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ABSTRACT

Context. Weak lensing mass-mapping is a useful tool for accessing the full distribution of dark matter on the sky, but because of
intrinsic galaxy ellipticies, finite fields, and missing data, the recovery of dark matter maps constitutes a challenging, ill-posed inverse
problem
Aims. We introduce a novel methodology that enables the efficient sampling of the high-dimensional Bayesian posterior of the weak
lensing mass-mapping problem, relying on simulations to define a fully non-Gaussian prior. We aim to demonstrate the accuracy of
the method to simulated fields, and then proceed to apply it to the mass reconstruction of the HST/ACS COSMOS field.
Methods. The proposed methodology combines elements of Bayesian statistics, analytic theory, and a recent class of deep generative
models based on neural score matching. This approach allows us to make full use of analytic cosmological theory to constrain the 2pt
statistics of the solution, to understand any differences between this analytic prior and full simulations from cosmological simulations,
and to obtain samples from the full Bayesian posterior of the problem for robust uncertainty quantification.
Results. We demonstrate the method in the κTNG simulations and find that the posterior mean significantly outperfoms previous
methods (Kaiser–Squires, Wiener filter, Sparsity priors) both for the root-mean-square error and in terms of the Pearson correlation.
We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence
values and the S/N of the clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS
COSMOS field, which yields the highest-quality convergence map of this field to date.
Conclusions. We find the proposed approach to be superior to previous algorithms, scalable, providing uncertainties, and using a fully
non-Gaussian prior.

Key words. cosmology: observations – methods: statistical – gravitational lensing: weak

1. Introduction

The weak gravitational lensing effect provides a direct probe
of the large-scale matter distribution in the Universe. This lens-
ing effect generates minute deformations of the apparent shapes
of distant galaxies, a so-called shear, in the presence of mas-
sive structures along the line of sight. Due to its ability to
directly probe the matter field, weak lensing is found at the
heart of present and upcoming wide-field optical galaxy sur-
veys, including the ESA Euclid mission (Laureijs et al. 2011),
the Vera C. Rubin Observatory Legacy Survey of Space and
Time (Ivezić et al. 2019), and the Roman Space Telescope
(Spergel et al. 2015).

While most of the cosmological analysis of weak lensing
focuses on 2pt functions, the reconstruction of maps of the
matter distribution opens up alternative ways to analyze data,
including giving access to higher-order statistics, such as the
? All codes and data products associated with this paper are available

at https://github.com/CosmoStat/jax-lensing.

peak count statistic, which has been applied to most existing
weak lensing surveys (Liu et al. 2015a,b; Kacprzak et al. 2016;
Shan et al. 2018; Martinet et al. 2018; Harnois-Déraps et al.
2021). In addition, novel higher-order statistics such as the
wavelet peak counts and `1-norm (Ajani et al. 2021), the scatter-
ing transform statistics (Cheng et al. 2020), or neural summaries
(e.g., Ribli et al. 2019; Jeffrey et al. 2020a), have recently been
shown to be even more sensitive to cosmology.

This process of reconstructing maps of the matter distribu-
tion from measured galaxy ellipticities is known as weak lens-
ing mass-mapping. Because of noise and missing data, the weak
lensing mass-mapping problem is ill-posed; in other words, the
matter density field is not uniquely determined by the observed
shear. This implies that any mass-mapping method will rely
on different prior assumptions to regularize this problem and
yield a different map estimate. The most standard approach
is the Kaiser–Squires method (Kaiser & Squires 1993), which
is based on a direct inversion of the lensing operator along
with some amount of Gaussian smoothing. A number of other
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methods have since been proposed, using various types of regu-
larization schemes such as maximum entropy (Marshall 2001),
Gaussian prior (Wiener filter; Simon et al. 2012; Horowitz et al.
2019), and sparsity (Starck et al. 2006, 2021; Leonard et al.
2012; Lanusse et al. 2016; Price et al. 2018). These techniques
usually yield a point estimate of a convergence map, and usually
lack proper uncertainty quantification, which makes interpreting
the resulting maps difficult.

