × 1016 2500 10 0.14
3 2.5 × 1018 2900 0.9 0.14

I1M1H21

1 2.5 × 1016 2700 1.75

300 35 7.9 × 10−5 25 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H22

1 5 × 1018 2700 1.75

300 35 3.2 × 10−4 100 30
2 5 × 1017 2500 10 0.007
3 5 × 1018 2900 0.9 0.007

I1M1H23

1 2.5 × 1017 2700 1.75

300 35 3.2 × 10−4 100 6 × 102
2 2.5 × 1016 2500 10 0.14
3 2.5 × 1018 2900 0.9 0.14

I1M1H24

1 5 × 1017 2700 1.75

300 35 3.2 × 10−4 100 3 × 102
2 5 × 1016 2500 10 0.073
3 5 × 1018 2900 0.9 0.073

I1M1H26

1 2.7 × 1018 2700 1.75

300 35 3.2 × 10−4 100 55
2 2.7 × 1017 2500 10 0.013
3 2.7 × 1019 2900 0.9 0.013

I1M1H27

1 1.6 × 1018 2700 1.75

300 35 3.2 × 10−4 100 95
2 1.6 × 1017 2500 10 0.022
3 1.6 × 1019 2900 0.9 0.022

I1M1H28

1 2.5 × 1016 2700 1.75

300 35 4.2 × 10−5 13 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H29

1 2.5 × 1016 2700 1.75

300 35 2.5 × 10−5 7.8 6 × 103
2 2.5 × 1015 2500 10 1.4
3 2.5 × 1017 2900 0.9 1.4

I1M1H30

1 2.5 × 1017 2700 1.75

300 35 4.2 × 10−5 13 6 × 102
2 2.5 × 1016 2500 10 0.14
3 2.5 × 1018 2900 0.9 0.14

c) Convection and layering - Here, RaPM & 4× 103 and RaUM . 10. In the same way as in the

case without inclusions, a smallRaUM describes a medium of moderate viscosity in which convection

occurs but is not vigorous. In this regime, the light inclusions can extract from the convection cells and

segregate; they stack below the rigid upper lid so as to form a thicklayer (layer i). The heavy inclusions

in turn sink on the domain’s base (layer iii) as in the previous regime.

d) Convection and suspension - Here, RaPM & 2× 102 and RaUM & 10. This regime behaves

similar to the reference case I1M1H0. The intermediate BED layer (ii) convects vigorously and hosts

the majority of the light and heavy inclusions. The activated light inclusions are dragged into the con-

vecting BED layer (ii) after some time (which varies depending on parameters). They cannot aggregate

below the rigid upper crust (absence of layer i). Some heavy inclusions are dragged into the convec-

tion but the majority still settle down on the domain’s base (layer iii), in a proportion that depends on

parameters, further discussed section 5.

 https://youtu.be/vcQD0rWIQEg
https://youtu.be/kQE83NFMwPI
https://youtu.be/v6cPWrdVgFs
https://youtu.be/Lh0EjACJ4Yc
https://youtu.be/qa09WWf0zsY
https://youtu.be/xTkXJkGXAUI
https://youtu.be/5ktx20dqbeM
https://youtu.be/AsAeBCrB4JU
https://youtu.be/A9t01vI5bEk
https://youtu.be/N8DPyTkgiGg
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Figure 7. Flow regimes diagram for a hot orogenic crust that is melting and contains heterogeneous inclusions,

as a function of Rayleigh numbers RaUM and RaPM above and below the melting front, respectively. Here,

RaUM =
2H2

T

4κ

(
ραg∆TUMHT

4KUM
eff

)n
and RaPM = ραg∆TPM (HT /2)3

κKPM
eff

with KUM
eff and KPM

eff defined in (23). Each

regime is illustrated with a snapshot at time t ∼ 20 Myr presenting the isotherms, the viscosity distribution in

the left half of the model domain, and the light (white) and heavy (black) inclusions in its right half.

Let us describe the tests from the regimes diagram depicted Fig. 7. For these model cases and for

the case I1M1H1, Fig. 8 displays snapshots of the material properties and Fig. 9 displays the mean
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velocity of the material phases (the BED, the light and heavy inclusions). The mean vertical velocity

of phase i is computed as |Uy|(t) =
∫
ϑCi(x, t)|uy(x, t)|dϑ/

∫
ϑCi(x, t)dϑ, where ϑ is the volume of

the computational domain, Ci is the volume fraction of phase i and uy is the local vertical velocity.

The three top cases of Fig. 8 are located in the ”suspension” region of the regimes diagram. Next

cases illustrate the ”no motion” and the ”diapirism” regions, and the last case, the ”layering” region:

• Case I1M1H0 (red curve) has the greatest convection vigor. Here, the light inclusions display

similar velocities to those of the BED (greater than 1.5 cm.yr−1 at long times) as they are entrained

in the convective flow. In turn, the heavy inclusions deposit early on, before convection initiates time

t ≤ 2.5 Myr and at a vertical velocity ≈ 7 mm.yr−1, of the same order of magnitude as their Stokes

velocity (see Table 3 and the corresponding animation). Then, they keep depositing as indicated by

their slow but persistent decrease in velocity |Uy|. This is in line with the fact that all our models lie

in the so-called ’dust-like’ regime defined by Patočka et al. (2020), where an increasing portion of the

inclusions settle while the other portion remains in suspension (see Appendix 5 for a comparison of

our models with others considering the settling of rigid particles in Rayleigh-Bénard convection).

• The same behaviour is observed for cases I1M1H1 and I1M1H23 (purple and pink curves, re-

spectively). The main difference is that since the viscosity in the BED is increased in these cases,

the settling velocity of both the light and heavy inclusions is reduced (see e.g. their vs in Table 3).

Consequently, at a similar moment, the thickness of the heavy inclusions layer is smaller when RaPM

is decreased, as clearly observed in Fig. 8. Overall, cases I1M1H0,1,2,23 belong to the same regime,

here named suspension (Verhoeven & Schmalzl (2009) named it the C-regime) despite the fact that an

increasing number of heavy inclusions deposit while some remain in suspension. The difference seen

in the snapshots of Fig. 8 for different model cases relates to identical time moments being illustrated

whereas the inclusions Stokes velocity and the convection vigor differ. In fact, Fig. 8 qualitatively

shows that at a given moment, the sediment layer thickness is larger when RaPM is increased.

• A striking difference between case I1M1H7 (blue curve) and those mentioned above (I1M1H0,1,23)

is that two sediment layers of heavy and light inclusions develop, whereas only one layer of heavy in-

clusions was observed before. This is confirmed by the mean vertical velocity of the light material

approaching 0 after ca. 15 Myr. Note that convection remains active in case I1M1H7 since the mean

vertical velocity of the BED never reaches zero during the simulation, which justifies to define a lay-

ering regime that differs from the suspension and diapirism regimes. The fact that layering of the
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light inclusions is not observed in case I1M1H0 even though both cases have a similar RaPM calls

for another criterion that distinguishes these behaviors. The main difference between these two cases

then appears in the viscosity of the unmolten region being much larger in case I1M1H7 than in case

I1M1H0. Also, the density difference between the light inclusions and the BED is two times larger

in case I1M1H7 than in case I1M1H0, hence their Stokes velocity is larger in case I1M1H7. Both

differences favor the accumulation of light inclusions below the upper crust lid.

