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Mean-Field Langevin Dynamics : Exponential Convergence and Annealing

Noisy particle gradient descent (NPGD) is an algorithm to minimize convex functions over the space of measures that include an entropy term. In the many-particle limit, this algorithm is described by a Mean-Field Langevin dynamics-a generalization of the Langevin dynamic with a non-linear drift-which is our main object of study. Previous work have shown its convergence to the unique minimizer via non-quantitative arguments. We prove that this dynamics converges at an exponential rate, under the assumption that a certain family of Log-Sobolev inequalities holds. This assumption holds for instance for the minimization of the risk of certain two-layer neural networks, where NPGD is equivalent to standard noisy gradient descent. We also study the annealed dynamics, and show that for a noise decaying at a logarithmic rate, the dynamics converges in value to the global minimizer of the unregularized objective function.

Introduction

Let P 2 (R d ) (resp. P a 2 (R d )) be the set of probability measures (resp. absolutely continuous probability measures) with finite second moment on R d and let G : P 2 (R d ) → R be a convex function which is "smooth" in the sense of Assumption 1 below. Our goal is to solve problems of the form min

µ∈P a 2 (R d ) F τ (µ) where F τ (µ) := G(µ) + τ H(µ) (1) 
with H(µ) := log( dµ dx )dµ the (negative) entropy of µ and τ > 0 the regularization/temperature parameter. An example of such a problem that arises in machine learning is the regularized risk functional of wide two-layer neural networks, discussed in Section 5.

Noisy Particle Gradient Descent (NPGD) The starting idea of NPGD is to parameterize the measure µ as a mixture of m particles µ = 1 m m i=1 δ X i . Let X = (X 1 , . . . , X m ) ∈ (R d ) m encode the position of all particles and consider the function

G m (X) := G 1 m m i=1 δ X i . (2) 
Then, NPGD is just noisy gradient descent on G m with initialization sampled from µ 0 ∈ P 2 (R d ). It is defined, for k ≥ 0, as

X[k + 1] = X[k] -mη∇G m (X[k]) + 2ητ Z[k], X[0] ∼ µ ⊗m 0
(3) * EPFL lenaic.chizat@epfl.ch where η > 0 is the step-size and Z[1], Z[2], . . . are i.i.d. standard Gaussian vectors (see Eq. ( 10) for an equivalent definition of NPGD directly in terms of G and its first-variation). When G is linear, i.e. G(µ) = V dµ for some smooth V : R d → R, the particles X i are independent and each follows the (unadjusted) Langevin algorithm [START_REF] Donald | A computer simulation of charged particles in solution. I. technique and equilibrium properties[END_REF][START_REF] Gareth | Exponential convergence of Langevin distributions and their discrete approximations[END_REF][START_REF] Durmus | Nonasymptotic convergence analysis for the unadjusted Langevin algorithm[END_REF] given by the stochastic recursion

X[k + 1] = X[k] -η∇V (X[k]) + 2ητ Z[k], X[0] ∼ µ 0 ( 4 
)
and it is thus sufficient to choose m = 1 in that case. In the general case of a convex and non-linear G, the particles will interact in non-trivial ways and m should be taken large, so that a mean-field behavior emerges.

Mean-Field Langevin The dynamics obtained in the many-particle m → ∞ and vanishing step-size η → 0 limit was called the Mean-Field Langevin dynamics in [START_REF] Hu | Mean-field langevin dynamics and energy landscape of neural networks[END_REF] and is our object of interest. In this limit, the distribution µ t of particles at time t = kη solves the following drift-diffusion partial differential equation (PDE) of McKean-Vlasov type:

∂ t µ t = ∇ • µ t ∇V [µ t ] + τ ∆µ t (5) 
where ∇• stands for the divergence operator and V [µ] ∈ C 1 (R d ) is the first-variation of G at µ (see Definition 2.1). This dynamics, which can be interpreted as the gradient flow of F τ under the W 2 Wasserstein metric [START_REF] Ambrosio | Gradient flows of probability measures[END_REF], is a generalization of the Langevin dynamics to a specific form of non-linear drift term.

There is a long line of work around mean-field dynamics [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Sznitman | Topics in propagation of chaos[END_REF] (see [START_REF] Lacker | Mean field games and interacting particle systems[END_REF] for an introduction and references) which guarantee that NPGD (3) indeed converges to the Mean-Field Langevin dynamics, sometimes with fine quantitative bounds [START_REF] Mei | Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit[END_REF]. As for the behavior of the Mean-Field Langevin dynamics (5) itself, it is shown in [START_REF] Mei | A mean field view of the landscape of two-layer neural networks[END_REF][START_REF] Hu | Mean-field langevin dynamics and energy landscape of neural networks[END_REF] that (µ t ) weakly converges to the unique minimizer of F τ as t → ∞, but these works leave open the question of quantitative guarantees.

Contributions and related work

Our contributions are the following:

-We prove that, assuming a certain uniform log-Sobolev inequality, solutions to (5) converge at a global exponential rate to the minimizer of F τ (Theorem 3.2). The known convergence rate of the Langevin dynamics under a log-Sobolev inequality is recovered as a particular case when G is linear.

-We study the annealed dynamics where the noise τ = τ t is time-dependent and decays as α/ log(t) and prove that for α > 0 large enough, G(µ t ) converges towards the minimum of the unregularized functional F 0 = G (Theorem 4.1).

