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1 Introduction

In recent years, matrix models have been playing a crucial role in studying gauge and string
theories. Via the supersymmetric localization principle first applied in [37], partition func-
tions of several supersymmetric gauge theories were reduced into matrix models that could
be studied more easily. See a review article [38] for more details. As a result of this reduc-
tion, many correspondences have been established between gauge theories and conformal
field theories (CFTs) in 2d hence making the calculations of several physical observables,
e.g., Wilson loops, more tractable, along the line of the BPS/CFT correspondence [30].

One interesting correspondence that has been studied lately is a 3d version of the
BPS/CFT correspondence. It was found that the matrix model form of the 3d holomorphic
blocks associated with N = 2 3d supersymmetric Chern-Simons-Yang-Mills matter theory
on D2×q S1 is identified as that associated with the (q, t)-deformed Virasoro algebra [4, 9,
10, 31, 32, 34, 35]. See also a review article on this topic [36]. Based on this dictionary,
some Virasoro limits were taken in the q-Virasoro CFT side that lead to matrix models
which on the gauge theory side are associated with well-studied partition functions coming
from supersymmetric localization.

Such correspondence was established by applying some techniques [12, 28] to derive the
Ward identities (which in the case of Virasoro CFTs we refer to as Virasoro constraints).
See also [29] for a review on this direction. These constraints are an (infinite) set of
PDEs that are solved by the matrix model under study. When the matrix model under
consideration is a Virasoro matrix model, these constraints can be written in the form of
modes that satisfy Virasoro algebraic relation with a particular central charge.

On the other hand, one can move in the opposite direction. One can start with a
Virasoro algebra with some choice of the central charge and then can follow an algorithm
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to construct the associated matrix model. In this algorithm one looks for an operator
referred to as a “screening current” such that, if integrated along a particular choice of
contour, the resulting operator, which we will refer to as the “screening charge” commutes
with the Virasoro modes and hence it solves the Virasoro constraints.

The purpose of this paper is to extend the CFT description of the matrix model to
a class of models that we call the Uglov matrix model. The partition function of degree r
(r ∈ Z+) is given by

ZUglov(τ ;N) = 1
N !

∫ N∏
j=1

dxj e
−Nβ2 V (xj |τ)

N∏
i<j

(xri − xrj)2(β−1)/r(xi − xj)2 , (1.1)

where we denote the potential function depending on the coupling constants (τn)n∈Z+ by
V (x | τ) and the complex parameter β ∈ C× = C\{0}.1 See (3.4) for details. The Uglov
matrix model is obtained from the root of unity limit (Uglov limit) of the q-deformed
matrix model,2

Zq(τ ;N) = 1
N !

∫ N∏
j=1

dxj e
−Vq(xj |τ)

N∏
k 6=j

(xkx−1
j ;q)∞

(txkx−1
j ;q)∞

−→ ZUglov(τ ;N) , (1.2)

where we take the limit,

q = e~e2πi/r , t = eβ~e2πi/r and ~→ 0 . (1.3)

See section 2.2 for the details of the definition. Such a limit was originally considered to
describe the spin generalization of the Calogero-Sutherland model by Uglov [40]. See also
a monograph on this topic [23] for details.

As the Uglov matrix model is the root of unity limit of the q-matrix model, the
corresponding CFT would be accordingly obtained from the root of unity limit of the q-
Virasoro algebra. For the ordinary limit of the q-Virasoro algebra, t = qβ , q → 1, it is
known that the central charge of the corresponding CFT is given by [39]

c = 1− 6Q2
β , Qβ =

√
β −

√
β−1 . (1.4)

In this paper, we show that the central charge obtained from the Virasoro constraint of
the Uglov matrix model of degree r is given by

c = r −
6Q2

β

r
. (1.5)

This expression was conjectured in [22] based on the generalization of the level-rank duality
associated with the Zr parafermion CFT [15, 16], which is motivated by the CFT descrip-
tion of the non-Abelian spin-singlet fractional quantum Hall wave function [13]. We remark

1We interpret this eigenvalue integral as a formal integral because we mainly focus on the algebraic
structure behind it in this paper.