The main difference between our suspension regime and our layering regime can be summarized as

follows. While convection occurs in both cases, the light inclusions in the suspension regime can-

not form a stagnant layer because the local velocity remains large in the region near the melting

front where they could stack, in contrast with the situation of the heavy inclusions, where the bottom

boundary is fixed and remains a low-velocity boundary layer. In this suspension regime, the actual

low-velocity region (i.e. the boundary layer) is located above the melting front, as seen in the upper

right panel in Fig. 7 (the light pink region above the melting front of thickness c.a. 4 km - with a vis-

cosity in the range 1018− 1019 Pa.s - hosts strongly deformed light inclusions). This result is coherent

with a relatively small viscosity of the unmolten ambient rock (corresponding to a larger RaUM ). In

contrast, in the layering regime, the viscosity of the unmolten layer above the melting front is large

enough to mimic a rigid lid: the viscosity gradient above the melting front is sharper (cf. bottom right

panel in Fig. 7, the light purple region where the 1019 − 1020 Pa.s viscosity range lies just above the

melting front and is only 1 km thick), and the low-velocity boundary layer remains below the melting

front (indicated by the undeformed inclusions located above the melting front). Thus, the layering of

light inclusions is favored, in a way similar to the heavy inclusions.

• As for cases I1M1H19, I1M1H20 and I1M1H22 (orange, yellow and green curves, respectively),

no convection is observed and the mean velocity in the BED is less than 1 mm.yr−1. However, the

inclusions Stokes velocity is quite different in between cases I1M1H19,20 (vs = 0.14− 0.7 mm.y−1)

and case I1M1H22 (vs = 0.007 mm.y−1). In the first cases, the distance traveled by the inclusions

during 20 Myr is of the order of 5 to 15 km (i.e. several tens of the inclusions radius), while in the

second case the traveled distance is less than 150 m (i.e. half an inclusion radius). Consequently, a

criterion allowing to distinguish between the no motion regime and the diapirism regime could be the

ratio of the distance covered by the inclusions during the modeled time (here 20 My) to the size of the

inclusions. When this ratio is less than one, we may reasonably consider that there is no motion.
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Figure 8. Snapshots at three moments for the cases displayed in Fig. 7 (plus case I1M1H1): to the left half

of the model domain, the viscosity distribution, temperature isocontours and, to the right, the light and heavy

inclusions in white and black. Note that the distributions for the last two moments are roughly similar.
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Figure 9. Temporal evolution of the mean vertical velocities for each material phases for the cases shown in

Fig. 7 (each in a different color and with the addition of case I1M1H1): from top to bottom, |Uy| for the BED,

the light inclusions and the heavy inclusions.

In Fig. 10, we evaluate the settling rate of the heavy and light inclusions, by tracking the evolution

of their relative concentration over time. More specifically, we compute the depth at which these

inclusions have a concentration Φi of more than 60 or 70% (∼ 2 times their initial concentration) with

Φi(y, t) =
∫ x=Lx
x=0 Ci(x, t)dx and i = 2 and 3 for the light and heavy inclusions, respectively. For

high RaPM at least, the settling rate does not reach a steady state after 20 Myr, a result in agreement

with the characteristically long residence time of our inclusions with respect to the simulation time

duration, as commented in Appendix 5. In addition, the rate of sedimentation decreases as RaPM
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decreases, in agreement with Martin & Nokes (1988)’s theory. Indeed, these authors found that it is

proportional to the Stokes velocity vs, which decreases with decreasing RaPM (see frame c). Finally,

this figure shows that a layer of light inclusions can form and be maintained in the layering regime

(RaUM = 99), in contrast to the suspension regime (RaUM = 0.16, frames a and b).
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Figure 10. (a) Vertical profile of the horizontally-averaged concentration Φ2 of the light inclusions at time

∼ 20 Myr for various cases in the ’suspension’ and in the ’diapirism/layering’ regimes (RaUM = 100 vs.

RaUM = 0.16) with Φ2(y, t) =
∫ x=Lx

x=0
C2(x, t)dx. With initial Φ2 = 0.17, models belonging to the suspension

regime on the left, display values lower than 0.3. The models belonging to the ’layering’ regime in turn, on the

right, display values greater than 0.3 over a thickness of about 5 km located below depth 20 km. (b-c) Temporal

evolution of the vertical location of the layer of light inclusions (b) and heavy inclusions (c), defined as the depth

at which these inclusions have a concentration Φ2 > 60% and Φ3 > 70%, respectively.

The phenomenological results described above remain valid for the following range of parameters,

as shown in (Louis-Napoléon 2020, PhD thesis) :

− the partially molten BED viscosity (Eq. 9): 5× 1015 ≤ µ0
1 ≤ 5× 1017 Pa.s,

− the unmolten BED viscosity A (Eq. 9) : 1.6× 10−6 ≤ A ≤ 3.2× 10−4 Pa−2.3.s−1,
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− the light inclusions density : 2500 ≤ ρL0
2 ≤ 2600 kg.m−3,

− the radioactive heat rate : 0 ≤ Hr ≤ 10 µW.kg−1.

Overall, the flow dynamics of the inclusions can be schematized according to the diagram depicted

Fig. 11, as a function of RaUM and RaPM . This supports the idea that these dimensionless numbers

are key controlling parameters of the dynamics of crustal systems.

μNF

M=MS

Diapirism

No motion

Segregation

Convection

No convection
RaPM<Rac

RaPM > Rac

Suspension 

103<RaPM<104

RaUM<10

RaPM<103

RaPM>104

RaUM<10

RaUM>10
RaPM>103

Layering

Figure 11. Synthesis of the various flow regimes which can be observed in a crust at steady state, heated from

below and containing heterogeneous inclusions, as a function of the Rayleigh numbers RaUM of the unmolten

layer andRaPM of the partially molten layer (Eqs. (25)).Rac is the critical value above which convection starts

(see text for details).
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4.2.3 Influence of the size and arrangement of the inclusions in the suspension regime

Now, we illustrate the influence of variations in the radius of the inclusions, in the range 150 ≤

r ≤ 1200 m (five cases I1M1H4;6;11;12;16). Other parameters are those of the reference case (I1M1H0,

belonging to the suspension regime). We also test a case in which the inclusions radius is set ran-

domly between 150 ≤ r ≤ 1800 m, and another one in which the initial arrangement is set random

(I1M1H13). In the last test case (I1M1H15), the compositional heterogeneities are initially set in a

horizontal layer 7 km thick, and the light layer is located under the heavy layer (similar to case 2 of

Weinberg & Schmeling 1992).

