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Abstract

The “social buffering” phenomenon proposes that social sup-
port facilitates wellbeing by reducing stress in a number of
different ways. While this phenomenon may benefit agents
with social support from others, its potential effects on the
wider social group are less clear. Using a biologically-
inspired artificial life model, we have investigated how some
of the hypothesised hormonal mechanisms that underpin the
“social buffering” phenomenon affect the wellbeing and in-
teractions of agents without social support across numerous
social and physical contexts. We tested these effects in a
small, rank-based society, with half of the agents endowed
with numerous hormonal mechanisms associated with “social
buffering”, and half without. Surprisingly, our results found
that these “social buffering” mechanisms provided survival-
related advantages to agents without social support across
numerous conditions. We found that agents with socially-
adaptive mechanisms themselves become a proxy for adap-
tation, and suggest that, in some (artificial) societies, “social
buffering” may be a contagious phenomenon.

Introduction
For social species, the formation and maintenance of (af-
fective) social bonds has been associated with significant
improvements across numerous wellbeing measures, includ-
ing longer lives, reduced incidence of disease (Holt-Lunstad
et al., 2010), and reduced stress levels (Ditzen and Hein-
richs, 2014); with the absence of (perceived) social support
associated with the opposing effects (Barth et al., 2010).
One hypothesis for this effect, termed the “social buffering”
hypothesis of social support (Kikusui et al., 2006), proposes
that social support attenuates some of the physiological and
psychological responses to stress, both during, and in antic-
ipation of, stressful events. The hormone oxytocin (OT) has
been implicated as one key mediator between (affective) so-
cial support and these stress-regulating effects, potentially
by acting as a neuromodulator on stress-related physiologi-
cal (Kiyokawa and Hennessy, 2018) and behaviour systems
(Nelson and Panksepp, 1998).

For artificial (simulated and physical) social agents, un-
derstanding mechanisms for social adaptation remains a key
area of research: with recent work considering (interactions

with) the social environment for agent learning (Yonenoh
et al., 2019), cooperation and evolutionary dynamics in sim-
ulated agents (Gomes et al., 2017; Pérez et al., 2017), be-
havioural adaptation for human-robot interactions (Hiolle
et al., 2014; Cañamero and Lewis, 2016; Hieida et al., 2018;
Tanevska et al., 2019) and adaptation of homeostatic models
via (affective) social interactions (Bedia et al., 2019).

The socially-grounded regulation of a homeostatic model
may also be achieved via “social allostasis” (Schulkin, 2011;
Sterling, 2020), which proposes an anticipatory, predictive
adaptation of the homeostatic (Ashby, 1954) mechanism by
integrating internal, external and social information. This
mechanism of social adaptation, likely potentiated by the
“social buffering” phenomenon, proposes a biologically-
inspired mechanism for long-term adaptation for artificial
social agents.

However, while previous research into these socially-
adaptive mechanisms (including “social buffering” effects)
have generally reported performance improvements for (ar-
tificial) agents that have been endowed with them, less at-
tention has been given to the potential effects on the wider
society, and in particular on agents in those social groups
who lack mechanisms of (social) adaptation. The work
presented in this paper is motivated by this limitation, and
builds on our initial investigation into the “social buffering”
phenomenon in societies of artificial agents (Khan et al.,
2020).

In this paper, we investigate how the stress-regulating
“social buffering” effects of social support affect the well-
being and social interactions of agents who do not have
social support in a society. Given the evolutionary fit-
ness advantages associated with (socially-mediated) adap-
tion (Sterling, 2020), we hypothesised that there would be
no viability-related advantages experienced by agents with-
out social support when other agents in the society benefit-
ted from their adaptive effects. We test our hypothesis in
a small, rank-based society, with socially-supported agents
endowed with either one or two of the hormonal, stress-
regulating mechanisms associated with the “social buffer-
ing” phenomenon. Contrary to our prediction, we found



Figure 1: High-level view of the agent model used in this
investigation and discussed in this section. ASA: Action-
Selection Architecture (Eq. 1, Table 1). SAC: Social Assess-
ment Component (Eq. 2). Additional details of the affective
(hormonal) system are seen in Fig. 3.

that agents without social support experienced significant
wellbeing improvements across numerous social and physi-
cal conditions, and these improvements were related to the
type of stress-regulating mechanisms that socially-supported
agents were endowed with.

