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Abstract: This article deals with the optimization of chemical network in the frame of geometric
optimal control and singularity theory. The objective is to classify the generic syntheses for
analytic systems of the form q̇(t) = X(q(t))+u(t)Y (q(t)), where the aim is to reach in minimum
time a terminal manifold of codimension one. We develop symbolic algorithms to compute
approximations of the strata of the singular set to derive the topological classification in the
generic cases and to illustrate the role of singularity theory in geometric control, in relation with
abnormal geodesics and regularity of the value function, solution of Hamilton-Jacobi-Bellman
equation.
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INTRODUCTION

Within the last decades, reactors dynamics has been an
important research area [Feinberg, 1972, Horn et al, 1972],
having some industrial impact where the control of such
processes is a substantial task. One important application
in medicine concerns the control of the McKeithan network
[McKeithan, 1995] aiming to maximize the production of
one species, e.g. A. Assuming that the dependence with
respect to the ambient temperature is described by the
Arrhenius law, and using the derivative of the temperature
as a control, which consists into Goh transformation, the
problem can be transformed into a time minimal control
problem with a 3d-affine system and where the terminal
manifold N is given by fixing at the final time a fixed
amount of the desired species [Bonnard et al, 2019]. Such
process can be modeled by a system in R3 of the form

q̇(t) = X(q(t)) + u(t)Y (q(t)), |u| ≤ 1, (1)

where X,Y are analytic vector fields, the control u(·)
is a measurable function on [0, T ] and we require that
q(T ) ∈ N .

In this context, among a series of works, the article
[Bonnard et al, 1997] addressed the problem of computing
in a neighborhood of N the feedback optimal control u∗(q),
which reaches N from q in minimum time. The techniques
combine tools from singularity theory adapted to control
theory to determine the time minimal syntheses using
the concept of graded semi-normal forms and unfolding
[Arnol’d, 1991]. The aim of this article is to complete
the results of [Bonnard et al, 1997, Launay et al, 1997]

? The authors thank Bernard Bonnard for the fruitful discussions.

in the so-called abnormal (or exceptional) case where the
geodesics are tangent to the terminal manifold N .

The singularity theoretical frame was already present in
those earliest references: construction of semi-normal form
and concept of unfolding but recent progress of formal
languages are used to handle complicated computation
in particular in relation with the (reversible) McKeithan
network.

1. TIME MINIMAL EXCEPTIONAL GEODESICS IN
OPTIMIZATION OF CHEMICAL NETWORKS

1.1 A brief recap about the optimal control of chemical
networks

In this section, we introduce the concepts for the op-
timization of chemical networks. In particular we shall

consider the McKeithan network: T +M A Bk1 k2

k3

k4

.

The state space is formed by the concentration vector:

c = (cT , cM , cA, cB)

of the respective chemical species. We note δ1 = cT + cA+
cB , δ2 = cM + cA + cB the first integrals associated to
the dynamics and let x = cA, y = cB , then the system is
described by the equation:

ẋ = −β2xvα2 − β3xvα3 − δ3v (x+ y) + δ4v + v (x+ y)2

ẏ = β2xv
α2 − β4yvα4

ż = u, |u| ≤ 1,

with



0 ≤ x ≤ δ1, 0 ≤ y ≤ δ2, δ3 = δ1 + δ2, δ4 = δ1δ2,

the Arrhenius law gives ki = A exp(−Ei/RT ), i = 1, 2, 3, 4
(Ei is the activation energy, T is the temperature, A,R are
constant) and

z = k1, k2 = β2v
α2 , k3 = β3v

α3 , k4 = β4v
α4 .

Maximizing the product of the A species leads to a time
minimal control problem with a terminal manifold N : x =
d, d being the desired production of A, see [Bonnard et al,
2019] for more details.

We denote by q̇ = X + uY , |u| ≤ 1 the control system.

1.2 Time minimal control for 3d-affine systems and
Maximum Principle

We consider a three dimensional single-input control sys-
tem of the form

dq

dt
(t) = X(q(t)) + u(t)Y (q(t))

with q = (x, y, z), (X,Y ) being smooth (C∞ or Cω) vector
fields and the control u(·) is a measurable mapping on
J = [0, tf (u)] valued in the interval [−1,+1]. We denote
by q(·, q0, u) the response to u(·) defined on a subinterval
of J , with q(0) = q0, written in short as q(·). Together
with this controlled dynamics, our aim is to minimize the
time to reach a terminal manifold N of codimension 1.