The results are displayed in Fig. 12 and reveal interesting distinct behaviours depending on the

size of the inclusions. When r is increased, the inclusions have a larger buoyancy and are able to rise

and deform in a region located above the melting front, in contrast with the smaller inclusions. Such

a behavior is visible for r ≥ 600 m at time t = 2.7 Myr in the layer located in between isotherms

T = 640oC and T = 720oC (for which M = MS). The rise of the large inclusions above the melting

front induces a decrease in the local viscosity (down to ca. ∼ 1018 Pa.s), due to a thermal strain–

softening effect (Graham & England 1976; Kincaid & Silver 1996; Molnar & England 1990). As

viscosity is decreased, convection is enhanced, as shown by the isotherms displayed at time t = 5.1

Myr and which are more ’wavy’ when the size of the inclusions is increased.

We also remark that for small inclusions (r ≤ 600 m), the inclusions tend to coalesce, forming

pockets of maximum size 2 km which are entrained into the convective cells. In turn when r ≥

600 m, the inclusions deform and disintegrate into smaller size structures as they are dragged into

the convective cells. Overall, thermal convection is triggered before the light structures manage to

reach a shallow depth and freeze. In other words, in the suspension regime, convection always ends

up destroying any kind of aggregation (or clustering) of light inclusions, regardless of their size. This

reorganisation of the inclusions sizes independantly from their initial size will be further studied in

paper part II for the other flow regimes.
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Figure 12. Influence of the size and the distribution of inclusions on the flow regime, for seven test cases (details

in Table 3). For each case, snapshots present the viscosity distribution, temperature isocontours in o Celsius and,

in the right half, the light and heavy inclusions in white and black, respectively.
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Furthermore, the initial arrangement of the inclusions throughout the spatial domain also influ-

ences the shape of the structures that develop with time (Fig. 12):

• When the inclusions are initially arranged as horizontal layers over the base of the model domain

(case I1M1H15), diapirism develops with the light layer forming ascending domes. The typical size

of these domes is proportional to the layers thickness ratio, as shown by Weinberg (1992) and Louis-

Napoléon et al. (2020). The isotherms follow the doming, destabilize the system and ends up triggering

convection after about 5 Myr. Ultimately, convection destroys the diapirs.

• When the inclusions are arranged randomly and have a random size (case I1M1H13), the largest

light inclusions rise faster than the smaller ones. Such a random arrangement is found to provide more

space than in the ordered case, hence, the isotherms deform faster, which triggers convection earlier

than in the ordered case (after about 2.5 Myr instead of 5 Myr in case I1M1H6).

• The inclusions were also set to occupy only a portion of the system’s height (cf. illustration in

Appendix 2a) over thicknesses of 7 ≤ h ≤ 35 km. This thinning of the inclusions layer mainly reduces

their impact on the main flow dynamics, hence, they are more easily dragged into the convective flow.

Note also that here, we only compared the last convection stage between different test cases,

because the earlier convective stages are difficult to distinguish one from the other systematically.

For all cases, the onset of convection occurs between 2.5 < tconv < 12.5 Myr. The more viscous

the fluids, the more convection is delayed, but it is facilitated when the light inclusions have a lower

density, are larger, or have a higher rate of heat production. The periods of the convective cycles range

between 0.75 < τ < 2 Myr. The maximum velocities range between 2.8 < vmax < 20 cm.yr−1

and the average vertical velocity is around ≈ 1.5 cm.yr−1. The case that displays the lowest ve-

locities (average and maximum) has a high viscosity of unmolten rocks, µUM (I1M1H7). The case

that displays the highest velocities has the lowest viscosity of the partially molten domains (I1M1H0,

µ0
1 = 5× 1015 Pa.s).

These conclusions apply to cases belonging to the suspension regime; a more exhaustive study

deserves to be carried out to assess in greater detail the influence of heterogeneities sizes on structures

characterising the other flow regimes (e.g. Appendix 2b). This information is important since com-

bined with field data, it should return constraints on characteristic sub-scale structures and processes.

This point will be further addressed in paper part II (in prep.).
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5 Discussion

5.1 Significance of our results compared to previous studies

We assume in the present study that heterogeneities resulting from partial melting in the crust may be

represented by inclusions of sizes of several hundred meters and of contrasted densities and viscosi-

ties with respect to the surrounding environment. This size of heterogeneous inclusions corresponds

to evaluations from previous studies for i) the typical size at which such heterogeneities may signif-

icantly influence crustal scale convective flow (Harada et al. 2012), and ii) the typical size achieved

by melt pockets resulting from the subscale dynamics of melt propagation via porous flow in felsic

crust (Weinberg 1999; Brown 2010; Edmonds et al. 2019). This simplification encompassing multiple

chemical reactions and fluid propagation processes at the subscale may also apply to some degree to

systems involving particles and convective flow in magma chambers or planetary mantle dynamics.

Our synthesis diagrams (Figures 7 and 11) highlight the mutual interaction between the motion of

such heterogeneous inclusions and the dynamics of convection, depending on the physical properties

of both the unmolten and the partially molten fluid phases. To our knowledge, this is the first time that

a regime map is proposed describing the suspension, diapirism and layering of deformable hetero-

geneities in felsic crust, where these heterogeneities can break-up or coalesce in a system with a non

linear rheology. We are not aware of other studies that consider heterogeneities of similarly complex

behaviour.

In comparison with previous works, several theoretical and experimental studies have investigated

the dynamics of sinking heavy rigid inclusions (Harada et al. 2012); the particles have either, a ”col-

lective fluid-like” behavior, with falling pockets of particles forming diapirs, or an individual behavior

(”particle-like” behavior). The higher the concentration of particles, the closer they are to each other

and the more they behave like a “collective” fluid. Then, their behavior follows the Rayleigh-Taylor

linear stability theory (Chandrasekhar 2013; Deubelbeiss & Kaus 2008; Harada et al. 2012). In con-

trast when particles behave individually, they settle at their Stokes velocity (Martin & Nokes 1988;

Harada et al. 2012).

The specific evolution of heavy particles in convective systems has been studied both experimen-

tally (Lavorel & Le Bars 2009; Shibano et al. 2012, 2013) and numerically (Höink et al. 2005; Patočka
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et al. 2020). While density contrasts exert a strong influence on both convection and particles depo-

sition rates (e.g. Martin & Nokes 1988; Tackley 1993; Patočka et al. 2020), here we considered only

a moderate range of density contrasts (∼ 10%), specific to felsic crustal systems. Within that range,

their impact was found marginal.

Shibano et al. (2013) studied segregation in magma chambers with heavy glass beads in heated

wax; they obtained sinking beads velocities higher than ours, most likely because their density dif-

ferences are of the order of 50% (ca. 1100 vs 2500 kg.m−3), a situation not applicable to our crustal

scale systems. They also studied the influence of particles of different sizes, and obtained alternating

layers of small and large particles, which nicely illustrates segregation-related processes. Here instead,

we studied the segregation of light and heavy inclusions, and we also obtained a range of conditions

in which layering occurs. Although we illustrated several cases displaying the influence of inclusions

sizes (cases I1M1H11,12,13, Fig. 12), additional numerical experiments should further investigate this.