Agent Model
Building on our previous work (Khan et al., 2020),
our agent model comprises three main components: (1)
a homeostatically-controlled Action-Selection Architecture
(ASA), which selects behaviours to regulate two internal
homeostatically-controlled variables; (2) the Social Assess-
ment Component (SAC), which adapts agent behaviour
based on appraisals of affective social relationships with oth-
ers, and (3) an affective hormonal system which modulates
certain aspects of agent “physiology” and behaviour.

Action-Selection Architecture

Using the long-standing approach from our research
group (Cañamero, 1997; Lones et al., 2017; Lewis and
Cañamero, 2019; Khan et al., 2019), the behaviours of
our artificial agents are grounded in the regulation of a
homeostatically-controlled internal “physiology” through
the Action-Selection Architecture (ASA). The ASA selects
actions to satisfy one of two physiological needs: Energy
(a physical, survival-critical need) and SocialNeed (a non-
critical need for social contact) (Table 1). Here, “critical”
refers to a variable’s effect on agent survival: if Energy (but
not SocialNeed) drops to its lowest value (0), an agent fails
to remain viable and “dies”. Therefore, the goal of this
homeostatically-controlled model is to maintain stability by
keeping these values as close to their ideal values (1) as pos-
sible through relevant action selection.

Internal
Variable (v) Energy SocialNeed

γv 0.003 ×2(SPt) 0.003
Motivation (m) Hungry (mH ) Lonely (mL)

Behaviour (b) Eat (bE)
Touch (bT )

(Groom,
Aggression)

Stimuli (S) Food Agent

Phys. Effect A v: +0.003/time step
OT: +0.003 ×TI∗

v: 0.05 ×TI

Phys. Effect i -
OT: +0.003 ×TI∗

CT: +/- 0.003 ×TI ∗ ∗

Table 1: Relationship between internal variables v, motiva-
tions m, behaviours b and stimuli S required for each be-
haviour. “Phys. Effect”: Physiological effects of behaviour
B on actor (A) and recipient agent (i). OT: Oxytocin. CT:
Cortisol. *: Only for agents with affective social bonds. **:
Opposing effects based on behaviour: - if Groom, + if Ag-
gression. TI (Tactile Intensity) and SPt are discussed in the
Agent Model section.

The ASA works as follows: At each time step, each of
the two internal variables v experiences a loss (γv) at a con-
textual rate (Table 1). The ASA calculates the deficit (i.e.
the error, d) of both internal variables as the difference be-
tween its ideal value D and its current value (vt, Eq. 1b).
The error value is combined with the perception of external
cues c to calculate the “intensity” of each of the two moti-
vational drives (m, Eq. 1c). The motivation returning the
largest value (i.e. the most “urgent” motivation) is selected
as the winning motivation M (Eq. 1c). In this model, each
motivation is mapped onto one of two behaviours: Eat when
Hungry, and Touch when Lonely). The model selects the
behaviour B associated with the winning motivation M (Eq.
1e), with agents moving to a relevant resource to perform
the behaviour. Therefore:

vt = vt−1 − γv (1a)
dt = D− vt (1b)

mt = dt + (dt × ci) (1c)
Mt = max(mh,ml) (1d)

Bt = max(bE, bT) (1e)

Social Assessment Component
The Social Assessment Component adds a contextual layer
to the execution of social interactions by accounting for an
acting agent’s affective (hormonal) state, the social status
(rank) of other agents, and (for bonded agents) the presence
and quality of an existing affective bond. The SAC therefore
dynamically adapts social behaviours based on a “trade-off’
between these features to determine (a) whether to approach



or avoid a food resource, (b) which agent to perform social
interaction (Touch) with when multiple options are avail-
able, and (c) whether to perform a socio-positive (Groom)
or socio-negative (Aggression) interaction. Acting agents A
assigns a value to each agent i it perceives (χ, between -1 to
+3) as follows:

χi = ∆KAi︸ ︷︷ ︸
Relative Rank

Difference

+ [BondAi × (DSIAi × OTA)]︸ ︷︷ ︸
Affective Bond Status
(Bonded Agents Only)

(2)

where Bond(Ai) is a boolean flag denoting whether a social
bond exists between agents A and i (1 if bond exists, else
0), DSIAB is the measure of affective quality of the social
bond (between 0–2), and OT is a hormone oxytocin as we
describe in the next section. As this investigation is focused
on agents without affective social bonds, we summarise the
SAC here, and refer to (Khan et al., 2020) for more detail.