2As there exit two deformation parameters (q, t), it is also possible to consider the root of unity limit
only for either q or t [8, 26].
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that the central charge (1.5) agrees with the result obtained through the correspondence
between the 2d CFT and the 4d N = 2 gauge theory [2, 41] on the asymptotically locally
Euclidean (ALE) space given by the resolution of the orbifold denoted by C̃2/Zr [5–7, 33].
This agreement is naturally understood as the Uglov limit is also utilized to describe the 4d
gauge theory on the orbifold C̃2/Zr [20, 21]. We also remark that the algebraic structure
that we discuss in this paper may have a close relation to the so-called gap-p Virasoro
algebra studied in [1, 17, 42].

The article is structured as follows. In section 2, we review the notion of (q, t)-deformed
Virasoro algebra and its free field realization which we use to build the associated matrix
model. Then, in section 3, we define the Uglov limit and we derive the matrix model associ-
ated with this limit (which we will refer to as Uglov matrix model). We can do this following
two paths: we either take this limit of the q-Virasoro matrix model or we take the limit at
the algebra level and then derive the associated matrix model with that algebra and we end
up with a matching between the two resulting models. Having the matrix model at hand,
in section 4 we derive the associated Virasoro constraints which we can write in the form of
some Virasoro modes. Studying the algebra of these modes we calculate the associated cen-
tral charge either by direct computation or by using Sugawara construction. In section 5 we
give a physical interpretation of our results and some further related work that can be done.

2 (q, t)-Virasoro partition function

2.1 (q, t)-deformed Virasoro algebra

Take q, t ∈ C× = C\{0}. We start by introducing the notion of (q, t)-deformed Virasoro
algebra which we will denote by Virq,t. This algebra is generated by the modes {Tn | n ∈ Z}
satisfying the relations [39]

[Tn,Tm]+
∑
l≥1

fl (Tn−lTm+l −Tm−lTn+l) = −(1− q)(1− t−1)
1− p

(
pn − p−n

)
δn+m,0. (2.1)

The expansion coefficients fl are defined via the expansion

∑
l≥0

flxl := exp
(∑
n>0

(1− qn)(1− t−n)
n(1 + pn) xn

)
, (2.2)

with the new parameter p defined as

p = qt−1. (2.3)

Free field realization. One interesting representation for the algebra (2.1) is the free
boson representation. In this case we introduce the following Hq,t Heisenberg algebra

[an,am] = 1
n

(
q
n
2 − q−

n
2
) (

t
n
2 − t−

n
2
) (

p
n
2 + p−

n
2
)
δn+m,0, and, [an,Q] = δn,0. (2.4)

– 3 –
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Taking the case where t = qβ , with β ∈ C×, the modes of the q-deformed Virasoro can be
written in terms of the Heisenberg modes above as [39],

T(x) :=
∑
n∈Z

Tnx
−n = p−

1
2 : exp

−∑
n 6=0

x−n

(1 + pn)an

 :q−
√
βa0

+ p
1
2 : exp

∑
n 6=0

x−n

(1 + p−n)an

 :q
√
βa0 . (2.5)

By normal ordering we mean putting the negative oscillators to the right of the positive
ones and the momentum operator a0 to the right of the charge operator Q.

Scaling limit. Being a q-deformation of the usual Virasoro algebra, one expects to
recover the usual Virasoro modes in the limit where one takes q = e~ with ~→ 0. Applying
this limiting case to the algebra (2.1) with t taking the particular form mentioned above,
we end up with

Tn = 2δn,0 + ~2β

(
Ln + 1

4Q
2
βδn,0

)
+O(~4), (2.6)

where
Qβ :=

√
β − 1√

β
, (2.7)

and the generators (Ln)n∈Z satisfy the Virasoro algebra

[Ln,Lm] = (n−m)Ln+m + c

12(n3 − n)δn+m,0 , (2.8)

with central charge given by
c = 1− 6Q2

β . (2.9)

Screening current. Going back to q-Virasoro, we define a screening-current S(x) to be
such that

[T(x),S(x)] = O(qx)−O(x)
x

, (2.10)

with O(x) being some function. It has been found [39] that there are two operators
satisfying the this definition,

Sq(x) := : exp

−∑
n 6=0

x−n

q
n
2 − q−

n
2
an

 : exp
(√

βQ
)
x2
√
βa0 , (2.11a)

St(x) := : exp

−∑
n 6=0

x−n

t−
n
2 − t

n
2
an

 : exp
(
− Q√

β

)
x
− 2a0√

β . (2.11b)

We can see that there is a similarity between these two solutions. Hence, we keep going
with our discussion using only the first one.3

The reason behind referring to such operators as “currents” is that one can pick a
particular contour C which is a Fleder’s cycle along which the integral on the right-hand