-In Section 5, we show that our results apply to noisy gradient descent on infinitely wide two-layer neural networks.

Let us mention that other algorithms to solve problems of the form (1) are possible. [START_REF] Nitanda | Particle dual averaging: Optimization of mean field neural networks with global convergence rate analysis[END_REF] proposed a dual averaging scheme which involves a sequence of Langevin diffusions and enjoys a O(1/t) convergence rate in the mean-field limit. For low-dimensional problems, one can resort to discretizing the measure on a fixed grid, which leads to a convex problem amenable to standard (Bregman) gradient descent algorithms [START_REF] Tseng | Approximation accuracy, gradient methods, and error bound for structured convex optimization[END_REF]. Their convergence rate in this setting has been analyzed in [START_REF] Chizat | Convergence rates of gradient methods for convex optimization in the space of measures[END_REF].

Upon completion of this work, we became aware of the preprint [START_REF] Nitanda | Convex analysis of the mean field langevin dynamics[END_REF] which also proves the exponential convergence of the Mean-Field Langevin dynamics with the same proof technique. Our work was conducted independently and simultaneously, and their contribution is not reflected in the present version of our paper (beyond this paragraph).

Notations

We use • for the Euclidean norm on R d . For µ, ν ∈ P 2 (R d ), Π(µ, ν) is the set of transport plans, that is, probability measures on R d × R d with marginals µ and ν respectively. The Wasserstein distance W 2 : P 2 (R d ) 2 → R + is defined as the square-root of

W 2 (µ, ν) 2 := min γ∈Π(µ,ν) (R d ) 2 y -x 2 dγ(x, y). ( 6 
)
Relevant background results about the Wasserstein distance can be found in [START_REF] Ambrosio | Gradient flows of probability measures[END_REF]. We often identify absolutely continuous probability measures with their density with respect to the Lebesgue measure. A function f : R d → R is said L-smooth if its gradient is a L-Lipschitz continuous function.

2 Assumptions and preliminaries 2.1 First-variation and smoothness of G

The Mean-Field Langevin dynamics in Eq. ( 5) involves the first-variation V of G, defined as follows.

Definition 2.1 (First-variation). We say that G :

P 2 (R d ) → R admits a first-variation at µ ∈ P 2 (R d ) if there exists a continuous function V [µ] : R d → R such that ∀ν ∈ P 2 (R d ), lim ǫ ↓ 0 1 ǫ G((1 -ǫ)µ + ǫν) -G(µ) = R d V [µ](x)d(ν -µ)(x). ( 7 
)
If it exists, the first-variation V [µ] is unique up to an additive constant.

The notion of first-variation appears naturally when studying variational problems over P 2 (R d ) and its precise definition varies across references, see e.g. [Santambrogio, 2015, Def. 7.12]. Throughout our work, we make the following regularity assumptions on G.

Assumption 1 (Smoothness of G). For all µ ∈ P 2 (R d ), G admits a first-variation

V [µ] ∈ C 1 (R d ) and (µ, x) → ∇V [µ](x) is Lipschitz continuous in the following sense: there exists L > 0 such that ∀µ, ν ∈ P 2 (R d ), ∀x, y ∈ R d , ∇V [µ](x) -∇V [ν](y) 2 ≤ L x -y 2 + W 2 (µ, ν) .
Let us now state a lemma that is useful in our proofs, that gives the evolution of G and H along dynamics (µ t ) t∈(a,b) in P a 2 (R d ) that solve the continuity equation (in the sense of distributions):

∂ t µ t = -∇ • (µ t v t ) (8) 
for some time-dependent velocity field v ∈ L 2 ((a, b), L 2 (µ t )). Observe that Eq. ( 5) is an equation of this form with 

v t = -∇V [µ t ] -τ ∇ log(µ t ).
d dt G(µ t ) = R d ∇V [µ t ] ⊤ v t dµ t and d dt H(µ t ) = R d (∇ log(µ t )) ⊤ v t dµ t .
Proof. Using the vocabulary of analysis in Wasserstein space, the function H is displacement convex with subdifferential ∇ log µ [Ambrosio and Savaré, 2007, Thm. 4.16]. Also we prove in Lemma A.2 that G is (-2L)-displacement convex with subdifferential ∇V [µ t ]. Then the claim is a consequence of [Ambrosio and Savaré, 2007, Sec. 4.4.E].

Characterization of the minimizer

We recall the optimality conditions for F τ which have been proved in several works (see e.g. [Mei et al., 2018, Lem. 10.4] or [Hu et al., 2019, Prop. 2.5]) and require the following assumptions.

Assumption 2. The function G is convex and

F τ = G + τ H admits a minimizer µ * τ .
We stress that by convexity we mean standard convexity for the linear structure in

P 2 (R d ), i.e. ∀µ, ν ∈ P 2 (R d ), ∀α ∈ [0, 1], G(αµ + (1 -α)ν) ≤ αG(µ) + (1 -α)G(ν).
Proposition 2.3. Under Assumption 1 and 2, the minimizer µ * τ of F is unique and satisfies

µ * τ ∝ e -V [µ * τ ]/τ . (9) 
The uniqueness comes from the strict convexity of H. For Eq. ( 9), one first derives the first order optimality condition, which require that V [µ * τ ] + τ log(µ * τ ) must be a constant µ * τ -almost everywhere. Then one shows that µ * τ has positive density everywhere due to the entropy term, and concludes. We refer to [Mei et al., 2018, Lem. 10.4] for details.