In the absence of affective social bonds, χi is calculated
simply as the difference in social rank between acting agent
A and i, normalised between -1 and 1: χi = ∆KAi =
KA −Ki. A negative value indicates that Agent i is higher-
ranked, and vice-versa. This value is used during the con-
textual execution of social behaviour, as seen in Figure 2.

(Affective) Hormonal System & Effects
Agents are endowed with either one or two biologically-
inspired simulated hormones—cortisol (CT) and/or oxy-
tocin (OT)—which act as modulators on agent physiology
and behaviour in numerous ways. All agents are endowed
with CT, but only agents with affective social bonds are en-
dowed with OT.

In our model, cortisol (CT) is a stress-related hormone,
released as a function of internal (physiological) and envi-
ronmental (physical and social) stress, and has two modula-
tory effects.

CT’s first effect is that it modulates the default agent
movement speed (Sp0 = 0.5 units/time step), which de-
pletes its Energy at a proportional rate (Table 1): the more
CT in an agent’s system, the faster it moves, the faster the
homeostatically-controlled Energy is depleted. Specifically,
Spt = Sp0 × (1 + (CT)).

CT’s second effect is that it dynamically modulates the in-
tensity of tactile interactions (Tint) being performed by act-
ing agents. The intensity of tactile interaction adapts the rate
at which the actor’s SocialNeed variable is satisfied (Table
1): the stronger the interaction, the greater the satisfaction
of SocialNeed.

CT is either “secreted” (increased) or “inhibited” (re-
duced) at each time step, at a contextual rate (γCT); as a func-
tion of internal stress (the mean of physiological deficits, d̄i)
offset by (available) external stimuli (Agents ŜA and Food
ŜF ):

OT

CT

Affect-Based 
Social Bond 

Partners

Socio-positive 
interactions

increases valence

reduces

modulates

OT

CT

Bonded Agent

Socio-positive interactions

Grooming

Affective (Hormonal) System

To 
behaviour 
execution

Stress 
Threshold

-1 3X
A: Groom (max X) → 
F: Avoid  | Approach → 

A: Avoid     Aggression Groom

F: Avoid  | Approach → 
0 1

Contextual Execution of Behaviour B

Not Stressed 
(CT < θST)

Stressed 
(CT > θST)

Figure 2: Illustration of the contextual execution of agent
behaviours towards agents (A) and occupied food (F) re-
sources, accounting for χ and an agent’s affective state.
Numbers correspond to χ values calculated by Equation 2.
Green denotes behaviours when agents are not stressed (CT
< θST ), red denotes behaviour when stressed (CT > θST ).

γCT = ( d̄i︸︷︷︸
Internal Stress

− 1

2
(ŜA + ŜF ))︸ ︷︷ ︸
External Stress

)× w (3)

Here, “available” stimuli is calculated using the Social As-
sessment Component: where ŜA = cA × (1 − χi), ŜF =
1 when χi ≥ 0, else 0, and w is a scalar to regulate values.
When agents Groom, CT is reduced by γCT in both the actor
and recipient, but increased in the recipient during Aggres-
sion interactions (Table 1).

The second hormone, oxytocin (OT), is a modulatory
hormone associated with positive social interactions (Quin-
tana and Guastella, 2020). In this model, OT is only present
in agents with affective social bonds and directly regulates
stress through either one or two mechanisms: by increasing
the valence of social bond partners for social interactions
(Eq. 2, Fig. 3, blue line), thus reducing the stress associated
with the social environment (Eq. 3), and by modulating an
agent’s internal tolerance to stress (CT) (Eq. 4, Fig. 3, red
line). These mathematical models of OT effects are abstrac-
tions of two hypothesised mechanisms that underpin “social
buffering” (Kikusui et al., 2006; Cohen and Wills, 1985).