3By considering these two screening currents at the same time, one can discuss the supergroup analog
of the (q-)matrix model [11, 25].
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side of (2.10) vanishes. With this observation we define the associated screening charge to
be the integral of the current along that cycle

Jq :=
∮
C

dx

2πiSq(x). (2.12)

2.2 q-Virasoro matrix model

As the last object to introduce in this section we define the q-Virasoro matrix model,
denoted by Zq to be the solution of q-Virasoro constraints [3, 9, 10, 27, 31, 34]

Tn>0Zq = 0. (2.13)

With the construction of the screening currents we made above we note that these equations
can be solved by taking

Zq = J Nq , (2.14)

for some positive integer N .
To see the matrix model form more explicitly we first need to note that if we take S+

q (x)
(S−q (x)) to be the part of the exponential containing the positive (negative) Heisenberg
oscillators in (2.11a), then, we have

S+
q (xi)S−q (xj) = S−q (xj)S+

q (xi)

(
xjx
−1
i ;q

)
∞

(
qt−1xjx

−1
i ;q

)
∞(

txjx−1
i ;q

)
∞

(
qxjx−1

i ;q
)
∞

. (2.15)

Here we used the q-Pochhammer symbol

(x;q)∞ :=
∏
k≥0

(
1− qkx

)
. (2.16)

With this observation one can deduce the following OPE for the q-screening currents

N∏
j=1
Sq(xj) = :

N∏
j=1
Sq(xj) :∆β(x;q)cβ(x;q)

N∏
j=1

x
β(N−1)
j , (2.17)

where ∆β(x;q) is the q-Vandermonde determinant

∆β(x;q) :=
N∏
k 6=j

(xkx−1
j ;q)∞

(txkx−1
j ;q)∞

(2.18)

Meanwhile, the other factor is given by

cβ(x;q) :=
∏
k<j

(xkx−1
j )β

Θ(txkx−1
j ;q)

Θ(xkx−1
j ;q)

. (2.19)

Here we also introduced the Θ-function defined in terms of q-Pochhammer symbol as

Θ(x;q) := (x;q)∞
(
qx−1;q

)
∞

(2.20)

– 5 –
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Going back to the Heisenberg algebra Hq,t in (2.4) we define the vacuum state to be
annihilated by all the positive oscillators along with the momentum operator. Moreover,
due to the non-vanishing commutator of the momentum with the charge operator, one can
construct charged-vacuum states which are momentum eigenstates:

|α〉 := exp (αQ) |0〉 , a0 |α〉 = α |α〉 . (2.21)

An interesting point about this observation is that now we can pick a representation of the
algebra (2.4) such that we can explicitly write down the matrix model form of Zq defined
in (2.14). In order to accomplish this, let’s consider the following representation in terms
of the time variables τ := (τ0, τ1, τ2, · · · ) [31]

a−n>0 ∼
(
q
n
2 − q−

n
2
)
τn, an>0 ∼

1
n

(
t
n
2 − t−

n
2
) (

p
n
2 + p−

n
2
) ∂

∂τn
. (2.22)

As for the momentum and charge operators,

Q ∼
√
βτ0, a0 ∼

1√
β

∂

∂τ0
, and, |α〉 ∼ exp

(√
βτ0

)
· 1. (2.23)

With respect to the representation, the matrix model associated with q-Virasoro algebra
is given by,

Zq |α〉 ∼ Zq(τ) =: Nq

∮
∪Nj=1Cj

N∏
j=1

dxj
2πi∆β(x;q)cβ(x;q) exp

 N∑
j=1

Vq (xj | τ)

 , (2.24)

where the normalization factor and the potential function are given by

Nq := exp (κ0τ0) , (2.25a)

Vq(x | τ) := κ1 ln x+
∑
n>0

τnx
n, (2.25b)

with
κ0 := N + α

√
β, and, κ1 :=

√
β
(
α+

√
βN −Qβ

)
. (2.26)

The measure of this matrix model is the same as that of the so-called 3d holomorphic
blocks [4, 32, 35] coming from localizing the partition function associated with N = 2 U(N)
supersymmetric Chern-Simon-Yang-Mills theory on D2×S1 with a matter multiplet in the
adjoint representation [43]. With this observation [31] a correspondence can be established
between 3d N = 2 Chern-Simons theory and 2d q-Virasoro CFT where the parameters κ0
and κ1 defined above are translated in terms of the Chern-Simons level and FI coupling
constants of the 3d theory.