Most studies focus on the impact of convection on the particles rather than on the impact of parti-

cles on convection (Koyaguchi et al. 1990). Here, we illustrated that the main convective flow velocity

is impacted when compared with a system without particles (see e.g. the comparison with Favier et al.

2019), but a more specific study would be required to precise the dependence on particles concentra-

tion. Note that here we considered high heterogeneities concentrations, φ = dv/v = 0.35 whereas

usually, φ < 0.3 (v is volume, e.g. Lavorel & Le Bars 2009; Verhoeven & Schmalzl 2009). Nonethe-

less, the regimes that we obtain with such high concentrations and our moderate density contrasts

deserve to be discussed in comparison to the criterion determined previously to separate the suspen-

sion and the deposition regimes of heavy particles (Lavorel & Le Bars 2009; Martin & Nokes 1988).

To characterize this criteria, authors use a chemical Rayleigh number (Verhoeven & Schmalzl 2009)

and/or the Stokes number (Patočka et al. 2020), especially at high Rayleigh numbers. The chemical

Rayleigh number is nothing but the product of the Rayleigh number and a buoyancy number (B). In

Appendix 5, we plot the dimensionless representation of Verhoeven & Schmalzl (2009) for few rigid

inclusions (φ < 0.3), separating the so-called T-regime, which is dominated by thermal convection,

and the C-regime, characterized by the coexistence of a sediment layer and a suspension layer. The

results of Verhoeven & Schmalzl (2009) and Höink et al. (2005) display a similar trend, and our re-

sults are plotted in this diagram by assimilating ourRaPM to these studies Rayleigh number. It is then

difficult to conclude about whether our simulations lie in the T-regime or in the C-regime since (i) our
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plotted values with largest RaPM appear close to the transition identified by Höink et al. (2005), and

(ii) the time duration of our runs is smaller than the typical residence time of the inclusions (Appendix

5). Numerical simulation times larger than this characteristic residence time would thus be required to

further clarify where our flow regimes stand, which is out of the scope of the present study. Indeed,

the time window considered here (20 Myr, when gravitational instabilities are likely to be hindered

by tectonic instabilities in orogenic crust) is significantly smaller than the theoretical deposition time

(88 Myr) deduced from the formula first proposed by Martin & Nokes (1988) to describe the settling

rate of heavy particles. Nevertheless and for information, all our cases fall in the so-called ’dust-like’

suspension regime described by Patočka et al. (2020) (Appendix 5).

Another comment regarding our work is that we could not precisely determine the values of the

critical dimensionless numbers (RaUMand RaPM ) that characterize the conditions for suspension,

diapirism or layering of the inclusions, because of the temperature and strain-rate viscosity dependency

of our deformable inclusions. This complex rheology may also partly explain second order differences

with the above mentioned studies that assumed instead rigid heavy particles.

Our study was originally motivated by the question of the controlling parameters on the shape

and size of the segregated layer of light inclusions below the rigid upper crust (layer 2) described

in section 4.2.2. This layer develops in the ”diapiric” and in the ”layering” transitional regimes; its

shape evolves over time, rendering it more difficult to characterize the conditions for its development.

Future work should investigate more systematically the influence of the inclusions’ distribution and

size, their rheological properties, as well as the influence of evolving kinematic and thermal boundary

conditions. While a more systematic parametric study ought to be conducted, we recognise that infor-

mation provided by geological data remains essential, in terms of matching the shapes, sizes, timing,

and pressure-temperature-compositions of partially molten crustal domains. This is discussed below.

5.2 Gravitational instabilities in partially molten continental crust

The different flow regimes investigated in this paper might apply to various geological contexts if the

conditions for partial melting are met, namely if the composition of the crust is fertile and the thermal

setting is favorable within a relatively high geothermal gradient, owing to radiogenic decay and/or

high mantle heat flux (England & Thompson 1984; Vanderhaeghe et al. 2003; Henk et al. 2000). Sig-

nificant partial melting of the continental crust is favored by a felsic rather than a mafic composition
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(Thompson & Connolly 1995). On the other hand, the Earth has been marked by secular cooling since

its accretion (Labrosse & Jaupart 2007), which is expressed in particular by a decrease in the man-

tle potential temperature (Herzberg et al. 2010) and in radioactive isotopes content (Arevalo Jr et al.

2009). Accordingly, the continental crust was more prone to be affected by partial melting during

the Archean period (Vanderhaeghe et al. 2019) and the geothermal gradient recorded by metamor-

phic mineral assemblages has decreased since then (Brown, 2018). In compensation to the decreasing

contribution of radioactive isotopes since Archean times, partial melting of the continental crust now

requires either crustal thickening and/or thinning of the lithospheric mantle (England & Thompson

1986; Houseman et al. 1981; Henk et al. 2000). The most favorable setting for crustal partial melting

nowadays is provided along convergent plate boundaries marked by tectonic accretion coeval with

slab retreat, resulting in both an increased radioactive heat production in the crust and a basal heat flux

from the mantle (Vanderhaeghe & Duchêne 2010; Ueda et al. 2012).

On the other hand, geological data of migmatitic terranes provide insights on the types of gravita-

tional instabilities at play, and on the flow regime that can affect a partially molten crust. The presence

of dome shapes points to the imprint of diapirism and/or convection at a scale that is comparable to

the diameter of the domes. The most famous examples of crustal scale domes, with a diameter of more

than 20 km, are displayed in the Pilbara and Barberton Archean cratons (Van Kranendonk et al. 2004,

2007). More recent examples are exposed in thermally matured Phanerozoic orogenic belts such as the

Variscan belt (Burg & Vanderhaeghe 1993; Ledru et al. 2001; Charles et al. 2009; Trap et al. 2017; Van

Den Driessche & Brun 1992), the Canadian Cordillera (Amato et al. 1994; Vanderhaeghe et al. 2003;

Kruckenberg et al. 2008), or the Alpine-Himalayan belt (Vanderhaeghe & Whitney 2004; Kruckenberg

Table 4. Range of viscosity properties of a hot orogenic crust of thickness H = 45 km expected to behave

according to the four regimes displayed in Fig. 7, with properties reported in Table 1. An equivalent figure

function of crustal viscosities is provided in Appendix 6. A and µ0 are the exponential prefactors in Eqs. 9.

Regime Rheology

Convection Heterogeneities Unmolten rock Partially molten rock

none no motion 0 < A <∞ µ0 & 1018 Pa.s

none diapirism A . 3× 10−5 Pa−n.s−1 4× 1016 . µ0 . 1018 Pa.s

local convection layering A . 3× 10−5 Pa−n.s−1 µ0 . 4× 1016 Pa.s

global convection suspension A & 3× 10−5 Pa−n.s−1 µ0 . 1018 Pa.s
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et al. 2011; Mahéo et al. 2002; Whitney et al. 2004). Furthermore, on Naxos in the Aegean domain, U-

Pb geochronological data on zircons record cyclic crystallization in the 700− 900oC critical range of

temperature close to the granitic solidus, and were interpreted to witness convective motion (Vander-

haeghe et al. 2018). The heterogeneity of migmatitic terranes might provide insights on the efficiency

of melt/solid segregation and whether the flow regime was dominated by layering or suspension. The

ubiquitous compositional layering character of the continental crust (Rudnick et al. 2003; Mooney

et al. 2002) testifies of both the efficiency and the diversity of crustal differentiation modes (Brown

1995; Sawyer et al. 1999; Weinberg 1999; Cagnard et al. 2011; Saha-Fouotsa et al. 2019; Toé et al.