Agents have an internal Stress Threshold (θST, between
0–1), which determines how much of the stress hormone
(CT) it can withstand in its physiology before it becomes
“stressed” and adapts (social) behaviours. Agents have an
initial Stress Threshold (θST(d) = 0.5), and this remains un-
changed for unbonded agents. For bonded agents, OT’s sec-
ond effect is that it modulates this internal stress threshold:

θST = θST(d) + (0.5×OT ) (4)

For bonded agents, θST is in the range 0.25–0.75. Figure
2 shows how the “stressed” state adapts social behaviours
in agents, with increased likelihood towards socio-negative
interactions.
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Figure 3: Illustration of the affective hormonal system used
in our agent model. OT = Oxytocin. CT = Cortisol. “So-
cial buffering” mechanisms are denoted by blue line (Type
A models), and blue+red line (Type B models), as discussed
in the Experiments and Results section.

Agent Perception & Behaviours
Agents randomly wander through the environment in the
absence of perceiving a resource that satisfies (or changes)
its current motivation, (Eq. 1c). Agents move at a default
speed (0.5 units/time step), modulated by its current CT lev-
els as described above.

To satisfy their Hunger motivation, agents perform the
Eat behaviour by stopping to take “bites” of food resources,
updating its Energy at a rate of 0.003 units/time step, until
the motivation has been satisfied.

To satisfy their Lonely motivation, agents socially inter-
act with other agents through the Touch behaviour. Touch
encapsulates two sub-behaviours: socio-positive Grooming
and socio-negative Aggression. Each of these behaviours
have opposing effects on CT release in recipient agents
(Grooming reduces CT in recipients, Aggression increases
CT) at a contextual rate dependent on the intensity of tactile
interaction (Table 1).

Experiments and Results
Our experiments were conducted using the NetLogo plat-
form, version 5.3.1 (Wilensky, 1999). Our simulation model
consisted of a small rank-based society comprised of six ar-
tificial agents, each occupying a different social rank (from
1 to 6), and endowed with the agent model described in the
Agent Model section. This model and the dataset from this
investigation is available online (Khan, 2021).

Experiments were conducted using three parameters de-
noting (a) the number of stress-regulating mechanisms that
bonded agents were endowed with; either one (Type A mod-
els) or two (Type B models) (b) the physical environment
in terms of food availability (our physical parameter, Fig.
5), and (c) the combination of agents that shared an affec-
tive social bond in each condition (our social parameter,
Fig. 4). The latter two parameters replicate the experimen-
tal paradigm from our previous investigation (Khan et al.,

Figure 4: Illustration of the three bond combinations used
in this investigation. Size and number correspond to agent
rank (A1 is highest-ranked, A6 is lowest-ranked).

2020). We ran 20 simulations for each experimental condi-
tion, and each simulation ran for 15,000 time steps.
Model Types: Agents with social bonds were endowed with
either one (Type A) or two (Type B) of the hypothesised
mechanisms associated with the “social buffering” effects,
mediated by our simulated OT. Type A models denote when
OT modulated the valence of social bond partners, reducing
the stress associated with the social environment (Equation
3, Fig. 3, blue arrow). Type B models included this effect as
well as OT’s effects on modulating an agent’s internal Stress
Threshold value (Equation 4, Fig. 3, red line). Agents with-
out social bonds were not endowed with OT mechanisms in
either condition.
World Conditions: Experiments were conducted in three
conditions related to increasing challenges of the physical
environment (i.e. availability of food resources): Static
(STA), with four fixed food resources, Seasonal (SEA),
where food resources steadily decrease (4→1) and increase
(1→4) every 1000 time steps in one-food increments, and
Extreme (EXT) worlds, where food resources undergo an
immediate change between 4 and 1 resources every 1000
time steps. Screenshots of these worlds are seen in Figure 5.
Social Bond Combinations: In line with our previous
study (Khan et al., 2020), we test three different combina-
tions of agents that share an affective social bond (Fig. 4,
i.e. bonded (B) agents). In each condition, 3/6 (50%) of
the society were bonded, with three without social bonds
(unbonded, (UB)). These are denoted as Bond A (where
agents A1-A2-A6 are bonded) Bond B (A3-A4-A5 bonded),
and Bond C (A4-A5-A6 bonded).