3 Uglov limit of q-Virasoro matrix model

As we saw earlier, one can get the usual Virasoro algebra from the q-deformed algebra (2.1)
by taking the q → 1 limit, ~ → 0 with q = e~. In this case, the central charge of
the Virasoro algebra is given by c = 1− 6Q2

β . Another way to arrive to this result can be

– 6 –
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accomplished by starting with the q-deformed matrix model (2.24) and study the behaviour
of its measure under the limit q→ 1. We will carry out this procedure more explicitly later
for the so-called Uglov limit which will be defined momentarily. Meanwhile, for the case
at hand it is found that the resulting matrix model is nothing other than the well-known
β-ensemble model which is a Virasoro matrix model associated with the central charge
mentioned above.

To see more explicitly how these techniques work, we take the special limit that we
mentioned above: Uglov limit [40]. This is a root-of-unity limit of the deformation param-
eter q where we take

q→ ωq, t→ ωqβ , and q→ 1, (3.1)

where ω := exp
(

2πi
r

)
, for some r ∈ Z+ which we will refer to as the order of Uglov limit. In

this section, we study the Uglov matrix model defined by the Uglov limit of the q-deformed
matrix model. In particular, we explore the Virasoro constraint associated with the Uglov
matrix model to discuss the underlying CFT model.

3.1 Limit of (q, t)-matrix model

We consider the case β = kr + 1 ∈ rZ+ + 1 for the moment. Using the identity,

kr∏
n=1

(1− ωnx) = (1− xr)k , (3.2)

one can see that, under the limit (3.1), the Vandermonde-like part of the measure reduces
to the following form4

∆β (x;q)
∣∣∣
(q,t)→(ωq,ωqβ)

=
N∏
i 6=j

(
xix
−1
j ;ωq

)
∞(

ωqβxix−1
j ;ωq

)
∞

q→1−−−−−→
β=kr+1

∆(r)
Uglov(x)

:=
N∏
i<j

(
xri − xrj

)2k
(xi − xj)2 . (3.3)

We emphasize that this expression is also available for arbitrary β ∈ C [21]. As for the
second part of the measure, repeating the same steps one can see that this part reduces to
a numerical value which does not affect the matrix model.

As we mentioned before, the momentum eigenstate of the charge vacuum α is a free
parameter that we picked to make the connection between the q-Virasoro matrix model
and supersymmetric Chern-Simons partition function manifest. With that begin said, it is
still a free parameter that the central charge associated with the resulting Virasoro model
should not depend on. Hence, we will take the uncharged-vacuum: α = 0.

A special point about this value is that the logarithmic part of the potential (2.25b)
gets cancelled out with a similar form coming from the measure and we can redefine the

4Here we define the Uglov measure up to a “zero mode” factor
∏
i 6=j x−βi that we are not going to worry

about here.

– 7 –
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time parameters τ such that we end up with the following model

ZUglov(τ ;N) :=
∮ N∏

j=1
dxjZN (x | τ), (3.4)

where,

ZN (x | τ) := 1
N !

N∏
i<j

(
xri − xrj

)2k
(xi − xj)2 exp

−Nβ2
N∑
j=1

∑
n>0

τn
n
xnj

 . (3.5)

We will refer to this as Uglov matrix model of degree r.
Now that we have the matrix model we will now move to discussing the associated

Virasoro constraint. We will find that the central charge matches the form conjectured
in [22] which is the main result in this article. But before we do that, let us first give
another way of deriving the model (3.4) where instead of applying the Uglov limit (3.1) on
the q-Virasoro matrix model (2.24) we apply it on q-Virasoro algebra (2.1).

3.2 Limit of screening current

In the Uglov limit (3.1), the (q,t)-deformed algebra (2.4) reduces to the mod r Heisenberg
algebra [18, 19]

[an,Q] = δn,0, (3.6a)
[an,am] = nδn+m,0, (3.6b)[

ãn+ `
r
, ã−m− `′

r

]
=
(
n+ l

r

)
δn,mδ`,`′ . (3.6c)

As for the q-Screening current (2.11a), in this limit it becomes of the form,5

SUglov(x) := x
β
r exp

√2β
r
Q

x√ 2β
r

a0 : Ar(x | a) : : Br(x | ã) : , (3.7)

where

Ar(x | a) := exp

−
√

2β
r

∑
n 6=0

x−n

n
an

 , (3.8a)

Br(x | ã) := exp

√2
r

r−1∑
`=1

∑
n∈Z

x−n−
`
r

n+ `
r

ãn+ `
r

 . (3.8b)

In order to derive the OPEs of the above screening currents, we first observe that the
algebra (3.6) leads to the following OPE

A(+)
r (xi | a)A(−)

r (xj | a) =
(

1− xj
xi

) 2β
r

A(−)
r (xj | a)A(+)

r (xi | a), (3.9)

5The normal ordering here is same as defined earlier.