2013).

Hence while melt/solid segregation layering processes in mid-crustal migmatite terranes at ± de-

cametric scales are attributable to dominating porous-media compaction processes, layering and dome

formation at ± kilometric scales may result from dominating bulk-media suspension and segregation

processes such as those modeled here.

Finally, the range of application of the different regimes modeled here might be evaluated from

values ofRaUM andRaPM based on the geological characteristics of a specific field target. For exam-

ple, a partially molten crust with a thickness of 25 km and a temperature gradient of 300°C, increasing

from 600 to 900 °C, requires a viscosity of the partially molten rock of less than 4 × 1016 Pa.s and

a rheology of the unmolten rock such that A . 3 × 10−5 Pa−n.s−1 to achieve a ”layering” regime

(see Table 4). Increasing the thickness of the partially molten layer, or increasing the temperature gra-

dient, favors the transition of this regime towards a convection regime with suspension. Our first order

evaluation of the physical parameters required for the development of gravitational instabilities in a

heterogeneous, partially molten crust, and their comparison with geological data indicate that these

processes are potentially active in a large number of settings, from Archean to Phanerozoic times.

6 Conclusion

We studied numerically, using a VOF approach, the conditions for convection in a partially molten,

hot orogenic crust, with consideration of heterogeneous inclusions of typical sizes of a few hundred

meters. These inclusions at the onset of our models represent clusters of light or heavy, less or more

viscous material with respect to the averaged equivalent medium, and were assumed to have resulted
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from sub-scale melting processes, not modeled here. These inclusions impact the convection regime

and decrease the velocity of the convection cells in comparison to cases without inclusions.

The main result of this work is that various flow regimes are obtained depending on the properties

of the unmolten and partially molten rocks. We describe these regimes using two Rayleigh numbers

denoted RaUM and RaPM , for the unmolten and partially molten domains, respectively :

- No convection + diapirism: When both Rayleigh numbers are small (2× 102 . RaPM .

4× 103 and RaUM . 10), the thermal regime is diffusive and associated with a basic segregation

regime in which i) the heavy inclusions sink onto the base of the modeled domain and ii) the light

inclusions float up and stack below the rigid and cold upper crustal lid. Hence each group of inclusions

ends up forming a horizontal layer about 5 km thick, at 45 km and at 15 km depth, respectively. This

regime allows for the aggregation (or clustering) of various light inclusions, which forms diapiric

domes at the top of the partially molten layer and deforms the base of the upper crust.

- Global convection + suspension: Conversely, when both Rayleigh numbers are large enough

(RaPM & 2× 102 and RaUM & 10), we observe a suspension regime where convective flow and

inclusions interact. Convection drags the inclusions into cyclic revolutions and prevents the clustering

of the light inclusions below the rigid upper crust, whereas some of the heavy inclusions settle and

form a sediment layer. In turn, the inclusions tend to reduce the convection intensity.

- ’Confined’ convection + layering: This intermediate regime corresponds to largeRaPM and low

RaUM (RaPM & 4× 103 and RaUM . 10). There, the unmolten layer is much more viscous than

in the suspension regime and it acts as a rigid lid. As the light inclusions migrate upwards, they merge

as ”floating” clusters stuck in the low-velocity boundary layer under the rigid upper crust (in the same

way in which the heavy inclusions settle at the bottom of the domain and form a sediment layer). These

clusters can form domes, that might be preserved if ultimately the thermal and kinematic conditions

change and let them exhume to shallower depths. Such a situation will be further investigated in the

companion paper part II (in prep).

When the melting front rises up to the base of the upper crust and the convective vigor is weak,

light inclusions may form a horizontal layer at the top of the convective cells, in the diapiric or in

the layering regime. The layering regime is controled by the sharpness of the viscosity gradient with

depth at this strength ”boundary” (which may also be refered as the crust’s brittle ductile transition):
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only if the viscosity gradient is sharp enough and in the appropriate range of magnitude, can the light

inclusions stack and remain stuck there without being reentrained in the convective cells.

This layering process indicates that crustal-scale domes cored by migmatites and granites, typ-

ical of Archean cratons and of thermally mature orogenic belts, potentially reflect the development

of specific regimes of crustal-scale gravitational instabilities owing to partial melting. Hence, crustal

differentiation is controlled by potentially distinct gravitationally driven flow regimes (diapirism, con-

vection with layering, convection with suspension) and thus by the viscosity and density contrasts be-

tween the various fluid phases. Note that both diapirism and convection with layering lead to marked

crustal-scale differentiation whereas convection with suspension tends to redistribute heterogeneities

and thus homogeneize the composition of the crust.

Given these trends, the question remains of the narrow parametric range that allows for the forma-

tion of narrow diapirs at shallow crustal depths. This question will be addressed in a companion paper

dedicated to the physical conditions required for the development of domes and subdomes on Naxos

Island (Greece).
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Appendix

1 Parametric study for system configurations with partial melting alone

We describe here the influence on the flow characteristics when changing the melting threshold, the

viscosity of the unmolten medium or that of the partially molten media. Tables A1 and A2 provide the

input and output parameters, respectively, for the reference case displayed in the main text (I0M1H0)

and for the complementary cases described below.

Here, we characterize the melting front dynamics and the different convective stages by quantita-

tive indicators (Table A2):

• the final position of the melting front once the convection stabilizes: yf ,

• the horizontal average of the mean vertical velocity of the melting front: |Uy|,

• the convection wavelength at onset of convection: λconv,

• the onset time of convection: tonset,

• the maximum period of convective cycles: τ ,

• the maximum convection cell size: length × height (l × h),

• the maximum temperature difference recorded by a marker: ∆Tmax,

• the minimum and maximum velocities recorded by a marker: vmin, vmax.

Table A1. Physical parameters for cases with partial melting only.

Case µ0 MS A RaUM RaPM

Pa.s Pa−2.3.s−1

I0M1H0 5× 1015 0.3 3.2× 10−4 100 2.4× 104

I0M1H1 2.5× 1015 0.3 3.2× 10−4 100 4.8× 103

I0M1H2 5× 1016 0.3 3.2× 10−4 100 2.4× 103

I0M1H3 5× 1017 0.3 3.2× 10−4 100 2.4× 102

I0M1H4 2.5× 1015 0.3 7.9× 10−6 0.15 4.8× 103

I0M1H5 5× 1015 0.1 3.2× 10−4 100 2.4× 104
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Table A2. Melting front and flow dynamics characteristics for the runs performed with partial melting only.