Taking the approach used previously in our group (Avila-
Garcia and Cañamero, 2004), we measured results across
three viability-related (Ashby, 1954) measures: Life Length
(LL): the length of time an agent or group survives as a per-
centage of total simulation run time (from 0%–100%); Mean
Comfort (MC): the mean value of the two homeostatically-
controlled variables (between 0–1) across an agent’s life;
and Physiological Balance (PB): the homogenity of the sat-
isfaction of these two internal variables (between 0–1).

Additionally, we report on mean CT levels and the distri-
bution of social behaviours between agents. Quantitative re-



Figure 5: Screenshots of the three world conditions used in
this investigation. Agents are doughnut-like shapes. Food
resources are represented using yellow spheres. Top left:
The Static world. Environmental changes are illustrated by
red (for Seasonal worlds) and yellow (for Extreme worlds)
arrows, and occur every 1000 time steps (starting at t=2000).

sults were complemented with qualitative reports where ap-
propriate. Given the research question, results were primar-
ily reported for unbonded agent groups, with results from
bonded groups reported for comparison where necessary.
Statistical significance testing was performed using one-way
ANOVA testing, with significance declared at the .05 level.

Results: Viability Indicators
Control: As expected, in control groups, agent performance
across all viability indicator metrics to be approximately
correlated with the increasing world conditions (STA:
LL=33%, MC:=.65 PB=.75; SEA: LL=22%, MC=.55,
PB=.49; EXT: LL=22%, MC=.53, PB=.51). Differ-
ences between environmental conditions were statistically-
significant at the .05 level for all metrics.

We observed a moderately-strong correlation between
each of the viability indicators and an agent’s rank (r=
LL=.57; MC=.68; PB=.79, p < .05 for all). In sum, an
agent’s viability was primarily associated with their social
rank across all environments when no agents had social
bonds.
Type A: Unbonded agents reported LL improvements
across all experimental conditions, ranging from +2–46%
improvements vs. control. In 2 of 9 experimental conditions
(Bond C in STA and EXT conditions), unbonded agents re-
ported greater improvements in LL vs. control compared to
the improvements seen by bonded agents.

PB improvements for UB were seen across all-but-one
condition (Bond A, EXT) vs. control, loosely correspond-
ing to increasing physical challenge (STA: +2–4%; SEA:
+2–6%, EXT: 0–12%), though this was significantly more
modest in magnitude vs. bonded agent improvements (+8%–

Figure 6: Results of the viability indicators for unbonded
(UB) agents across all experimental conditions. STA =
Static environments, SEA = Seasonal, EXT = Extreme.
Black bars show standard error of mean values.

37%). However, in 4 of 9 instance, we found actual PB val-
ues to be comparable or greater in UB than B agents (STA,
Bond C (.97 vs. .76); SEA, Bond B (.53 vs. .54); EXT, Bond
B (.59 vs. .60), Bond C (.71 vs. .53).
Type B: UB agents reported significant improvements in
mean LL vs. control, across all world conditions (STA: +70–
75%, SEA: +89–104%, EXT: +92–104%). Unlike Type
A conditions, UB agents reported significant improvements
to MC across all conditions vs. control (STA: +19–20%,
SEA: +17–26%, EXT: +12–24%). MC for UB agents was
also significantly improvement vs. Type A conditions (+10–
25%) across all world conditions. PB for UB agents saw
significant improvements vs. both control (STA: +11–31%,
SEA: +34–40%, EXT: +28–45%) and Type A groups (STA:
+1–19%; SEA: +12–38%; EXT: +3–34%). Results vs. Type
A conditions were statistically significant in all-but-two con-
ditions (Bond C, STA and EXT).

In sum, UB agents saw significant improvements across
all viability indicators when bonded agents were endowed
with two stress-regulating mechanisms (Type B conditions),
compared to groups with either no (Control) or one mecha-
nism (Type A). Results were statistically significant across
all conditions vs. control, with significant improvements
seen vs. Type A groups in the majority of experimental con-
ditions.
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Figure 7: Top: Mean CT levels for unbonded (green) and
bonded (grey) agents across all experimental conditions and
model types. CTRL = Control. Bottom: Absolute difference
in CT levels across conditions vs. control.