A number of Bayesian methods have been proposed to
recover a posterior probability estimate for the unknown mass
map, but these are usually limited by restrictive prior assump-
tions. For instance, using hierarchical Bayesian modeling,
Alsing et al. (2016) proposed an approach for sampling mass-
maps, but this relied on a Gaussian prior for the unknown
map. More recently, Porqueres et al. (2022) extended this work
and demonstrated mass-map posterior sampling with a nonlin-
ear prior defined by a forward gravity model, but limited to
very low angular resolution. Other Bayesian posterior sampling
approaches include the approach by Schneider et al. (2016),
which relied on a Gaussian Process prior, the one by Price et al.
(2018), which proposed a proximal Markov chain Monte Carlo
(MCMC) approach to accommodate non-differentiable sparsity
priors, and the one by Fiedorowicz et al. (2022), which relies on
a log-normal prior.

More recently, with the rise of deep learning, a number
of methods relying on deep neural networks have been pro-
posed to address the mass-mapping problem. The strength of
these approaches is that they provide a practical way to lever-
age simulations as a prior to solve the mass-mapping problem.
In particular, the DeepMass method (Jeffrey et al. 2020b) uses
a U-net (Ronneberger et al. 2015) to recover an estimate of the
mean posterior convergence map, with a prior defined by a set
of simulations. Additionally, Shirasaki et al. (2021) have pro-
posed a model based on a generative adversarial network (GAN;
Goodfellow et al. 2014), which is able to to denoise weak lens-
ing mass-maps. Similarly, Yiu et al. (2022) also proposed sam-
pling mass-maps using GANs, taking into account the spherical
curvature of the sky.

In this paper, we propose a new approach to mass-mapping
that combines elements of deep learning with Bayesian infer-
ence and provides a tractable way to sample from the full high-
dimensional posterior distribution of convergence maps.

The limiting factor in all of the Bayesian approaches men-
tioned above are the simplifications needed to achieve a tractable
prior (which lead to Gaussian, log-Normal, sparse, or simplified
hierarchical priors). These approximations are needed because
the distribution of mass-maps is not tractable analytically, and
is only accessible as an implicit distribution, namely a distribu-
tion without an explicit likelihood, and that can only be sampled
from. Sampling from such an implicit simulation is otherwise
known as running a simulator.

Our DeepPosterior approach is based on learning a prior
from samples drawn from such an implicit distribution (i.e., from
simulated convergence maps), and using this prior to sample the
full Bayesian posterior.

Instead of learning a full probability density function p(x)
over mass-maps with likelihood-based deep generative models
such as Normalizing Flows (Jimenez Rezende et al. 2014) or
PixelCNNs (van den Oord et al. 2016; Salimans et al. 2017), fol-
lowing recent developments in the field of diffusion-based mod-
els, we instead targeted the score function, ∂ log p(x)

∂x . This score
function is estimated using the denoising score matching (DSM)
technique (Vincent 2011), which relies on training a neural net-

work under a simple denoising task, and yet leads asymptoti-
cally to an unbiased estimate of the score function. With this
neural score estimation in hand, we demonstrate that one can
sample from the posterior of the mass-mapping problem using an
efficient gradient-based sampling technique: an annealed Hamil-
tonian Monte Carlo. Contrary to most similar deep learning
approaches to solve inverse problems, this method is stable
and scalable, and we achieved one independent sample from
the mass-mapping posterior for maps of size 360 × 360 pixels
in 10 GPU minutes.

We demonstrate our proposed methodology by applying it
to simulations, using the high-resolution κTNG convergence
maps (Osato et al. 2021), based on the IllustrisTNG simulations
(Nelson et al. 2018, 2019; Pillepich et al. 2018; Springel et al.
2018; Naiman et al. 2018; Marinacci et al. 2018). We com-
pare the method against other standard methods (Kaiser–
Squires, DeepMass, GLIMPSE; Lanusse et al. 2016, MCALens;
Starck et al. 2021) and find improvements in terms of the pixel
reconstruction error, the Pearson correlation, and the conver-
gence power spectrum. We also investigate the interpretation
of the recovered posterior, and demonstrate a direct correlation
between signal-to-noise ratio (S/N) of structures such as galaxy
clusters and the posterior distribution.

Following these validation tests to simulations, we applied
the method to the reconstruction of the HST/COSMOS
field (Scoville et al. 2007) based on the shape catalog from
Schrabback et al. (2010). We obtained the highest-quality mass-
map of the HST/COSMOS field, alongside uncertainty quan-
tification. Our result improves over the previously published
COSMOS map Massey et al. (2007), both from using a more
recent shape catalog, and from our much improved methodol-
ogy, revealing much finer structures and providing uncertainty
quantification.