Noisy Particle Gradient Descent (NPGD)

The NPGD algorithm has been defined in Section 1 via the function G m . We now give an alternative definition of this algorithm involving the first-variation V of G.

Assume that G satisfies Assumption 1, let V be its first-variation and fix m ∈ N * . For

i ∈ [m], initialize randomly X i,0 iid ∼ µ 0 ∈ P 2 (R d ) and define recursively for k ≥ 0        X i,k+1 = X i,k -η∇V [μ k ](X i,k ) + 2ητ Z i,k μk = 1 m m i=1 δ X i,k (10) 
where η > 0 is the step-size and Z i,k ∼ N(0, I) are iid standard Gaussian random variables.

Proposition 2.4. Under Assumption (1), the two definitions of NPGD in Eq. (3) and in Eq. (10) are equivalent.

Proof.

For X ∈ (R d ) m and Y ∈ (R d ) m define µ t = 1 m m i=1 δ X i +tY i . It satisfies the continuity equation (8) with velocity field v t (X i + tY i ) = Y i . By Lemma 2.2, it holds d dt G m (X + tY)| t=0 = d dt G(µ t )| t=0 = R d ∇V [µ 0 ](x) ⊤ v 0 (x)dµ 0 (x) = 1 m m i=1 ∇V [µ 0 ](X i ) ⊤ Y i . This proves that ∀i ∈ [m], m∇ X i G m (X) = ∇V [µ 0 ](X i
) and thus the update equations in Eq. ( 3) and Eq. ( 10) are the same.

Mean-Field Langevin dynamics

Given Eq. ( 10) standard results about mean-field systems tell us that as m → ∞, the random measure μk becomes deterministic, so that in the limit (and taking also the small-step size limit η → 0) the particles trajectories are given by i.i.d. samples from the following stochastic differential equation (SDE)

dX t = -∇V [µ t ](X t )dt + √ 2τ dB t , X 0 ∼ µ 0 µ t = Law(X t ) (11) 
where (B t ) t≥0 is a Brownian motion. As mentioned in the introduction, the law (µ t ) of a solution to this SDE solves the following PDE which is our main object of study:

∂ t µ t = ∇ • µ t ∇V [µ t ] + τ ∆µ t ( 12 
)
where ∇• stands for the divergence operator. Standard results about this class of PDEs guarantee its well-posedness, i.e. the existence of a unique solution, under Assumption 1 (see e.g. [Huang et al., 2021, Thm. 3.3] or [START_REF] Ambrosio | Gradient flows of probability measures[END_REF] for an approach based on the gradient flow structure which applies here thanks to Lemma A.2 which states that G is (-2L)-displacement convex).

Let us now study the convergence of (µ t ) t≥0 to the global minima of F τ .

3 Exponential convergence of Mean-Field Langevin dynamics Definition 3.1 (Log-Sobolev inequality). We say that ν ∈ P a 2 (R d ) satisfies a logarithmic Sobolev inequality with constant ρ > 0 (in short LSI(ρ)) if for all µ ∈ P a 2 (R d ) absolutely continuous w.r.t. ν, it holds

H(µ|ν) ≤ 1 2ρ I(µ|ν). ( 13 
)
This inequality can be interpreted as a 2-Lojasiewicz gradient inequality for the functional µ → H(µ|ν) = V dµ + H(µ) (where we have posed V = -log ν) in the Wasserstein geometry [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] and thus directly implies the exponential convergence of its Wasserstein gradient flow. This corresponds to our objective function in the linear case G(µ) = V dµ, and in this case exponential convergence towards minimizers is thus guaranteed when ν = e -V satisfies a Log-Sobolev inequality.

In the general case, we make an analogous assumption that such an inequality holds uniformly for e -V [µt]/τ throughout the dynamics.

Assumption 3 (Uniform log-Sobolev). There exists

ρ τ > 0 such that ∀µ ∈ P 2 (R d ) it holds e -V [µ]/τ ∈ L 1 (R d ) and the probability measure ν ∝ e -V [µ]/τ satisfies LSI(ρ τ ).
Remember that V [µ] is defined up to a constant term, and in this section, we fix this constant so that e -V [µ]/τ ∈ P 2 (R d ). Let us recall two criteria for a probability measure to satisfy a Log-Sobolev inequality:

-If ∇ 2 V ρI d then e -V ∈ P(R d ) satisfies LSI(ρ) [START_REF] Bakry | Diffusions hypercontractives[END_REF]; [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF].

-if ν satisfies LSI(ρ) and ν = e -ψ ν ∈ P(R d ) is a perturbation of ν with ψ ∈ L ∞ (R d ) then ν satisfies LSI(ρ) with ρ = ρe inf ψ-sup ψ [
Our main result regarding the Mean-Field Langevin dynamics ( 11) is the following.