Maximum principle [Pontryagin et al, 1964]. Con-
sider the problem of optimizing the transfer time from q0 to
a smooth submanifold N of R3. Then, if the pair (u(·), q(·))
is optimal on [0, tf ] there exists an absolutely continuous
vector function p(·) such that the following conditions are
satisfied. Denoting H(q, p, u) = p · (X + uY ), with · the
scalar product of R3, one has:

(1) the triplet (q, p, u) is solution a.e. on [0, tf ] of

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

H(q, p, u) = max
|v|≤1

H(q, p, v).
(2)

(2) M(q, p) = max|v|≤1H(q, p, v) is constant and equals
to −p0 and −p0 is nonnegative in the time minimal
case and nonpositive in the time maximal case.

(3) The vector p(·) satisfies at the final time tf the
transversality conditions

p(tf ) ⊥ Tq(tf )N.
Definition 1. A triplet (q, p, u) solutions of (2) is called
an extremal and the q-projection is called a geodesic. If
moreover it satisfies the transversality condition it is called
a BC-extremal. An extremal is called regular if the control
is given by u(t) = sign p(t) · Y (q(t)) a.e.. It is called bang-
bang if the number of switches is finite. An extremal is
called singular if p(t) · Y (q(t)) = 0 on [0, tf ]. An extremal
is called abnormal (or exceptional) if p0 = 0, so that it is
candidate to minimize or maximize the transfer time.

Computation of the singular controls. If z1, z2 de-
note two (smooth) vector fields, the Lie bracket is com-
puted with the convention:

[Z1, Z2](q) =
∂Z1

∂q
(q)Z2(q)− ∂Z2

∂q
(q)Z1(q).

In the singular case, deriving twice the equation t 7→ p(t) ·
Y (q(t)) = 0, one gets:

p(t) · Y (q(t)) = p(t) · [Y,X](q(t)) = 0,

p(t) · ([[Y,X], X](q(t)) + u(t)[[Y,X], Y ](q(t))) = 0.

Introducing the determinants:

D = det(Y, [Y,X], [[Y,X] , Y ]),

D′ = det(Y, [Y,X], [[Y,X] , X]),

D′′ = det(Y, [Y,X], X),

one has the following.

Proposition 2. If D is nonzero, the singular controls are
defined by the feedback us(q) = −D′(q)/D(q) so that
the corresponding geodesics are solutions of the vector
field : Xs(q) = X(q) + us(q)Y (q). Abnormal (exceptional)
geodesics are contained in the set D′′ = 0.

High-order Maximum Principle in the singular
case. To distinguish between time minimizing or max-
imizing geodesics, one needs to use the high-order Maxi-
mum Principle, see [Krener, 1977].

Proposition 3. Candidates to time minimizing are con-
tained in DD′′ ≥ 0 and candidates to time maximizing
are contained in the set DD′′ ≤ 0. If the corresponding in-
equalities are strict, they are respectively called hyperbolic
or elliptic.

2. TIME MINIMAL SYNTHESIS IN THE
EXCEPTIONAL CASES

2.1 General concepts and notation

We consider a local neighborhood U of q0 ∈ N , which can
be identified to 0. One wants to describe the time minimal
syntheses in a small neighborhood U of 0. We denote
respectively by σ0

±, σ0
s bang and singular arcs terminating

at 0 and we consider only the exceptional case, where the
arc is tangent to N and splits into the bang exceptional
case or the singular exceptional case.

In U , each optimal solution is a concatenation by arcs
σ+, σ−, where the control is u = ±1 and singular arcs
σs. Our method consists of the construction of semi–
normal forms for the action of the pseudo–group G of local
diffeomorphisms ϕ such that ϕ(0) = 0, ϕ ∗ Y = Y and
feedback transformation u→ −u (so that σ+ and σ− can
be exchanged).