The reference case I0M1H0 and the other cases differ by one parameter (table A1). Cases names provide a

link to the associated movie. yf indicates the final depth of the melting front; |Uy|f , the mean vertical velocity;

λ, the wavelength at convection onset; tonset, onset convection time; τ , maximum period of cycles; l × h,

maximum length × height cell size; ∆Tmax, maximum temperature difference recorded by a marker; vmin-

vmax, minimum and maximum vertical velocities recorded by a marker.

Melt front Convection

Case yf |Uy|f regime λ tonset τ l × h ∆Tmax vmin-vmax

(km) (cm.yr−1) (km) (Myr) (Myr) (km) (K) (cm/yr)

I0M1H0

−15.5 5

1 10 2.4 0.5 5× 15 150 1-10

2 25 4 0.4 5× 26 50 7-21

(reference) 3 50 10.1 0.5 25× 20 50 3-35

I0M1H1 -15 3.1
1 16.7 7.5 < 1.75 5× 27 150 0.25-6

2 50 17 1.25 20× 20 200 2-16

I0M1H2 -15 2.4 1 25 12 < 1.5 10× 25 175 1-8

I0M1H3 No convection

I0M1H4 -18 1.8 1 25 7.5 < 2.5 7.5× 25 200 0.5-5.5

I0M1H5 -13.5 5.2
1 12.5 2 0.4 5× 25 100 1-15

2 50 8 0.9 22× 22 50 5-30

a) Melt threshold MS - The value of the melt fraction threshold MS for which the viscosity of

crustal rocks is reduced depends on many factors in reality, and occurs over a certain range, as men-

tioned above, section 2.2.3. In the present models where the melt fraction depends linearly on tem-

perature and where a single melt fraction threshold MS is assumed, MS directly determines the depth

of the melting front. Since different authors argue for key processes at values of MS of either 0.1 or

0.4 (Burg & Vigneresse 2002; Arzi 1978; Van der Molen & Paterson 1979; Vanderhaeghe & Teyssier

2001; Dufek & Bergantz 2005; Vigneresse 1995), here we compare models with MS = 0.1 and

MS = 0.3. A lower value of MS means that the melting front temperature is lower (720oC for

MS = 0.3 and 640oC for MS = 0.1). Thus, the thickness of the molten zone is greater for MS = 0.1

 https://youtu.be/dbEvToUMwNQ 
 https://youtu.be/RmyqxgvGqIg 
 https://youtu.be/PvIjFQuos6U 
https://youtu.be/Cs4RrvU3Fxw 
https://youtu.be/Sm5nh6Fhpkc 
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than for MS = 0.3 at a given time. The thickness required for the onset of convection is then reached

earlier, hence convection starts earlier. However, the vertical velocities and the periods of the convec-

tive regimes display the same orders of magnitude in both cases. We conclude that the effect of MS

on the results is secondary.

b) Viscosity of the unmolten domain µUM - An increase of the ”unmolten” viscosity µUM implies

a greater thickness of the unmolten medium in the final convection regime and a slower velocity of

convection. We compare I0M1H1 and I0M1H4.

Modifying µUM directly impacts RaUM , thus its increase may lead the system to shift from the

global convection regime to the local convection regime (figure 5).

c) Viscosity of the partially molten domain µPM - An increase of the ”partially molten” reference

viscosity µ0 produces flow regimes that approach the regimes with unmolten viscosity µUM . We

illustrate this effect with the test cases I0M1H0, I0M1H1, I0M1H2, I0M1H3, where µ0 is increased

from 5× 1015 Pa.s to 5× 1017 Pa.s. The main consequences of increasing µ0 are (the values given

below are for cases H0 and H2 where µ0 = 5× 1015 and 5× 1016 Pa.s, respectively):

• An increase in the cells wavelength λconv in the first convection regime, from 10 to 25 km,

• An increase in the onset time of convection, tconv, from 2.4 to 12 Myr, in agreement with Howard

(1966) who showed that tconv scales as µ2/3
0 ,

• A decrease in the mean vertical velocity, from 5 to 2.4 cm.yr−1, in line with the fact that this

velocity scales as µ−1/3
0 (see e.g. eq. (26)),

• An increase in the convection cycle period, τ , from 0.5 to 1.75 Myr,

• A decrease in the number of observed convection regimes (until their disappearance for high µ0).

2 Parametric study for system configurations with partial melting and heterogeneities

a) The influence of the initial depth distribution of heterogeneities - We illustrate here com-

plementary tests in which the inclusions are initially located in the lower half of the model domain

instead of occupying the entire model domain. This could represent a crust where subscale composi-

tional clustering occurs only at these depths. We use parameters from case I1M1H7.

The case (Fig. A1) basically shows that the lid of light inclusions is even more easily destroyed

as inclusions are dragged into the convection cells. This illustrates that the representation of hetero-
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geneous inclusions is rather a key feature of the middle and upper part of the molten crust, whereas

below these depths, the whole medium tends to mix and homogenize. This redistribution of light and

heavy inclusions is rather consistent with the layered composition of the crust with a more mafic lower

crust and a felsic upper crust (Rudnick et al. 2003; Vanderhaeghe 2009). Exposed migmatitic terranes

of various ages, are typically made of alternations of mafic and felsic layers at centimeter to the hun-

dred meter scales (Brown 1995; Sawyer 2010; Saha-Fouotsa et al. 2019), and these structures might

represent a significant portion of the mid to lower crust.

Figure A1. Case I1M1H7 with half height inclusions. Snapshots at different times: distribution of viscosity,

isotherms and melting front (thick red line). On the right half of the model domain, light and heavy inclusions

are shown in white and black, respectively.

b) The influence of heterogeneities size in the layering regime - We illustrate here complemen-

tary tests in which the inclusions have a radius of 150 m instead of 300 m, for case I1M1H7 represen-

tative of the layering regime. The light inclusions form clusters that remain sensitive to the convective

flow instead of stabilising as a single layer at ca. 20 km depth. Nevertheless at 23 My this layer is

apparent. A more detailed study is in preparation (paper part II Louis-Napoleon et al.) to identify the

critical size of the inclusions for their layering to occur.
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Figure A2. Case I1M1H7 with inclusions of radius r = 150 m. Snapshots at different times: distribution of

viscosity, isotherms and melting front (thick red line). On the right half of the model domain, light and heavy

inclusions are shown in white and black, respectively.

3 The influence of latent heat

In this appendix, we assess the influence of explicitly considering latent heat in the governing equa-

tions (15)-(18). Ulvrová et al. (2012) showed that for fixed grid methods where the unmolten and the

partially molten phases can be regarded as one domain, it is possible to circumvent the need of explic-

itly satisfying the thermal conditions between the two phases. To this end, they introduce the so-called

liquid fraction, denoted fL, as a function of temperature:

fL (T ∗) =
1

2

[
1− tanh

(
T ∗M − T ∗

ψ∗

)]
, (.1)

where T ∗ = T/(Tliq−Tsol) is the local dimensionless temperature, T ∗M = TM/(Tliq−Tsol) is that at

the location of the melting front and ψ∗ = ψ/H can be viewed as a characteristic width of the mushy

region. The liquid fraction fL tends to zero (unity) at low (large) temperatures and is equal to 1/2 at

the location of the melting front.