Theorem 3.2. Under Assumptions 1, 2 and 3, let

µ 0 ∈ P 2 (R d ) be such that F τ (µ 0 ) < ∞. For t ≥ 0, it holds F τ (µ t ) -F τ (µ * τ ) ≤ e -2τ ρτ t (F τ (µ 0 ) -F τ (µ * τ )). ( 14 
) Proof. Let ν t = e -V [µt]/τ . By Lemma 2.2 applied to v t = -∇V [µ t ] -τ ∇ log(µ t ), we have d dt F τ (µ t ) = - R d ∇V [µ t ] + τ ∇ log(µ t ) 2 dµ t = -τ 2 I(µ t |ν t ). ( 15 
)
Note that although Lemma 2.2 requires some regularity estimates, they can be bypassed here thanks to general results about Wasserstein gradient flows [Ambrosio and Savaré, 2007, Thm. 5.3 (v)]. Combining this energy identity with the log-Sobolev inequality and Lemma 3.4, it follows

d dt F τ (µ t ) -F τ (µ * τ ) = -τ 2 I(µ t |ν t ) ≤ -2ρ τ τ 2 H(µ t |ν t ) ≤ -2ρ τ τ (F (µ t ) -F (µ * ))
which is a 2-Lojasiewicz gradient inequality for F τ . By integrating in time we get Eq. ( 14).

In the proof, we see that we could relax Assumption 3 and require the Log-Sobolev inequality to hold only for all µ ∈ P 2 (R d ) such that F τ (µ) ≤ F τ (µ 0 ). Also, Assumption 1 is only a general assumption that guarantees well-posedness of the dynamics and the energy decay formula Eq. ( 15); this regularity assumption can be relaxed on a case by case basis. Convergence guarantees in parameter space directly follow from the previous theorem.

Corollary 3.3. Under the assumptions of Theorem 3.2, for t ≥ 0 we have

H(µ t |µ * τ ) ≤ 1 τ e -2τ ρτ t (F τ (µ 0 ) -F τ (µ * )) and W 2 2 (µ t , µ * τ ) ≤ 2e -2τ ρτ t τ ρ τ F τ (µ 0 ) -F τ (µ * ) .
Proof. The first inequality follows from Theorem 3.2 and Lemma 3.4. For the second one, it follows from the fact that if ν satisfies LSI(ρ), then it satisfies the Talagrand inequality, which states that ∀µ ∈ P 2 (R d ), W 2 2 (µ, ν) ≤ 2 ρ H(µ|ν), as proved in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF].

The following lemma establishes inequalities which are key to handle the non-linear aspect of the dynamics (when G is linear, they become trivial equalities).

Lemma 3.4 (Entropy Sandwich). Under Assumption 1, 2 and 3, let µ * τ be the unique minimizer of F τ . For all µ ∈ P 2 (R d ),

letting ν := e -V [µ]/τ ∈ P 2 (R d ), it holds τ H(µ|µ * τ ) ≤ F τ (µ) -F τ (µ * τ ) ≤ τ H(µ|ν).
Proof. The convexity of G implies that, ∀µ,

ν ∈ P 2 (R d ), 1 ǫ (G((1 -ǫ)µ + ǫν) -G(µ)) ≤ G(ν) -G(µ)
. So, passing to the limit in the definition of the first-variation (Definition 2.1), we recover the usual convexity inequality (interpreting V [µ] as the gradient of G at µ):

G(ν) ≥ G(µ) + V [µ]d(ν -µ). (16) 
Invoking this inequality twice with the role of µ and µ * exchanged, it holds

V [µ * ]d(µ -µ * ) ≤ G(µ) -G(µ * ) ≤ V [µ]d(µ -µ * ).
Recalling F τ (µ) = G(µ) + τ H(µ), it holds, on the one hand,

F τ (µ) -F τ (µ * ) ≤ V [µ]dµ + τ H(µ) -V [µ]dµ * -τ H(µ * ) = τ H(µ|ν) -τ H(µ * |ν) ≤ τ H(µ|ν).
On the other hand, using the fact that µ * τ = e -V [µ * ]/τ (Proposition 2.3), it holds

F τ (µ) -F τ (µ * τ ) ≥ V [µ * ]dµ + τ H(µ) -V [µ * ]dµ * -τ H(µ * ) = τ H(µ|µ * ) -τ H(µ * |µ * ) = τ H(µ|µ * ).

Convergence of the annealed dynamics

We now turn our attention to the "annealed" Mean-Field Langevin dynamics with a time dependent diffusion coefficient τ t > 0:

∂µ t = ∇ • µ t ∇V [µ t ] + τ t ∆µ t ( 17 
)
with a temperature parameter τ t that converges to 0. The existence of a unique solution from any µ 0 ∈ P 2 (R d ) follows again from the theory of McKean-Vlasov equations, now with time inhomogeneous coefficients (see e.g. [Huang et al., 2021, Thm. 3.3]). As a side note, notice that (17) cannot strictly be interpreted as a Wasserstein gradient flow anymore, but some aspects of the theory of Wasserstein gradient flows have been extended to cover the case of time-dependent diffusion coefficients [Ferreira and Valencia-Guevara, 2018, Sec. 6.2].