– 8 –
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with A(+)
r (A(−)

r ) standing for the component of Ar with the positive (negative) oscillators
in the argument of the exponential. For N ∈ Z+, Uglov screening-currents, this observation
can be generalized into

N∏
i=1

: Ar(xi | a) : =
∏

1≤i<j≤N

(
1− xj

xi

) 2β
r

:
N∏
i=1
Ar(xi | a) : . (3.10)

Moreover, observing that

r−1∑
`=1

∑
n>0

xn+ `
r

n+ `
r

= log 1− x(
1− x

1
r

)r , (3.11)

one can compute the OPE coming from the Br-factor of the Uglov current to be

B(+)
r (xi | ã)B(−)

r (xj | ã) =

1−
x

1
r
j

x
1
r
i


2 (

1− xj
xi

) 2
r

B(−)
r (xj | ã)B(+)

r (xi | ã). (3.12)

This can be generalized for the case of N ∈ Z+ currents as

N∏
i=1

: Br(xi | ã) : =
∏

1≤i<j≤N

1−
x

1
r
j

x
1
r
i


2 (

1− xj
xi

) 2
r

· :
N∏
i=1
Br(xi | ã) : . (3.13)

Putting these results together along with the factor resulting from the non-vanishing
commutator of the a0 with the charge operator Q, we end up with the following OPE

N∏
i=1
SUglov(xi) = D(r)

β (x):
N∏
i=1
SUglov(xi) :, (3.14)

with the OPE factor

D(r)
β (x) :=

∏
1≤i<j≤N

(
x

1
r
i − x

1
r
j

)2
(xi − xj)2β−1

r = ∆(r)
Uglov

(
x

1
r

)
, (3.15)

where from the last equality we can see that matching between this measure with that of
Uglov matrix model we derived in (3.3).

4 Virasoro constraint of Uglov matrix model

Going back to the model (3.4) we now come to extracting what Virasoro algebra is it
associated with. Following [12, 28] we will work out the explicit form of the Virasoro modes
where, as we shall see, this can be explicitly done for a particular subset of these modes.

– 9 –



J
H
E
P
0
4
(
2
0
2
2
)
0
2
9

Free field realization. To do this, let us start with the observation that the time-
derivative of the integrand of (3.4) yields the power sum symmetric polynomial

pn(x) :=
N∑
j=1

xnj = − 2n
Nβ

∂

∂τn
logZN (x | τ). (4.1)

Taking the following representation for n > 0

an ∼
2n
N
√
β

∂

∂τn
, a−n ∼

N
√
β

2 τn, (4.2)

one can see that these modes are Heisenberg oscillators in the sense that

[an,am] = nδn+m,0. (4.3)

This implies that the integrand of Uglov model is an eigenstate of the positive-Heisenberg
oscillators

pn(x)ZN (x | τ) = − 1√
β
anZN (x | τ). (4.4)

Ward identity. The Virasoro constraints are nothing other than the Ward identities
resulting from the invariance of our model (3.4) under the shift

δnxi := εnx
n+1
i . (4.5)

Under this shift, the Vandermonde-like part of the measure changes as

δn∆(r)
Uglov(x) = ∆(r)

Uglov(x) ·

2
∑
i<j

xn+1
i − xn+1

j

xi − xj
+ 2kr

∑
i<j

xr+ni − xr+nj

xri − xrj

 . (4.6)

Meanwhile, the other part of the measure changes as

δn

N∏
j=1

dxj = εn(n+ 1)
N∑
j=1

xnj ·
N∏
j=1

dxj = εn(n+ 1)pn(x) ·
N∏
j=1

dxj . (4.7)

As for the argument of the exponential,

δn

(
−Nβ2

∑
m>0

τm
m
pm(x)

)
= −εn

Nβ

2
∑
m>0

τmpm+n(x). (4.8)