The paper is organized as follows. After providing some gen-
eral background on gravitational lensing in Sect. 2, and describ-
ing a unified view of mass-mapping and related works in Sect. 3,
we introduce the methodology in Sects. 4 and 5. We first describe
how to build a prior from cosmological simulations and how
to sample from the posterior distribution. Then in Sect. 6, we
describe the simulations we used to train our model. In Sect. 7
we validate our method, showing improvement in point estimate
reconstruction against other methods, and present a detection
experiment using the posterior samples. Finally, in Sect. 8, we
apply our method to real data, reconstructing a very high-quality
map of the HST/ACS COSMOS field.

2. Weak gravitational lensing formalism

In this section, we present an overview of weak gravitational
lensing and mass-mapping.

Observed galaxy shapes are affected by the gravitational
shearing effect that occurs in the presence of massive struc-
tures, acting as lenses, along the line of sight. This distortion
can be described by a coordinate transformation (Bartelmann
2010) between unlensed coordinates β and observed image
coordinates θ:

β = θ − ∇ψ(θ), (1)

where ψ is known as the lensing potential, and is sourced by the
projected matter density on the sky.

To first order, the resulting distortions that affect galaxy
images can be described in terms of a simple linear Jacobian
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matrix, A, known as the amplification matrix:

β = Aθ = (1 − κ)
(
1 − γ1 −γ2
−γ2 1 + γ1

)
θ . (2)

In this expression, which only holds in the weak lensing regime
(i.e., κ � 1), the convergence, κ, translates into an isotropic dila-
tion of the source, while the shear, γ, causes anisotropic stretch-
ing of the image.

This convergence κ can be directly related to the projected
mass density on the sky, which leads to typically using the
denomination convergence map or mass-map interchangeably.
Indeed, considering a sample of lensing sources distributed in
redshift according to some distribution n(z), one can relate the
convergence κ to the three-dimensional matter overdensity δ
according to

κ(θ) =
3H2

0Ωm

2c2

∫ χlim

0
dχ

q(χ)
a(χ)

fK(χ)δ( fK(χ)θ, χ), (3)

where H0 is the Hubble constant, c is the speed of light, q(χ) =∫ ∞
χ

dχ′ n(χ′) fK (χ′−χ)
fK (χ′) is the lensing efficiency, fK is the comoving

angular distance, δ is the over density, a is the scale factor, and
Ωm is the matter density (Kilbinger 2015).

While shear can be measured by the spatially coherent corre-
lations it induces on galaxy shapes, convergence is typically not
directly observable, as its magnification effect is much more dif-
ficult to disentangle from intrinsic galaxy sizes. Therefore, the
problem of mass-mapping is generally recovering an estimate
of the convergence κ from measurements of the shear γ. This is
made possible by the following equations that tie convergence
and shear to the lensing potential:

κ =
1
2

∆ψ ; γ1 =
1
2

(
∂2

1ψ − ∂
2
2ψ

)
; γ2 = ∂1∂2ψ. (4)

Combining these equations, one can recover a minimum vari-
ance estimator for the convergence as

κ = ∆−1
(
(∂2

1 − ∂
2
2)γ1 + 2∂1∂2γ2

)
, (5)

which constitutes the basis for the Kaiser–Squires reconstruction
technique. This equation can be solved most efficiently in prac-
tice using a Fourier transform in the flat sky limit, or a spherical
harmonics transform in the spherical setting.

The Fourier solution of the Kaiser–Squires estimator can be
written as

κ̃ =
k2

1 − k2
2

k2 γ̃1 +
2k1k2

k2 γ̃2, (6)

where k2 = k2
1 + k2

2. It should be noted that the solution is not
defined for k = 0, which means that the mean of the convergence
field cannot be directly constrained from shear, which is usually
known as the mass-sheet degeneracy.

One particularly remarkable property of the Kaiser–Squires
estimator Eq. (6) is that it defines a unitary operation. In other
words, we introduce the linear operator P as

κ̃E + iκ̃B =

k2
1 − k2

2

k2 + i
2k1k2

k2

 (γ̃1 + iγ̃2) = P (γ̃1 + iγ̃2) , (7)

where κ̃ = κ̃E + iκ̃B and γ̃ = γ̃1 + iγ̃2 are complex representations
of the convergence E and B modes, and of the two shear compo-
nents in Fourier space. Then the operator P verifies P†P = Id.