The linear case when G(µ) = V dµ has been considered in numerous works (e.g. [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], [START_REF] Geman | Diffusions for global optimization[END_REF], [START_REF] Miclo | Recuit simulé sur R n . étude de l'évolution de l'énergie libre[END_REF], [START_REF] Raginsky | Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis[END_REF], [START_REF] Tang | Simulated annealing from continuum to discretization: a convergence analysis via the eyring-kramers law[END_REF]). It is known in particular [START_REF] Miclo | Recuit simulé sur R n . étude de l'évolution de l'énergie libre[END_REF] that under suitable coercivity assumptions for V and if τ t = C/ log(t) for some C > 0 large enough, then G(µ t ) converges to min µ∈P

2 (R d ) G(µ) = min x∈R d V (x).
Here we show that a similar guarantee holds in our more general context.

Theorem 4.1 (Convergence of annealed dynamics). Suppose Assumptions 1, 2 and 3 hold for all τ > 0, and moreover assume that:

-the Log-Sobolev constants satisfy ρ τ ≥ C 0 e -α * /τ for some α * , C 0 > 0, -G is lower-bounded, -(τ t ) t is smooth, decreases, and for t large it holds τ t = α/ log(t) for some α > α * .

Let µ 0 ∈ P 2 (R d ) be such that F τ 0 (µ 0 ) < ∞. Then for each ǫ > 0, there exists C, C ′ > 0 such that

F τt (µ t ) -F τt (µ * τt ) ≤ Ct -1-α * α -ǫ , (18) 
and

G(µ t ) -inf G ≤ C ′ log log t log t . ( 19 
)
We can make the following comments:

-The lower-bound assumed on ρ τ is natural when one has in mind the Holley and Stroock criterion given in Section 3. In Section 5, we show a lower bound of this form on a concrete example related to two-layer neural networks.

-The bounds of Theorem 4.1 exhibit a two time-scales phenomenon: the dynamics (µ t ) converges at a polynomial rate to the regularization path (µ * τt ) (in relative entropy or W 2 2 distance, thanks to the "entropy sandwich" Lemma 3.4 or the Talagrand inequality) but the regularization path only converges at a logarithmic rate to the optimal value inf G, because of the slow decay of τ t .

-The slow decay of τ t is an inconvenience but it cannot be improved. It is known that in the linear case G(µ) = V dµ, convergence is lost if τ t decays faster [Holley et al., 1989, Sec. 3] (in fact, taking τ t = α/ log(t) with α > 0 too small already breaks convergence).

Proof. Our proof is partly inspired by [START_REF] Miclo | Recuit simulé sur R n . étude de l'évolution de l'énergie libre[END_REF], as revisited by [START_REF] Tang | Simulated annealing from continuum to discretization: a convergence analysis via the eyring-kramers law[END_REF].

Step 1. Consider the function that returns the values of the regularization path

h(τ ) := F τ (µ * τ ) = min µ∈P 2 (R d ) G(µ) + τ H(µ).
As an infimum of affine functions, h is concave and since the minimizer µ * τ is unique, h is differentiable for τ > 0 and its derivative is h ′ (τ ) = H(µ * τ ). We focus on t ≥ t 0 so that τ t = α/ log(t). By Lemma 2.2 applied to v t = -∇V [µ t ] + τ t ∇ log(µ t ) (here again, the regularity assumptions of Lemma 2.2 can be bypassed using the gradient flow-like structure, see [Ferreira and Valencia-Guevara, 2018, Thm. 6.9]), we have

d dt F τt (µ t ) -F τt (µ * τt ) = - ∇V [µ t ] + τ t ∇ log(µ t ) 2 dµ t + τ ′ t H(µ t ) -τ ′ t h ′ (τ t ) ≤ -τ 2 t I(µ t |ν t ) + τ ′ t H(µ t ) -H(µ * τt )
where we introduced the probability measure ν t ∝ e -V [µt]/τt . On the one hand, we have by the Log-Sobolev inequality and the "entropy sandwich" Lemma 3.4,

τ 2 t I(µ t |ν t ) ≥ 2τ 2 t ρ τt H(µ t |ν t ) ≥ 2ρ τt τ t F τt (µ t ) -F τt (µ * τt ) .
On the other hand, by Lemma 4.2 below it holds,

-τ t (H(µ t ) -H(µ * τt )) ≤ C 2 F τt (µ t ) + C 3 + F τt (µ * τt ) -G(µ * τt )
for some C 2 , C 3 > 0 independent from µ and t. Since G is lower bounded and h(τ

) = F τt (µ * τ ) is bounded for τ ∈ [0, τ 0 ], this bound can be simplified as -τ t (H(µ t )-H(µ * τt )) ≤ C 2 (F τt (µ t )- F τt (µ * τt )) + C 3 .
Combining the previous estimates, we get that for any ǫ > 0, there exists

C 1 , C 2 , C 3 > 0 such that d dt F τt (µ t ) -F τt (µ * τt ) ≤ -2ρ τt τ t F τt (µ t ) -F τt (µ * τt ) -C 2 τ ′ t τ t F τt (µ t ) -F τt (µ * τt ) - τ ′ t τ t C 2 ≤ -2C 1 αt -α * α + C 2 t -1 log t F τt (µ t ) -F τt (µ * τt ) + C 3 t -1 log t
where we used τ t = α/ log(t), τ ′ t = -α/(t(log t) 2 ) and ρ τt ≥ C 0 t -α * /α . In passing, the first inequality in the above display guarantees that F τt (µ t ) -F τt (µ * τt ) remains finite at all time because log τ t ∈ C 1 , which justifies the fact that we can consider only t large enough in the rest of the proof.