If the optimal control u∗(v) ∈ [−1, 1] exists and is unique,
it is regular on an open subset of U , union of U+ where
u∗(v) = 1 and U− where u∗(v) = −1. The surface S which
separates U+ from U− is subanalytic and can be stratified
into [Boltyanskii, 1966]

• a switching locus W : closure of the set of points where
u∗ is regular and not continuous. We denote by W+

(resp. W−) the points of W where the optimal control
is +1 (resp. −1) on N ,

• a cut-locus C: closure of the set of points where a
trajectory loses its (global) optimality,

• singular locus Γs: union of optimal singular trajecto-
ries,
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Case 1: X2(0) > 1 Case 2: X2(0) < 1

Fig. 1. Local synthesis near E in the generic case.

and these strata can be approximated by semialgebraic
sets using seminormal forms.

The syntheses are described in details in [Bonnard et al,
1997, Launay et al, 1997] up to the codimension two
situations and we recall below the main points to be
applied to the McKeithan network.

2.2 Local syntheses in the exceptional cases

The bang exceptional case. In the bang exceptional
situation, we have to consider the two following cases.

Generic case (codimension one). In this case both
arcs σ0

+ and σ0
− arc tangent to N but with a contact of

order 2. Using the concept of unfolding, one can define a
C0-foliation of U by invariant planes so that in each plane
the system takes the semi-normal form:

ẋ = by + o(|x|, |y|)
ẏ = X2(x, y) + u, |u| ≤ 1,

(3)

where b = n · [Y,X] 6= 0, which can be normalized to 1,
n = (1, 0) being the normal to N identified to x = 0.
Moreover one can assume that 1 +X2(0) > 0 and we have
two cases.

Proposition 4. Using the previous normalization we have
two cases described in Fig.1.

The difference between the two cases is related to dif-
ferent accessibility properties of the system. In the case
X2(0) > 1, the target N is not accessible from the points
in x > 0 above the arc σ0

− terminating at 0. In the case
X2(0) < 1, each point of U can be steered in minimum
time to N , the domain U+ where the optimal control is
+1 being x < 0 and the domain U− with optimal control
−1 being x > 0.

Codimension two case. A more complex situation
occurs assuming that the arc σ0

− has a contact of order
three with N , while σ0

+ has a contact of order two. The
optimal syntheses cannot be described by foliating N by
2d-planes as in the previous cases.

One needs to introduce the following assumptions. We
assume that Y = ∂

∂z , N is the plane x = 0 parameterized
as the image of: (w, s) 7→ (0, w, s). Denoting n = (1, 0, 0),
the normal to N at 0, we assume

• bang exceptional case: n ·X(0) = 0, n · [Y,X](0) 6= 0,
• det(X,Y, [Y,X]) 6= 0 at 0,
• {n · X = 0} ∩ N is a curve which is neither tangent

to X nor to Y at 0.

We introduce the following normalization: along the y-axis,
n ·X = 0 and [X,Y ] = ∂

∂x .

Using the concept of semi-normal form the optimal syn-
theses can be described by the following model:{

ẋ = z
ẏ = b, N : (w, s) 7→ (0, w, s)
ż = 1 + u+ y

, (4)

and we have two types of time minimal syntheses.

Proposition 5. Assume b < 0. Then each point of U can
be steered to N . Moreover

(1) U+ \N ⊂ {x < 0} and U− \N ⊂ {x > 0}
(2) Optimal trajectories σ− arrive at any point (0, w, s <

0) or (0, w ≥ 0, s) of N ∩ U .

The optimal synthesis is described by Fig.2.

Proposition 6. Assume b > 0. In this case the system is
not locally controllable at 0. We represent on Fig.3 the
synthesis in this case.

We shall refer to [Launay et al, 1997] for the full details of
the computation and description of the syntheses.

The singular exceptional case. In this case we can
assume Y = ∂

∂z , N is the plane x = 0, the normal to
N at 0 is n = (1, 0, 0) and moreover:{

n ·X(0) = 0
n · [Y,X](0) = 0

and we add the following generic conditions

• X and Y are independent at 0,
• det(Y, [Y,X], ad2Y ·X) 6= 0 at 0,
• {n ·X = 0} ∩N is a curve which is not tangent to X

at 0.