Results: Stress Levels
In control conditions, mean CT levels for the group were
associated with the increasing physically-challenging world
condition (STA=.49, SEA=.68, EXT=.71, Fig. 7) and were
strongly-correlated with an agent’s rank across all conditions
(r =.862).

In both Type A and B conditions, UB agents experienced
significantly lower levels of CT vs. control conditions across
all world environments and bond combinations (Fig. 7).
At an aggregated level, increases in CT levels for both UB
agents were associated with the relative challenge of the
physical environment (Fig. 7).

Compared to Type A groups, UB agents in Type B
groups reported larger mean reductions in CT levels vs. con-
trol across all environmental and bond conditions (Fig.
7). Particularly in Bond Condition C for Type B agents,
UB agents experienced similar reductions in CT levels as
bonded agents, with non-significant differences between B
and UB agent groups across all conditions.

In sum, both bonded and unbonded agents reported lower
stress (CT) levels vs. control in both Type A and Type B
conditions, with agents in Type B conditions reporting sig-
nificant reductions in CT vs. Type A. Here, the magnitude of
stress level reduction for UB agents (and the overall society)
was associated with the number of stress-regulating mecha-
nisms that socially-bonded agents were endowed with.

Results: Social Interactions

W
or

ld

Model

Food Phase

Figure 8: Trended amounts of socio-positive interactions
(Grooming) for unbonded (green) and bonded (red) agents.
Grey lines = control conditions for UB agents. STA = Static,
SEA = Seasonal, EXT = Extreme world conditions.

Figure 8 shows the trends of socio-positive interactions
for UB (green line), B (red line) agents, as well as con-
trol conditions (grey line) across all experimental condi-
tions. Overall, we found a greater number of Grooming
interactions from UB agents across all environmental con-
ditions in Type B groups vs. Type A groups. Despite be-
ing lower in the absolute number of Grooming interactions,
these socio-positive interactions followed similar trends to
those of bonded agent in some experimental conditions in
Type B groups (Bond B in STA, SEA; Bond C in STA, SEA,
EXT).

Across all conditions, unbonded agents performed a sig-
nificantly greater number of socio-positive (Grooming) in-
teractions with other agents in both Type A (STA: 1,106,
SEA: 1,421, EXT: 1,104 ) and Type B (STA: 3,909, SEA:
1,896, EXT:1,600) conditions vs. control (STA: 771, SEA:
562, EXT: 520). These increases in Grooming were most
notable in earlier phases, with 64% (STA), 57% (SEA), and
77% (EXT) of additional socio-positive interactions taking
place within the first 5000 time steps.

We report a moderately-strong relationship between the
total amount of Grooming by bonded agents and Grooming
performed by unbonded agents (r=.65), with stronger corre-
lations in Type B (r=.71) than Type A (r=.61) groups: sug-
gesting a relationship between Grooming by bonded agents
and Grooming by UB agents that is related to the adaptive
mechanisms that bonded agents were endowed with.

In sum, societies trended towards more socio-positive
interactions when half of the society had affective social
bonds, with UB agents also performing more frequent socio-
positive behaviours with other agents vs. control. UB agents
in Type B groups performed more socio-positive interactions
with others than Type A societies.



Discussion
Contrary to our hypothesises that “social buffering” would
have no positive effects on unbonded agents (without social
support), we found that these agents reported improved vi-
ability (Fig. 6), lower mean stress levels (Fig. 7) and in-
creases in socio-positive interactions (Fig. 8) in conditions
where the other half of the society shared affective social
bonds. We found how these improvements in performance
and stress-reduction in unbonded agents corresponded to
the incremental socially-adaptive mechanisms that bonded
agents were endowed with: from zero (control groups), one
(Type A groups), and two (Type B groups) mechanisms re-
spectively.

In this small society of artificial agents, the adaptive ben-
efits associated with the “social buffering” phenomenon are
not strictly restricted to agents with social bonds. Instead,
the physiological adaptation and subsequent affect-based in-
teractions between socially-bonded agents may also provide
a wider, adaptive “buffering” for the wider social group.