It follows that for any ǫ > 0 such that ǫ < 1-α * /α, for t large enough and some C, C ′ > 0,

d dt F τt (µ t ) -F τt (µ * τt ) ≤ -Ct -α * α -ǫ F τt (µ t ) -F τt (µ * τt ) + C ′ t -1-ǫ . Now define Q(t) := F τt (µ t ) -F τt (µ * τt ) - C ′ C t -1+ α * α +ǫ which satisfies d dt Q(t) ≤ -Ct -α * α -ǫ Q(t) -C ′ t -1 + Ct -1-ǫ + C ′ (1 -α * α -ǫ) C t -2+ α * α +ǫ . (20) 
Observe that the term -C ′ t -1 dominates the two last terms for t large enough. Thus for t ≥ t * large enough,

d dt Q(t) ≤ -Ct -α * α -ǫ Q(t) which implies Q(t) ≤ Q(t * ) exp(-C t t * s -α * α -ǫ ds). As a consequence F τt (µ t ) -F τt (µ * τt ) ≤ C ′ C t -1+ α * α +ǫ + Q(t * ) exp - C κ (t κ -t κ * )
and thus

F τt (µ t ) -F τt (µ * τt ) ≤ C ′′ t -κ because κ := 1 -α * α -ǫ > 0 and Q(t *
) is finite. This proves Eq. ( 18).

Step 2. Let us now prove Eq. ( 19), under the assumption that G admits a minimizer µ * 0 ∈ P 2 (R d ). The proof can be easily adapted to the general case by choosing µ * 0 as a quasi-minimizer such that G(µ * 0 ) ≤ inf G + ǫ and taking ǫ arbitrarily small. Remember that

h(0) = G(µ * 0 ) = F 0 (µ * 0 ), so G(µ t ) -G(µ * 0 ) = F τt (µ t ) -F τt (µ * τt ) + F τt (µ * τt ) -F 0 (µ * 0 ) -τ t H(µ t ) ≤ Ct -κ + (h(τ t ) -h(0)) + C ′ τ t
where we have used the bound -H(µ t ) ≤ C 1 F τt (µ t )+C 2 from Lemma 4.2, which is uniformly bounded for t ≥ 0 by some C ′ thanks to Step 1.

The rest of the proof consists in bounding h(τ ) -h(0) via an approximation argument. Let g σ (x) = (2πσ 2 ) -d/2 exp(-x 2 /(2σ 2 )) be the standard Gaussian kernel and let μσ (x) = g σ (x -y)dµ * 0 (y). We consider the transport plan γ ∈ Π(μ 0 , μσ ) given by the joint law of (X, X + Z) for Law(X) = μ0 = µ * 0 and Law(Z) = g σ . On the one hand, it holds by convexity of G

0 ≥ G(μ 0 ) -G(μ σ ) ≥ V [μ σ ]d[μ 0 -μσ ] = (V [μ σ ](y) -V [μ σ ](x))dγ(x, y).
It follows, using the smoothness bound

|V [μ σ ](y)-V [μ σ ](x)-∇V [μ σ ](x) ⊤ (y-x)| ≤ L
2 y-x 2 and the fact that the Gaussian kernel is centered, that

|G(μ 0 ) -G(μ σ )| ≤ L 2 y -x 2 dγ(x, y) = L 2 σ 2 .
On the other hand, we have by Jensen's inequality for the convex function ϕ : s → s log(s) and Fubini's theorem:

H(μ σ ) = ϕ g σ (x -y)dµ 0 (y) dx ≤ ϕ(g σ (x -y))dx dµ 0 (y) = - 1 2 1 + log(2πσ 2 )
which is the entropy of the Gaussian distribution g σ . Thus we have

h(τ ) -h(0) ≤ inf σ>0 L 2 σ 2 - τ 2 1 + log(2πσ 2 ) ≤ - τ 2 log(πτ )
by choosing σ 2 = τ /L. Plugging the value of τ t = α/ log(t) we get, for some C, C ′ > 0,

G(µ t ) -G(µ * 0 ) ≤ α 2 (log log t -log(πα) log t + Ct -κ + C ′ α log(t) ≤ C ′′ log log t log t .
In the proof of Theorem 4.1, we used a lower bound on the value of H(µ) in terms of the functional value that is provided in the following lemma.

Lemma 4.2. Under the assumptions of Theorem 4.1, there exists C 1 , C 2 > 0 such that for all 0 < τ ≤ τ 0 and µ ∈ P a 2 (R d ),

-H(µ) ≤ C 1 F τ (µ) + C 2 .
Proof. In the following proof, C i , C ′ i , C ′′ i > 0 are constants independent from µ which value may change from line to line. Since by assumption the probability measure ν proportional to e -V [µ 0 ] satisfies a logarithmic Sobolev inequality, there exists

C 1 , C 2 > 0 such that ∀x ∈ R d , V [µ 0 ](x) ≥ C 1 x 2 -C 2 .
Indeed, by Herbst argument [Bakry et al., 2014, Prop. 5.4.1], there exists C 1 > 0 such that e C 1 x 2 -V [µ 0 ](x) dx < ∞ and we conclude using the fact that if f ∈ C 1 (R d ) has a Lipschitz gradient and e f dx < ∞ then f must be upper-bounded.