Using the concept of semi-normal form the optimal syn-
theses can be described by the following ẋ = y + z2

ẏ = b+ b1 z
ż = c+ u

. (5)

In this model, the exceptional locus E ∩N is approximated
by the parabola: w + s2 = 0 and we denote by E− : {n ·
X(q) < 0} ∩N and E+ = {n ·X(q) > 0} ∩N .

We revise the six cases presented in [Launay et al, 1997],
where we compute the optimal policies using symbolic
computation (obtaining a different result for the Case 3).
One noticeable difference with the non exceptional case
(see [Bonnard et al, 1997]) is the presence of trajectories
intersecting N twice and leads to an other component of
S.

• Case 1: b > 0, us(0) > 3. The surface S is a union of
the switching locus and a subset of E−.

• Case 2: b > 0, 1 < us(0) < 3. The surface S is the
union of a splitting locus, a switching locus and a
subset of E−.

• Case 3: b > 0, 0 ≤ us(0) < 1. The surface S is the
union of a singular locus filled by admissible singular
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Fig. 2. Local synthesis near E in the codimension 2 case for b < 0. The dashed curves are in the region x ≤ 0.
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Fig. 3. Local synthesis near E in the codimension 2 case for b > 0.

arcs, a splitting locus, a switching locus and a subset
of E−.
• Case 4: b < 0, us(0) > 3. In this situation the set S

is the union of a switching locus and a subset of E+.
• Case 5: b < 0, 1 < us(0) < 3. In this case S is the

union of a splitting locus, a switching locus W+ and
a subset of E+.
• Case 6: b < 0, 0 ≤ us(0) < 1. In this case S is a

union of a singular locus, a splitting locus and E+.

This gives the complete classification under generic as-
sumptions. Again the stratification of S can be computed
in the original coordinates and applied to the McKeithan
network.

Illustration of the method based on symbolic com-
putation. We present an algorithm to compute an ap-
proximation of the surface S in the codimension 2 case,
more specifically we treat the Case 3 described above and
given by the model (5) with b > 0 and such that the
singular trajectory arriving at 0 is not saturating, that
is 0 ≤ b1/2− c < 1.

Method. The following steps involve symbolic computa-
tion to obtain the optimal policy based on [Kupka, 1987].

1. Take q(0) = (0, w, s) ∈ N ∩ U . We first determine the
stratification of the surface N . Since Y is tangent to N ,
q(0) is a switching point. If q(0) is an ordinary switching
point, the optimal control is regular: u(0) = sign(p(0) ·
[Y,X](0)). If it is a fold point, the optimal control may
be singular and the optimal policy is determined using
[Bonnard et , 1993]. Note that since us(0) = b1/2− c < 1,

the singular trajectories cannot be parabolic but either
hyperbolic or elliptic, which corresponds respectively to
time minimizing or time maximizing trajectories.

2. We then integrate the system backward in time from
q(0) and compute the equations characterizing the switch-
ing surface, the splitting locus Cs and the singular locus
Γs.

A trajectory σε, ε ∈ {−1, 1} can switch at time tε1 < 0, can
intersect the surface N at time tε2 < 0 or there may exist
a time t3 < 0 and a point q3 ∈ V such that exp(−t3(X +
Y ))(q3) = q(0), exp(−t3(X − Y ))(q3) ∈ N and t3 < 0.

The weights of the variable t, s, w is respectively 1, 2, 1.
We develop the regular flow using Taylor expansion up to
order 3 in t, we obtain :

p3(tε1) = 0⇒ tε1 =
2s

b1/2− c− ε
+ . . . ,

et
ε
2(X+εY )(q(0)) ∈ N ⇒ tε2 =

−2

b

(
w + s2

)
+ . . . ,

∃(t3, q) ∈ R−∗ × U,
{
e−t3(X+Y )(q) ∈ N
e−t3(X−Y )(q) ∈ N

⇒ t3 =
3s

b1/2− c− 3
+ . . .