Using the energy conservation equation written in terms of the enthalpy variable and expressing

enthalpy as a function of temperature and liquid fraction, Ulvrová et al. (2012) showed that (18) can

be modified as follows:

https://youtu.be/b0CTx9lIQO0
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∂T ∗

∂t∗
+ U∗ · ∇∗T ∗ =

1

CA
[
∇∗ ·

(
2

Ra
∇∗T ∗

)
+

2RaH
Ra2

]
, (.2)

with

CA = 1 + St
∂fL
∂T ∗

= 1 +
St

2ψ∗

[
1− tanh2

(
T ∗M − T ∗

ψ∗

)]
, (.3)

where St = L
Cp∆T is the Stefan number, L is the latent heat of melting, Cp is the heat capacity and

∆T = Tliq − Tsol. As shown in (.2), the right hand side of (18) is now multiplied by the factor 1/CA.

This factor is unity far from the melting front, i.e. when T ∗ � T ∗M or T ∗ � T ∗M , and it may becomes

very small at the melting front especially if the width of the mushy region is small compared to the

system size and/or the Stefan number is large. In dimensional form, the heat equation now reads,

∂T

∂t
+ U · ∇T =

1

CA
[
∇ · (κ(T )∇T ) +

Hr

Cp(T )

]
. (.4)

In the present work, St ∼ 1 since L ≈ 4 × 105 J.kg−1, Cp ≈ 1000 J.kg−1.K−1 and ∆T =

Tliq − Tsol = 400oC. In order to assess the influence of latent heat in our problem we performed

three simulations with identical parameters except for ψ∗. The physical parameters are those of case

I1M1H6. In the following, it is more convenient to define the characteristic width of the mushy region

ψ as a function of the grid size ∆x instead of the system size H . More specifically, we performed

three simulations with, namely, ψ ≈ ∆x/17, ψ ≈ 6∆x and ψ = ∞ (i.e. no latent heat). Note that

here ∆x = 100 m and H = 35 km, therefore ψ ≈ ∆x/17 corresponds to ψ∗ = (ψ/∆x)× (∆x/H)

= (1/17)× (100/35000) ≈ 2× 10−4.

Figure A3 below presents the time evolution of the melting front location y and the mean vertical

velocity |Uy| for all three cases. All curves are superimposed at early times (t ≤ 3) Myr during

the diffusive stage. For 3 ≤ t ≤ 6 Myr, the first convective stage appears and the vertical velocity

increases at a similar rate for all cases but not at the same time instant. For t ≥ 6 Myr, convection

is fully developed and the evolution of the three cases is roughly similar as the melting front location

and the vertical velocity oscillate around an identical mean value at a roughly similar frequency. From

figure A3, we conclude that the influence of explicitly taking into account the latent heat does not

influence much the dynamics of the system considered in the present work.
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Figure A3. Temporal evolution of the melting front depth and of the mean vertical velocity for a case without

latent heat (I1M1H6) (black line), and two cases with latent heat controlled by the characteristic width ψ ≈

6×∆x (red dotted line), and ψ ≈ ∆x/17 (blue dashed line).
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4 Influence of some numerical parameters and physical assumptions

4.1 Influence of the domain’s length L

Figure A4 presents a run similar to case I0M1H4 with an extended domain length L = 90 km (i.e.

twice as large), after 20 Myr. Convection cells are observed to be of the same size as in case I0M1H4.
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Figure A4. Same case as I0M1H4 with a broader domain length L = 90km, after 20 Myr. Convection cells

have the same size as in case I0M1H4.

4.2 Influence of the choice of ε̇min

In this section, we assess the sensitivity of the threshold strain-rate ε̇min chosen a priori for the un-

molten fluid rheology. Figure A5 presents the temporal evolution of the mean vertical velocity and

the viscosity - temperature - inclusions distribution at various times of three cases corresponding to

three values of ε̇min = 10−16, 10−15 and 10−14 s−1. It is shown that the results are not significantly

influenced by the specific value of ε̇min.
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Figure A5. a) Time evolution of the mean vertical velocity for three cases with different values of the initial

strain-rate εmin. b) c) Snapshots of the viscosity, temperature and inclusions distribution in these three cases.
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4.3 Influence of Archimedes number

The sensitivity of simulations results on Archimedes number Ar is ilustrated here, while complemen-

tary details can be found in Louis-Napoléon et al. (2020). Figure A6 presents the temporal evolution

of the melting front and the distributions of viscosity - temperature - phases for case I1M1H0 and

three values Ar = 0.02, 0.2 and 2. In this case, convection dominates over diapirism. The results are

not significantly influenced by the specific value of Ar in terms of the melting front propagation rate

and of the spatial distribution of convective cells and inclusions. Note that these flow characteristics

become slightly distinct (e.g. somewhat slower) at the highest value Ar = 2, which is consistent with

the condition Ar < 1 (cf. Louis-Napoléon et al. 2020).

(a) Melting front position

Ar = 0.02
Ar = 0.2
Ar = 2
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(b) Ar = 0.02

(c) Ar = 0.2

(d) Ar = 2
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(e) Ar = 0.02

(f) Ar = 0.2

(g) Ar = 2

Figure A6. a) Time evolution of the melting front position for three cases with different Archimedes numbers,

Ar = 0.02, Ar = 0.2, Ar = 2. b-c-d) Snapshots of the viscosity, temperature and inclusions distribution in

these three cases. e-g-h) Vertical profiles of the horizontally-averaged temperature and viscosity, respectively

(stars indicate melting front location) and time evolution of the mean vertical velocity for these three Ar.
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4.4 Applicability of the incompressibility condition to our geodyamic setting

As mentioned in section 3.2, our model setting involves non-negligible density variations over the

inclusions travelling distances, of several tens of kilometers. One may thus wonder if they are subjected

to local expansion (for the rising light particles) or contraction (for the settling heavy particles) due to

hydrostatic pressure variations, in nature.

Here, this effect can be estimated by comparing two characteristic length scales, namely L the

typical distance covered by the inclusions and H the ’pressure head’ related to expansion/contraction

effects. We choose L = HT /2 where HT is the total crustal depth. We estimate H ≈ P0
∆ρg with

P0 a reference pressure and ∆ρ the density difference between the inclusions and the ambient fluid

(BED). We write ∆ρ = |ρi 6=1−ρ1| for the light (i=2) and heavy (i=3) inclusions, respectively. For P0,

we take the maximum lithostatic pressure at the bottom of the computational domain, P0 ≈ ρ1gHT .

Taking the following values: HT = 45 km, ρ1 = 2700 kg.m−3, ρ2 = 2500 kg.m−3, ρ3 = 2900

kg.m−3 and g = 9.81 m.s−2, we obtain L = 22.5 km, P0 ≈ 1.2 GPa and H ≈ 607 km. Hence,

L/H ≈ 4 × 10−2 � 1. This indicates that the inclusions are unlikely to ’feel’ any expansion or

contraction during displacement.