3. A unified view of mass-mapping

This mass-mapping problem can be reformulated as a probabilis-
tic inference problem from a Bayesian perspective:

p(κ|γ) =
p(γ|κ)p(κ)

p(γ)
, (8)

where the posterior distribution p(κ|γ) models the probability of
the signals κ conditioned on the observations, γ, the likelihood
distribution, p(γ|κ), encodes the forward process of the model in
equation Eq. (7), the prior distribution, p(κ), encodes the knowl-
edge about the signal κ, and the Bayesian evidence, p(γ), is the
marginal density of the observations. The evidence is a constant
if we assume a given model, and will be ignored in the rest of
this work as we do not consider Bayesian model comparison.

In our work, the forward process encoded in Eq. (7) returns
a binned shear map γ, where each pixel value corresponds to
the average shear in the pixel area, and therefore takes as input
a pixelized convergence map κ. Working with real data, it is
assumed that the measurement for each pixel is degraded by
shape noise ns, due to the finite average of galaxy intrinsic ellip-
ticities in the bin. This noise is assumed to be white Gaussian
(i.e., ns ∼ N(0,Σn), where Σn is the noise covariance matrix of
the shear map). Moreover, because of missing data due to survey
measurement masks, we need to explicitly consider that there
is no measurement in some pixel regions. In practice, we set a
very high variance, such as 1010, for these pixels in the covari-
ance matrix Σn. More specific information on the strategy we
followed to emulate the COSMOS shape catalog can be found
in Sect. 6.3.

Thus, the log-likelihood takes the following form:

log p(γ|κ) = −
1
2

(γ − F∗PFκ)†Σ−1
n (γ − F∗PFκ) + constant, (9)

where F and F∗ are, respectively, the direct and inverse Fourier
transform.

All existing mass-mapping techniques can be understood
under the lens of this Bayesian formulation and will generally
differ mostly in their choice of prior, and in the specific algo-
rithm used to recover a point estimate of the convergence map.
As in practice this problem is ill-posed due to noise corruption
and missing data in Eq. (7), the posterior p(κ|γ) can be both wide
and heavily prior dependent, which explains why all these differ-
ent techniques yield different answers. Below we describe sev-
eral methods that we use in this paper for comparison.

3.1. Kaiser–Squires reconstruction

The Kaiser–Squires method (Kaiser & Squires 1993) can be
seen as a simple maximum likelihood estimate (MLE) of the
convergence map, typically followed by a certain amount of
Gaussian smoothing:

κ̌ks = arg min
κ
‖ γ − F∗PFκ ‖22= (F∗PF)†γ , (10)

κks = s ∗ κ̌ks, (11)

where s is a Gaussian smoothing kernel of a given scale, and
P† is a pseudo-inverse of the operator P, typically achieved by
a direct Fourier inversion. While this method is the fastest, it
does not take into account masks, and leads to leakage between
E and B modes of the convergence field. For Kaiser–Squires, the
heteroscedasticity does not impact the solution, whereas it can
do for certain extensions such as the Generalized Kaiser–Squires
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method (GKS) (Starck et al. 2021; Appendix B.1), in which an
iterative approach with little regularization takes the mask and
noise heterescedasticity into account.

3.2. Wiener filter

The Wiener filter approach assumes a Gaussian random field
prior on κ and takes advantage of the fact that the power spec-
trum of the convergence can be analytically predicted from cos-
mological models, and accurately describes the field on large
scales. This prior on the convergence can be expressed as a
Gaussian distribution with a diagonal covariance matrix S in
Fourier space:

pGaussian(κ) =
1

√
det 2πS

exp
(
−

1
2
κ̃†S−1κ̃

)
, (12)

where S is the convergence power spectrum.
The solution of the inverse problem can be formulated as

κ̂wiener = arg min
κ
‖ Σ−1/2(γ − F∗PFκ) ‖22 + log pGaussian(κ). (13)

This Wiener solution corresponds to the maximum a posteriori
(MAP) solution under this Gaussian prior, and also matches the
mean of the Gaussian posterior. An appealing property of this
estimator is that the solution can be easily recovered analytically
in cases where the noise is homoscedastic, as both signal and
noise covariance matrices become diagonal in Fourier space. The
Wiener filter reconstruction (Lahav et al. 1994; Zaroubi et al.
1995) is given in Fourier space by:

κ̃ = SP†
[
PSP† + N

]−1
γ̃, (14)

where S and N are, respectively, the signal and noise covariance
matrix in Fourier space.