(6)

and a parameterization of

• the switching surface W− = (x(w, s), y(w, s), z(w, s))
is



x(w, s) =
s2
(
9b21 − 4b1(c+ ε) + 4(c+ ε)2

)
+ 3w(b1 − 2(c+ ε))2

3(b1 − 2(c+ ε))3/4s
+

6bs(b1 − 2(c+ ε))

3(b1 − 2(c+ ε))3/4s
+ . . . ,

y(w, s) =
4s
(
b(b1 − 2(c+ ε)) + b21s

)
(b1 − 2(c+ ε))2

+ w + . . . ,

z(w, s) =
s(b1 + 2(c+ ε))

b1 − 2(c+ ε)
+ . . . ,

(7)

• the singular surface Γs := Γs(t, w) is

Γs =

(
bt2

2
+
b21t

3

6
+ tw, bt+

b21t
2

4
+ w,

b1t

2

)
+ . . . ,

(8)
• and the splitting locus Cs = (x(w, s), y(w, s), z(w, s))

is

x(w, s) =
2s2
(
b1c+ b1(2b1 − 9) + 2c2 + 6

)
+ w(b1 − 2c− 6)2

(b1 − 2(c+ 3))3/6s

+
3bs(b1 − 2(c+ 3))

(b1 − 2(c+ 3))3/6s
+ . . . ,

y(w, s) =
6s(b(b1 − 2(c+ 3)) + b1s(b1 + c− 3))

(b1 − 2(c+ 3))2
+ w + . . . ,

z(w, s) =
s(b1 + 4c)

b1 − 2(c+ 3)
+ . . . .

(9)

3. The optimal policy is deduced by computing t∗ =
max(tε1, t

ε
2, t3) with ε = sign(s (n ·X(0, w, s))) and we rep-

resent in Fig.5 the region of N where t∗(w, s) corresponds
to a switching time, a splitting time or a time at which the
trajectory intersects N . The surface S separating U+ and
U− is the union of the switching surface W−, the singular
surface Γs foliated by singular arcs, the splitting locus Cs
and a subset Ẽ− ⊂ E− from which σ± intersects N in the
green region of Fig. 5. The set S is represented in Fig. 4
together with some trajectories emanating from N to the
components of S. The green trajectories starting from E+
intersect N in Ẽ−.

s

Fig. 5. Minimum time t∗ = max(tε1, t
ε
2, t3) to reach

(0, w, s) ∈ N from a neighbourhood U of 0 for the
model (5) with b = b1 = 1, = c = 0. The exceptional
locus is E : y = −z2 and the singular locus is S : n ·
[Y,X](q) = 0 : z = 0.

2.3 Application to the Mckeithan network

The collinearity locus. Another codimension two case
occurs at the collinearity locus C = {q ∈ N, X and Y
are collinear }. This corresponds to singular points of the
2d-vector X and it occurs in the McKeithan network.

C ∩N leads to isolated singular points and in the generic
case such a point is not a singular trajectory. We derive a
semi-normal form at such point identified to 0 using the
following normalization

• X(0) and Y (0) are collinear,
• X at 0 is not tangent to the curve E ∩N ,
• There is no singular trajectory arriving at 0,
• The collinearity locus C ∩N is transverse to E ∩N at

0 and it not tangent to X at 0.

Thus we obtain a model of the form q̇ = Aq + u b and the
local synthesis can be easily described with the method
described above.

The stratification of the terminal manifold N is given in
Fig. 6 and describes the codimension 2 situations of this
network.

Contact of order 3

Exceptional singular case

E S

D ·D′′ < 0

D ·D′′ > 0

usat

equilibriums

n · F > 0

usat

C

y

z

Fig. 6. Description of the codimension 2 cases analyzed in
our section for the McKeithan network.

3. CONCLUSION

We presented a method to determine efficiently the local
time minimal synthesis for optimal control problems and
complete the work [Launay et al, 1997] using geometric
analysis and formal computation in the exceptional situa-
tion of codimension 2.

This is applied to the control of the McKeithan network
where complex situations appear. In the continuity of
the study of this reversible network, we can extend the
proposed techniques to treat an important problem related
to the existence of equilibria corresponding to codimension
3 situations.



Fig. 4. Strata of the surface S separating the regions of U where the control is±1 for the model (5) with b = b1 = 1, c = 0.
We also represent the regions where σ± intersect N for t < 0 and several trajectories which generate a switching
locus and a splitting locus.
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