Letting M 2 (µ) := x 2 dµ(x), it follows, using convexity of G, that

G(µ) ≥ G(µ 0 ) + V [µ 0 ]d(µ -µ 0 ) ≥ 2C 1 M 2 (µ) -C 2 .
Invoking Lemma 4.3 with σ 2 = τ /C 1 we have

τ H(µ) ≥ -C 1 M 2 (µ) -τ -τ d log(2τ π/C 1 ).
Summing the two previous equations (with the same value of C 1 ), we get that for τ ≤ τ 0 ,

F τ (µ) ≥ C 1 M 2 (µ) -C ′ 2 .
Combined with the fact that -H(µ

) ≤ C ′ 1 M 2 (µ) + C ′ 2 , we get -H(µ) ≤ C ′′ 1 F τ (µ) + C ′′ 2 .
See e.g. [Mei et al., 2018, Lem. 10.1] for a proof of the following lemma.

Lemma 4.3. For µ ∈ P a 2 (R d ), let M 2 (µ) := x 2 dµ(x). For any σ 2 > 0, it holds

-H(µ) ≤ 1 σ 2 M 2 (µ) + 1 + d log(2πσ 2 ).
5 Application: noisy GD on a wide two-layer neural network

We now show that our results apply to the training dynamics of certain wide 2-layer neural networks trained with noisy gradient descent.

Let us introduce the formulation of two-neural networks of arbitrary width parameterized by a probability measure, which is at the heart of the mean-field analysis of the training dynamics [START_REF] Nitanda | Stochastic particle gradient descent for infinite ensembles[END_REF][START_REF] Mei | A mean field view of the landscape of two-layer neural networks[END_REF][START_REF] Sirignano | Mean field analysis of neural networks: A law of large numbers[END_REF][START_REF] Rotskoff | Parameters as interacting particles: long time convergence and asymptotic error scaling of neural networks[END_REF][START_REF] Chizat | On the global convergence of gradient descent for overparameterized models using optimal transport[END_REF]. Consider a input/output data distribution (z, y)

∼ D ∈ P(R n × R), a loss function ℓ : R 2 → R + , a "feature function" Φ(z, x) ∈ C(R n × R d ) and let G(µ) := E (z,y)∼D ℓ y, Φ(z, x)dµ(x) + λ 2 x 2 dµ(x) (21) 
where λ > 0 is regularization parameter. Typical choices for the loss are the logistic loss ℓ(y, y ′ ) = log(1 + exp(-yy ′ )) and the square loss ℓ(y, y ′ ) = 1 2 |y -y ′ | 2 and in what follows, ℓ ′ denotes the derivative of ℓ with respect to y ′ .

When µ = 1 m m i=1 δ x i is an empirical distribution with m atoms/particles, the function G m derived from G as in Eq. ( 2) is exactly the risk with weight decay regularization for a two-layer neural network of width m. Thus noisy gradient descent for two-layer neural networks is equivalent to NPGD with G defined in Eq (21).

Let us give conditions under which our convergence theorems apply in this case.

Proposition 5.1. Assume that ℓ is the square or the logistic loss, that |Φ| is bounded by K > 0 and that Φ smooth in x, uniformly in z. Then Assumptions 1 and 2 are satisfied and the first variation of G is given, for µ ∈ P 2 (R d ) and x ∈ R d , by

V [µ](x) = E (z,y)∼D ℓ ′ y, Φ(z, x ′ )dµ(x ′ ) Φ(z, x) + λ 2 x 2 .
Moreover Assumption 3 is satisfied when:

-ℓ is the logistic loss. Then we have ρ τ ≥ λ τ e -2K/τ , or -ℓ is the square loss and |E[y|z]| ≤ K ′ a.s. Then we have ρ τ ≥ λ τ e -2K(K+K ′ )/τ .

Proof. For the computation of the first variation and Assumptions 1, we refer e.g. to [START_REF] Hu | Mean-field langevin dynamics and energy landscape of neural networks[END_REF]. For Assumption 2, G is convex as a composition of a linear operator and a convex function. To see that F τ admits a minimizer, notice that thanks to the regularization term, the sublevel sets of G are tight and thus weakly-precompact by Prokorov's theorem. Moreover, the loss term in G is weakly continuous, the regularization term is weakly lowersemicontinuous (lsc) and H is weakly lsc [Ambrosio and Savaré, 2007, Sec. 3.2] so, overall, F τ is lsc. Thus a minimizer µ * τ exists for all τ ≥ 0 by the Direct Method in the calculus of variations.

Let us derive the lower-bound on the log-Sobolev constant ρ τ using the criteria given below Assumption 3. First, by the Bakry-Émery criterion, the probability measure ∝ e -λ 2τ x 2 satisfies LSI(λ/τ ). Also, our assumptions guarantee that the first term in V is uniformly bounded by K -in case of the logistic loss because |ℓ ′ (y, y ′ )| ≤ 1 -or by K(K + K ′ ) -in case of the square loss. We conclude by applying the Holley and Stroock criterion with a perturbation ψ that satisfies sup ψ -inf ψ ≤ 2K/τ (for the logistic loss) or sup ψ -inf ψ ≤ 2K(K + K ′ )/τ (for the square loss).