In more complex cases, where the noise covariance is not
diagonal in Fourier space (for instance because of a mask
in pixel space), the solution can still be efficiently recov-
ered by optimization, using the proximal method (Bobin et al.
2012; Starck et al. 2021), or its related messenger field alter-
native (Elsner & Wandelt 2013). One can also draw samples
from the Wiener posterior with the messenger field algorithm
(Jeffrey et al. 2018a).

3.3. Sparse priors

Convergence maps contain non-Gaussian features that are not
well recovered with the methods described above. Several mass-
mapping algorithms have been proposed, relying on a wavelet
sparsity prior (Starck et al. 2006, 2021; Leonard et al. 2012;
Lanusse et al. 2016; Price et al. 2018), which can be formulated
as:

log p(x) =‖ Φt x ‖p, (15)

with p < 2, and where Φ is a wavelet dictionary and ‖ . ‖p is a
sparsity promoting `p norm.

The convergence map is the solution of the following sparse
recovery optimization problem:

κ̂ = arg min
κ
‖ Σ−1/2(γ − F∗PFκ) ‖22 +λ ‖ Φtκ ‖p, (16)

where λ is the regularization parameter, weighting the sparse
regularization constraint. The GLIMPSE method (Lanusse et al.
2016) additionally allows masks, non-uniform noise, and flex-
ion data (if they are available) to be taken into account, and also
does not require the shear catalog to be transformed on pixelized
map.

3.4. DeepMass

While all the priors described above have closed-form expres-
sions, it is also possible to design a mass-mapping method
where the prior is defined implicitly. The first dark matter map
reconstruction from weak lensing observational data using deep
learning was shown in Jeffrey et al. (2020b). DeepMass is a con-
volutional neural network (CNN) trained on pairs of simulated
pixelized shear and convergence maps. One can show that, under
some assumptions, a deep learning model can estimate the mean
of the posterior distribution p(κ|γ). In a nutshell, the network
needs to be trained to minimize the mean-squared-error (MSE)
of the output convergence κ, and the training convergence and
shear maps must be drawn, respectively, from the prior distribu-
tion p(κ) and the likelihood distribution p(γ|κ).

While the Wiener filter assumes a Gaussian prior over the
convergence, simulated training data for DeepMass are drawn
from the “true” prior p(κ), thus improving the accuracy of the
reconstruction. DeepMass is therefore able to recover the non-
linear structures of the convergence better than the Wiener filter,
and is able to reduce the MSE of the reconstruction.

Even if DeepMass reconstructs high-quality convergence
maps, DeepMass alone only provides the mean posterior and
cannot quantify the uncertainties of the reconstruction. Further-
more, as any direct inversion method based on neural networks,
the likelihood Eq. (9) is learned implicitly by the model, and
does not explicitly constrain the solution at inference time. This
means that although we have not found obvious failures in our
experiments, the CNN may in theory fail in ways that would lead
to a map not actually consistent with observations, for instance
creating spurious artifacts, or missing structures present in the
true map. Another side effect of implicitly learning the likelihood
during training is that the model is trained for a specific survey
configuration, and retraining is required if either the mask or the
noise is different.

In this work, we propose a new approach that estimates the
full posterior distribution p(κ|γ), being able to not only recover
the posterior mean, but also to quantify the uncertainties of
the reconstruction. In addition, in our method the likelihood is
explicit, meaning that it does not require retraining for a new
survey configuration.

4. Primer on neural score estimation and sampling

In this section, we review the technical aspects of the machine
learning methodology that we will employ in the mass-mapping
problem. We begin by detailing how the score function can be
estimated for an implicit distribution. We then describe our strat-
egy to sample any distribution from the knowledge of its score.

There are many classes of generative models in the
machine learning litterature, such as Generative adversar-
ial networks (GANs; Goodfellow et al. 2014), Variational
autoencoders (VAEs; Kingma & Welling 2013), Normalizing
Flows (Jimenez Rezende et al. 2014), and Energy-based models
(EBMs; Lecun et al. 2006).