5 Settling inclusions in Rayleigh-Bénard convection: a comparison with previous studies

In this appendix, we compare the present simulations with previous studies of the interaction between

rigid settling particles and Rayleigh-Bénard convection. This includes numerical simulations by Höink

et al. (2005); Verhoeven & Schmalzl (2009); Patočka et al. (2020) and experiments by Lavorel &

Le Bars (2009).

Figure A7 presents the residence time of particles in Rayleigh-Bénard convection in the diagram

(St,Λ)= (particle response time, buoyancy ratio) obtained by Patočka et al. (2020). In this figure,

the residence time is normalized by the terminal time τs, which is the time required by a particle to

cross the characteristic domain size (HT /2) at its Stokes velocity (vs). With our notations, St and Λ

become St ≈ 1
3

(
r

HT /2

)2√
ArPM and Λ ≈ 2

3B, respectively. Recall that we assumed here a density

ratio between the particles and the ambient fluid close to one, as is the case for our inclusions with

respect to the BED.
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Our numerical experiments are plotted with red filled circles standing for the light inclusions and

black crosses for the heavy inclusions. They all fall in the ’dust-like’ regime, and hence the residence

time of our inclusions, denoted τr, is such that τr ≈ 3τs (Patočka et al. 2020). Using Eq. (13) and the

definition of the Stokes velocity vs = (2∆ρgr2)/(9KPM
eff ), the terminal time τs = (HT /2)/vs can

be written in dimensionless form as τ∗s = qτs =
(

3HT
4r

)2
. Accordingly, the dimensionless residence

time is τ∗r ≈ 3τ∗s = 3
(

3HT
4r

)2
. In our models, we have HT = 45 km and r = 300 m, so that we can

estimate the residence time τ∗r ≈ 3
(

3HT
4r

)2
≈ 4× 104.
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Figure A7. Diagram of the residence time of particles in Rayleigh-Bénard convection, after Patočka et al.

(2020), normalized by the terminal time (ratio of the domain size to the Stokes velocity) in the parameter space

(St,Λ) with St ≈ 1
3

(
r

HT /2

)2√
ArPM and Λ ≈ 2

3B. Lines separate four regimes, of which the ’dust-like’

regime where the residence time ≈ 3 (bottom left part of the diagram, corresponding to the ratio of Stokes

velocity vt to convection velocity urms less than 0.02); the ’transitional’ regime (0.02 ≤ vt/urms ≤ 0.4)

and the ’bi-linear’ regime (0.4 ≤ vt/urms ≤ 2.0) where the residence time can increase up to 10; the ’stone-

like’ regime where the residence time ≈ 1 (upper right of the diagram with vt/urms > 0.4). Our numerical

experiments are plotted with red filled circles standing for the light inclusions and black crosses for the heavy

inclusions. They all fall in the ’dust-like’ regime. The other plotted symbols represent Patočka et al. (2020)’s 2D

simulations with various particle sizes, density ratios and thermal forcing.

For each run, one can compute the dimensionless time (Eq. 13) q−1 =
2KPM

eff

ρL0
1 αg∆TPM (HT /2)

with

the parameters given in Table 3, to estimate the dimensional residence time τr ≈ 4 × 104q−1. For

example, in case I1M1H0, we have µ0
1 = 5 × 1015 Pa.s, hence KPM

eff ≈ 1.7 × 1017 Pa.s (Eq. 23).
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Then, using ρL0
1 = 2700 kg.m3, α = 3 × 10−5 K−1, g = 9.81 m.s−2, ∆TPM = 1000 − 720 = 280

oC and HT = 45 km, we obtain q−1 ≈ 2200 yr. Consequently, the residence time of the inclusions in

case I1M1H0 is τr ≈ 4× 104q−1 ≈ 88 Myr.

It is worth noting that we expect the inclusions residence time in all our models to be larger than 88

Myr since case I1M1H0 has the lowest viscosity. Consequently, since we run our models for about 20

Myr, the present analysis indicates that some inclusions are expected to remain in the convective zone,

as is indeed observed (Fig. 7).
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Figure A8. Interaction between particles and convection: regime diagram separating the so-called T-regime

which is dominated by thermal convection and the C-regime characterized by the existence of a sediment layer

and a suspension layer with few particles (where the volume fraction is φ < 0.3), in the parameter space

(RaPM , RaPM × B). RaPM = ραg∆TPM (HT /2)3

κKPM
eff

is the Rayleigh number of the partially molten crust and

B = ∆ρ
ρα∆T is the buoyancy number, with ∆ρ the density difference between the particles and the ambient fluid.

Present work: (red filled circles) light inclusions, (black crosses) heavy inclusions in the suspension regime

only. Höink et al. (2005): (open and closed black circles) 2D computations at infinite Prandtl number. Verho-

even & Schmalzl (2009): (open and closed black squares) 2D computations, (open and closed black diamonds)

3D computations, (black dashed line) theoretical criterion. Filled symbols correspond to the T-regime and open

symbols to the C-regime. Lavorel & Le Bars (2009): (black solid line) theoretical criterion for the transition be-

tween regimes based on a critical equivalent Peclet number Pes = 3.5×103, with Pes = 2 Ra B
9π

(
Rac
Ra

)β ( r
H

)2
,

β = 0.77 and Rac = 1708.

Figure A8 presents the regime diagram separating the so-called T-regime dominated by thermal

convection and the C-regime characterized by the existence of a sediment layer and a suspension
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layer with few particles (where the volume fraction is φ < 0.3), in the (RaPM , RaPM × B) space.

RaPM = ραg∆TPM (HT /2)3

κKPM
eff

is the partially molten crust Rayleigh number, and B = ∆ρ
ρα∆T is the

buoyancy number, with ∆ρ the particles and the ambient fluid density difference. Note thatRaPM×B

corresponds to the chemical Rayleigh number defined by Verhoeven & Schmalzl (2009).

The present simulations are performed for small Rayleigh numbers since our system is meant to

describe partially molten crust, while that of the previous authors is meant to describe the mantle. Note

also that it is difficult to conclude about whether our simulations lie in the T- or C-regime since (i) our

plotted points -at least those with large RaPM - seem close to the transition identified by the previous

authors, and (ii) as mentioned above, the time duration of our runs is smaller than the expected typical

residence time of the inclusions. Simulation time durations larger than the expected residence time are

thus required to further clarify our flow regimes. This stands beyond the scope of the present work.

6 Regimes diagram expressed in terms of crustal viscosities
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Figure A9. Flow regimes diagram for a hot orogenic crust that is melting and contains heterogeneous inclusions,

as a function of the system’s lowest viscosity µ0 (molten rheology in Eq. (9) with M = 1) and its highest

viscosity max(µUM ) (unmolten rheology in Eq. (9) with T = 300oC, ε̇ = 10−16 s−1, n = 2.3, Q = 1.54 ×

105 J.mol−1). Associated threshold values of A and µ0 for each regime are provided in Table 4.