Limitations of this approach While the previous proposition, combined with our theorems, gives new convergence guarantees for noisy gradient descent on neural networks (in a certain limit), let us stress on the limitations of these results. The risk for a vanilla twolayer neural network with non-linearity φ : R → R is obtained from Eq. ( 21) by taking Φ(z, x) = aφ(b ⊤ z) where x = (a, b) ∈ R × R d-1 which is not bounded, and as a consequence not covered by our assumptions. In the case of the ReLU non-linearity φ(s) = max{0, s}, there is in addition a lack of smoothness. While it is might possible to tame the nonsmoothness issue-by considering a suitable initialization and a smooth distribution D as e.g. in [START_REF] Wojtowytsch | On the convergence of gradient descent training for two-layer relunetworks in the mean field regime[END_REF]-the unboundedness issue seems more profound, and suggests a form of incompatibility between noisy gradient descent and the standard architecture of twolayer neural networks. An interesting direction for future research would be to design other algorithms which do not have these limitations, potentially involving non-isotropic noise.

Conclusion

We have proved, under natural assumptions, the convergence at an exponential rate of the Mean-Field Langevin dynamics, and the convergence of the annealed dynamics for a suitable noise decay.

From a higher perspective, our analysis-in particular the simple "entropy sandwich" Lemma 3.4-suggests that often, the guarantees about Langevin dynamics obtained via log-Sobolev inequalities can be generalized to mean-field Langevin dynamics. In this paper, we focused on exponential convergence and on simulated annealing, but other aspects could be considered, such as a direct analysis of the discrete dynamics, which could lead to computational bounds, as done in e.g. [START_REF] Vempala | Rapid convergence of the Unadjusted Langevin Algorithm: Isoperimetry suffices[END_REF]Wibisono, 2019, Ma et al., 2019] for the Langevin algorithm.

Another interesting direction for future work is to develop and study more applications of Mean-Field Langevin dynamics, since many problems can be cast as optimization problems of the form Eq. ( 1). This includes sparse deconvolution problems, mixture models fitting [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF] or problems involving optimal transport [Peyré et al., 2019, Chap. 9].

where we used successively the Lipschitz continuity of x → ∇V [µ](x) and of µ → ∇V [µ](x) in the last two lines. The first claim follows by taking the limit ǫ → 0. This also shows that V [µ] is the unique (strong) W 2 -differential of W 2 at µ, in the sense of [Ambrosio and Savaré, 2007, Def. 4.1].

For the semi-convexity claim, let h(t) := G(µ t ). For s, t ∈ [0, 1], it holds by Cauchy-Schwarz

|h ′ (t) -h ′ (s)| 2 ≤ v 2 L 2 (µ) R d
∇V [µ t ](x + tv(x)) -∇V [µ s ](x + sv(x)) 2 dµ(x)

≤ v 2 L 2 (µ) L 2 R d W 2 (µ s , µ t ) + |t -s| v(x) 2 dµ(x) ≤ v 2 L 2 (µ) L 2 (2W 2 2 (µ s , µ t ) + 2|t -s| 2 v 2 L 2 (µ) ).
Since W 2 (µ s , µ t ) ≤ |t -s| v L 2 (µ) , it follows

|h ′ (t) -h ′ (s)| ≤ 2L|t -s| v 2 L 2 (µ)
which proves that G is (-2L)-convex in the sense of [Ambrosio and Savaré, 2007, Remark 3.2].

(Note that the same conclusion holds for -G so we could say that G is 2L-smooth in Wasserstein space.)

  For µ, ν ∈ P a 2 (R d ) with µ absolutely continuous w.r.t. ν we define the relative entropy (a.k.a. Kullback-Leibler divergence) by H(µ|ν) :=

  Lemma 2.2 (Chain rule). Let (µ t ) t∈(a,b) be a weakly continuous solution to Eq. (8) such that ∇ log(µ t ) ∈ L 2 ((a, b), L 2 (µ t )). Then G(µ t ) and H(µ t ) are absolutely continuous functions of t and it holds for a.e. t ∈ (a, b),
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A Additional proofs

Let us start with a relation between G and its first-variation V that is more convenient for proofs.

Lemma A.1 (Integral formula). Under Assumption (1), for µ 0 , µ 1 ∈ P 2 (R d ), one has

. By definition of the first-variation, h is right (resp. left) continuous at t = 0 (resp. t = 1). We just need to prove that

. Then, because this expression is continuous in t under Assumption 1, the fundamental theorem of calculus would imply h(1) -

where h ′ -(t) stands for the left-derivative of h at t. This shows that h

shows that the right derivative h ′ + (t) has the same value, and thus h

which concludes the proof of the formula.

In the following lemma, we verify that G is well-behaved (in fact smooth) as function in the Wasserstein space P 2 (R d ), using the vocabulary and results from [START_REF] Ambrosio | Gradient flows of probability measures[END_REF].

Moreover, G is (-L)-semiconvex along any interpolating curve in

Since the same holds true for -G, we could say that G is L-smooth in the Wasserstein geometry. In the sense that it is L-smooth along (generalized) W 2 geodesics.

Proof. For ǫ > 0 and s ∈