To re-write (4.6) in terms of the polynomials pn(x) we note the identity

N∑
i 6=j

xn+1
i − xn+1

j

xi − xj
=

n∑
m=0

pm(x)pn−m(x)− (n+ 1)pn(x). (4.9)

This identity works for positive modes n. At the time of writing this article we did not have
a more generic identity that we could apply for the second sum in (4.6) so we are restricting
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to the case where n = rñ for some positive ñ.6 In this case, noting that pn(xr) = prn(x),
we can see that the second sum can be written as

∑
1≤i 6=j≤N

xrñ+r
i − xrñ+r

j

xri − xrj
=

ñ∑
m=0

prm(x)prñ−rm(x)− (ñ+ 1)prñ(x). (4.10)

Putting these results together, the corresponding Ward identity is

δrnZUglov(τ ;N)=0⇒ (4.11)〈
−Nβ2

∑
m>0

τmpm+rn(x)−kr(n+1)prn(x)+kr
n∑

m=0
prm(x)prn−rm(x)+

rn∑
m=0

pm(x)prn−m(x)
〉

=0,

which, using the representation (4.2), can be re-written as the form of the Virasoro con-
straint

LrnZUglov(τ ;N) = 0 for n ≥ 0 (4.12)

The differential operator is now given by

Lrn :=
∑
m>0

a−mam+rn + 1
β

rn∑
m=0

amarn−m + Qβ√
β

n∑
m=0

armarn−rm +Qβ(n+ 1)arn. (4.13)

Virasoro generator of degree r. We have the decomposition

rn∑
m=0

amarn−m =
n∑

m=0
armarn−rm +

r−1∑
`=1

n−1∑
m=0

arm+`arn−rm−` , (4.14)

which, along with the redefinition (a−n>0,an>0) 7→ (
√

2a−n>0, 1/
√

2an>0), yields the fol-
lowing expression of the modes (4.13)

Lrn =
∑
m>0

a−marn+m + 1
2

n∑
m=0

armarn−rm + Qβ√
2

(n+ 1)arn

+
r−1∑
`=1

[∑
m>0

a−rm−`arn+rm+` + 1
2

n−1∑
m=0

arm+`arn−rm−`

]
. (4.15)

We see that it obeys the Virasoro algebraic relation,

[Lrn,Lrn′ ] = r(n− n′)Lr(n+n′) , n, n′ ≥ 0 . (4.16)

We define a new operator for n ∈ Z≥0,

L(r,`)
n =


1
r

∑
m>1

a−rmarn+rm + 1
2r

n∑
m=0

armarn−rm + Qβ√
2r

(n+ 1)arn (` = 0)

1
r

∑
m>0

a−rm−`arn+rm+` + 1
2r

n−1∑
m=0

arm+`arn−rm−` (` 6= 0)
, (4.17)

6The Uglov matrix model is originally introduced to describe the Zr orbifold theory [20, 21]. From this
point of view, the mode n 6∈ rZ is not Zr invariant, so that we do not consider such a case.
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which is related to the original one (4.15) as follows,

Lrn =
r−1∑
`=0

rL(r,`)
n . (4.18)

We see that they obey the Virasoro algebraic relation,[
L(r,`)
n , L

(r,`′)
n′

]
= (n− n′)L(r,`)

n+n′ δ`,`′ , n, n′ ≥ 0 . (4.19)

We can analytically continue this result for n ∈ Z by applying the following definition,

L(r,`)
n =



1
2r
∑
m∈Z

: a−rmarn+rm : + Qβ√
2r

(n+ 1)arn (` = 0)

1
2r
∑
m∈Z

: a−rm−`arn+rm+` : (` = r/2, r ∈ 2N)

1
r

∑
m∈Z

: a−rm−`arn+rm+` : (otherwise).

. (4.20)

One important relation to remark is

L(r,`)
n = L(r,r−`)

n , n ∈ Z , (4.21)

and thus the generator L(r,`)
n is decomposed into L(r,`)

n and L
(r,r−`)
n for ` 6∈ 0, r/2 in the

previous convention. With this in mind, one can see that the modes (4.20) satisfy the
following Virasoro algebra,[

L(r,`)
n ,L(r,`′)

n′

]
= (n− n′)L(r,`)

n+n′ δ`,`′ + cr,`
12 (n3 − n)δn+n′,0δ`,`′ , (4.22)

with the central charge

cr,` =


1−

6Q2
β

r
(` = 0)

1 (` = r/2, r ∈ 2N)
2 (otherwise)

. (4.23)

This result is concisely obtained from the OPE of the corresponding current operators as
shown below. As for the total central charge, we have

cr =
br/2c∑
`=0

cr,` = r −
6Q2

β

r
, (4.24)

which agrees with the central charge associated with the Uglov limit of the q-Virasoro
algebra conjectured in [22].