Given that adaptation is a metabolically-costly process
(McEwen and Wingfield, 2003), and that socially-adaptive
mechanisms have evolved to provide viability (fitness-
related) advantages for social agents (Sterling, 2020; Frank,
1998), our findings—that significant viability advantages are
experienced by agents that have not been directly endowed
with these mechanisms—are surprising. However, it also
raises the possibility of an alternative type of “adaptation-
by-proxy” mechanism for social agents in some (social and
physical) conditions. From our results, we also suggest that
this “adaptation-by-proxy” may be underpinned by some
type of “affective contagion” related to the stress experi-
enced by the wider society, which was driven by the affective
interactions of socially-bonded agents.

Below, we present and discuss some further quantitative
and qualitative analysis, and propose several mechanisms
and interactions that may have played a causal role in these
results.

Stress-Regulation, “Social Buffering” and Affective
Contagion

In our post-hoc analysis, we found how bonded agents en-
dowed with the Type B models (two stress-regulating mech-
anisms) trended towards more intra-bond socio-positive in-
teractions vs. Type A models (Fig. 8): with lower mean
intra-bond Aggression interactions (52% vs. 67%) and in-
creased intra-bond Grooming (48% vs. 37%) rates as the
additional “social buffering” mechanism was accounted for.
Specifically, we found how accounting for a secondary
mechanism of social buffering—the regulation of internal
stress thresholds—for agents with social support permitted
these agents to adapt their affect-based interactions towards
more socio-positive behaviours, compared to models only
accounting for one effect (Type A models).

Figure 9: Bonded agents adapt physiology & behaviours
via “social buffering” mechanisms: OT increases intra-bond
socio-positive interactions; reducing CT, and adapts long-
term stress tolerance which adapts future behaviours. More
socio-positive (and less socio-negative) interactions, and re-
duced stress for bonded agents, reduces CT in unbonded
agents, which facilitates their physiological and behavioural
adaptation. Therefore, bonded agents become a mechanism
of adaptation for unbonded agents.

This flexible behavioural adaptation, underpinned by
socially-mediated physiological adaptation, had a clear pay-
off for the wider society: higher rates of intra-bond Groom-
ing between bonded agents lowers stress (CT), which (a) al-
lowed them to not become “stressed” as world conditions
became increasingly challenging (in SEA and EXT con-
ditions) and (b) reduces the likelihood to perform socio-
negative behaviours: either Aggression towards lower-
ranked others, or avoidance of higher-ranked others) or time
spent at food resources.

For unbonded agents, receiving less Aggression results in
lower CT, and lower amounts of avoiding other agents (Fig.
2); increasing agent proximity and likelihood to Groom,
further reducing CT levels in both the actor and recipient.
Reductions in CT levels result in a lower Energy cost of
movement (Table 1) and, while further investigation is nec-
essary, we hypothesise that this “metabolic” adaptation (of
speed and Energy) drove improvements in Mean Comfort
and Physiological Balance in unbonded agents.

To summarise, we found a significant relationship be-
tween the (type of) physiological adaptation experienced by
socially-bonded agents (the different types of “social buffer-
ing” mechanisms), their subsequent interactions with the so-
cial and physical environment, and the ability for unbonded
agents to adapt to the (social and physical) environment; un-
derpinned by (positive) affective contagion which played a
causal role in improving the wellbeing of agents without so-
cial support. Though there may be additional behavioural
dynamics to consider than those discussed, our findings nev-
ertheless emphasise the importance of investigating micro
(and meso-)level interactions between agents and the envi-
ronments to understand emergent social dynamics; a point
we have also made previously (Khan et al., 2020).



“Adaptation-by-Proxy”: An Alternative,
Cost-Effective Mechanism of Social Adaptation?
In our artificial society, unbonded agents saw consistent
viability-related benefits across several conditions, with in-
creasing efficacy as bonded agents were further endowed
with adaptive mechanisms (Type B vs. Type A models).
Since bonded agents consistently outperformed unbonded
agents across numerous viability-related metrics, the advan-
tages in forming and maintaining social bonds are well-
established in our experiments.

However, one surprising finding was how these socially-
bonded agents—endowed with stress-regulating, socially-
adaptive mechanisms—in turn became a “proxy” mecha-
nism of adaptation for unbonded agents, as a result of the
former’s physiological and behavioural flexibility as de-
scribed above.

Considering the notion that stress (and therefore adapta-
tion) has a metabolic cost (the “allostatic load” in the allo-
static framework (McEwen and Wingfield, 2003)), the abil-
ity for agents without social support to experience viabil-
ity improvements by exploiting the adaptive efforts of other
agents may be considered a more (metabolically-)efficient
mechanism for long-term adaptation.

These findings initially appear to be counter-intuitive
from an evolutionary perspective, and raise an interesting
question: if (some) viability advantages can be experienced
by agents in a society, even in the absence of social bond for-
mation (and its hypothesised, adaptive effects on physiology
and behaviour), why would these mechanisms still evolve in
those (social) agents?

One potential answer may lie in scenarios that we have not
accounted for in our current experiments. For instance, the
presence of a predator or competitor species, difficult phys-
ical conditions, or changes in climate may have provided a
catalyst for the emergence of additional (affect-based) social
behaviours; such as protection from physical harm (Dun-
bar, 2010), group foraging (Sutcliffe et al., 2012), or so-
cial thermoregulation (IJzerman et al., 2021), that may only
be afforded to agents through affective bond formation or
group membership. Though these are indeed areas for fur-
ther investigation, the results from this experiment highlight
how agents without social support can, in some social and
physical contexts, benefit from the “social buffering” phe-
nomenon.

Extrapolating these results, this may indicate that not all
agents in a (small) artificial society would require the same
(type of) adaptive mechanisms to experience viability ben-
efits. For socially-affective, physically-embodied artificial
agents (i.e. robots); our findings may have implications on
the time and economical resources allocated to the devel-
opment of their adaptive models, and researchers may con-
sider these initial results when developing socially-adaptive
models that may interact with other socially-adaptive agents.
From a natural systems perspective, these results may point

towards an asynchronous or temporal evolutionary devel-
opment of socially-adaptive mechanisms. For instance, in
absence of competitive scenarios, the formation of social
bonds (and its subsequent adaptive mechanisms) may not
have developed simultaneously for social agents: but rather
that some agents in a social group benefitted from the adap-
tive nature of others.

Future Work
Future work should investigate whether the viability benefits
experienced by these unbonded agents, or the subsequent
social dynamics, would extrapolate to larger social groups
(including swarm-based societies); whether they are depen-
dent on the ratio of bonded vs. unbonded agents (50:50 in
our experiments), or the size of our physical environment.
We propose that these initial findings can lay the ground-
work for future investigations into these emergent effects,
and, as we have done previously (Khan et al., 2020), empha-
sise the importance of analysing social dynamics at the mi-
cro and meso-level to better understand macro-level “emer-
gent” phenomena.

Conclusion
In this paper, we have investigated how the “social buffer-
ing” phenomenon associated with social support affected
the wellbeing and social interactions of social agents with-
out social support across numerous dynamic environmen-
tal conditions. We hypothesised that social agents without
social support would not experience any wellbeing benefits
when other agents in the society could experience some of
the “social buffering” effects of social support. Using a sim-
ulated model, we investigated this hypothesis in a small,
rank-based society of artificial agents, where half of the
society shared affective social bonds, and were endowed
with either one or two of the hypothesised mechanisms
underpinning “social buffering”. Our experiments tested
these effects across numerous physical and social condi-
tions. Contrary to our hypothesis, agents without social sup-
port reported significant wellbeing benefits across numer-
ous social and physical environments. We suggest a type of
“adaptation-by-proxy” for our artificial social agents; where
agents with affective social bonds provided a mechanism for
adaptation for unbonded agents, through the former’s phys-
iological and behavioural adaptation: agents endowed with
socially-adaptive mechanisms themselves become a mech-
anism for adaptation for other agents in the society. We
suggest that “social buffering” may not simply be limited to
agents with social support, but may be more of a contagious
phenomenon that extends to the wider social group. Our
findings may have practical implications in the future devel-
opment of socially-affective, physically-embodied artificial
agent models—where social(ly-affective) agents may not all
require the (same type of) adaptive mechanisms to promote
their viability or long-term adaptation of behaviours.
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