Sugawara construction. We have the Sugawara construction of the Virasoro generators
of degree r with the following degree r current,7

Jr,`(x) =
∑
m∈Z

arm+`
xm+1+`/r . (4.25)

7Namely, one can define the current Jr,`(x) in terms of the mod r Heisenberg algebra (3.6).
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Using the algebra (4.3), we can calculate the following OPE,

Jr,`(x)Jr,`′(y) =
∑

m,m′∈Z

arm+`
xm+1+`/r

arm′+`′
ym′+1+`′/r (4.26)

= : Jr,`(x)Jr,`′(y) : +
(
y

x

)`/r r

(x− y)2 δ`+`′,0 + `

(
y

x

)`/r x−1

x− y
δ`+`′,0 .

Recalling

(
y

x

)l/r r

(x− y)2 = r

(x− y)2 − `
y−1

x− y
+ · · · , (4.27a)

`

(
y

x

)l/r x−1

x− y
= `

y−1

x− y
+ · · · , (4.27b)

we obtain the following OPEs for the degree r currents,

Jr,`(x)Jr,`′(y) = r

(x− y)2 δ`+`′,0 + · · · , (4.28a)

∂xJr,`(x)Jr,`′(y) = − 2r
(x− y)3 δ`+`′,0 + · · · , (4.28b)

Jr,`(x)∂yJr,`′(y) = 2r
(x− y)3 δ`+`′,0 + · · · , (4.28c)

∂xJr,`(x)∂yJr,`′(y) = − 6r
(x− y)4 δ`+`′,0 + · · · . (4.28d)

Now that we have this current operator, we come to defining the stress tensor T
corresponding to the generator (4.20),

Tr(x) =
br/2c∑
`=0

Tr,`(x) , (4.29)

where each part is given by

Tr,`(x) =



1
2r : Jr,0Jr,0 :(x) + Q√

2r
∂xJr,0(x) (` = 0)

1
2r : Jr,r/2Jr,r/2 :(x) (` = r/2, 2N)

1
r

: Jr,`Jr,−` :(x) (otherwise)

(4.30)

Applying the OPEs for the currents (4.28), we obtain the OPE for the stress tensor,

Tr,`(x)Tr,`(y) = cr,`/2
(x− y)4 + 2Tr,`(y)

(x− y)2 + ∂yTr,`(y)
x− y

+ · · · , (4.31)

which reproduces the central charge cr,` shown in (4.23).
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5 Discussion

In this paper, we have discussed the root of unity limit of the q-Virasoro matrix model,
and explored the associated Virasoro constraint. We have clarified that the corresponding
central charge agrees with the conjectural result obtained from the degree r generalization
of the minimal model CFT perspective.

We address several issues along the direction discussed in this paper. The first is the
origin of the Uglov matrix model itself. In this paper, we have formally defined the Uglov
matrix model from the root of unity limit of the q-deformed matrix model. Since the
q-matrix model has the interpretation as the 3d gauge theory partition function, it would
be possible that the Uglov matrix model also has a similar gauge theory interpretation.
From this point of view, recalling that the Uglov limit of the 5d gauge theory on C2 × S1

is reduced to the 4d theory on the orbifold C2/Zr (or its resolution C̃2/Zr), it is expected
that the Uglov matrix model may have a link with the 2d gauge theory on the orbifold,
C/Zr. It would be interesting to derive the Uglov matrix model from the gauge theory
perspective on the 2d orbifold as discussed in [14, 24].

The second is a generalization of the Uglov-Virasoro constraint to the W-constraint.
As is known that the W-constraint is naturally obtained from the multi-matrix model, it
seems to be reasonable to study the multi-matrix version of the Uglov matrix model. In
fact, the original conjecture of the central charge given in [22] is

c = r(N − 1)− N(N2 − 1)
r

Q2
β , (5.1)

for the associated WN algebra (The Virasoro algebra corresponds to N = 2). It would
be interesting to reproduce this central charge from the W-constraint of the multi-matrix
analog of the Uglov matrix model.
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