All of these methods aim to model the probability distri-
bution underlying some data, but not in the same way. On one
hand, GANs and VAEs implicitly learn the probability distribu-
tion, which does not fit into our framework because we want to
leverage the closed-form expression of the likelihood distribu-
tion. On the other hand, Normalizing Flows and EBMs can learn
explicit forms of probability distribution, but do not scale well in
dimension. Therefore, we resort to a recent and promising class
of generative models introduced in Song & Ermon (2019) based
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Fig. 1. Illustration of the score field (represented by the vector field) on
the simple two-dimensional “two moons” distribution. The score field
points in the direction of regions of higher probability. A noisy sample
from the distribution is shown in red, while the denoised sample com-
puted using equation Eq. (18) is shown in orange. This illustrates how
the variance multiplied by the score function, represented by the black
arrow, can project the sample onto the high density of the distribution.

on learning an explicit model of the gradient log-probability dis-
tribution, also known as the score function, which is all we need
in our framework to build the posterior distribution, as described
in Sect. 5.3. Score-based generative models have demonstrated
a state-of-the-art quality level for image generation (Song et al.
2020; Nichol & Dhariwal 2021; Dhariwal & Nichol 2021), and
particularly astrophysical images such as realistic galaxy image
generation (Smith et al. 2022).

4.1. Denoising score matching

As originally identified by Vincent (2011) and Alain & Bengio
(2013), the gradient with respect to the data of a log distribu-
tion, which is called the score function, can be modeled using
a denoising autoencoder (DAE). This method is also known as
denoising score matching (DSM).

We introduce an auto-encoding function rθ : RN × R →
RN , (x′, σ) 7→ x̃, where N is the signal dimension, trained to
reconstruct a true signal x following the probability distribution
p, given a noisy version x′ = x + n, with n ∼ N(0, σ2IN),
under an `2 loss. In this case, the function rθ is called a denoiser,
parametrized by a noise level σ, and is trained minimizing the
following criterion:

LDAE = Ex′∼pσ2

[
‖x − rθ(x′, σ)‖22

]
(17)

where pσ2 = p ∗ N(0, σ2), namely it corresponds to the data
distribution we want to model, convolved by a multivariate
Gaussian with a diagonal covariance matrix σ2IN .

Alain & Bengio (2013) showed that in this setting, an opti-
mal denoiser r? would then be achieved for:

r?(x, σ) = x + σ2∇x log pσ2 (x) + o(σ2), as σ2 → 0. (18)

Figure 1 illustrates how one can denoise a two-dimensional point
knowing the noise level and the score function. We can clearly
see that the score multiplied by the variance gives the right shift
between the noisy point (in red) and the high-density region of
the distribution. Applying this shift to the noisy sample gives the
projected sample in orange.

Rewriting this equation gives an estimator of the score
function:

∇x log pσ2 (x) =
r?(x, σ) − x

σ2 + o(1), as σ2 → 0. (19)

The optimal denoiser is thus related to the score we wish to
learn, and exactly matches the score of the probability distribu-
tion underlying data when the noise variance σ2 goes to zero.

Following the loss function design in Lim et al. (2020), the
optimization objective to train the denoiser is:

LAR-DAE = E
x ∼ P

u ∼ N(0, I)
σ ∼ N(0, s2)

[
‖ u + σrθ(x + σu, σ) ‖22

]
, (20)

where u is sampled from a standard multivariate Gaussian, rθ
is a denoiser parametrized by neural network weights θ, opti-
mized to estimate r∗. The modifications between Eqs. (17)
and (20) resolve some numerical instabilities and reduce the
error of approximation of the precedent objective. In particular,
the learned denoiser rθ now directly models the score function,
without the need to divide by the noise level (i.e., rθ(x, σ2) =
∇x log pσ2 (x), as σ2 → 0). Moreover, rescaling by σ and decou-
pling the noise level from an isotropic Gaussian noise prevents
the gradient from vanishing.

To summarize, DSM provides a tractable way of estimating
a score function, from only having access to samples from an
implicit distribution. We will now be able to use this score esti-
mate to sample from said distribution, as detailed in the next
section.

4.2. Score-based sampling

Given the score function ∇ log p(x) (either directly available, or
learned by DSM), it is possible to sample from the distribu-
tion p(x) by an MCMC. Indeed, the Langevin Dynamics (LD)
or Hamiltonian Monte Carlo (HMC) updates, described in Neal
(2011) and Betancourt (2017), only require the evaluation of the
score function ∇ log p(x). For instance, the HMC update, based
on the leapfrog integrator, requires the evaluation of the score
function only:

mt+ α
2

= mt +
α

2
∇ log p(xt)

xt+α = xt + αM−1mt+ α
2

mt+α = mt+ α
2

+
α

2
∇ log p(xt+α) (21)

where α is the step size, m is the auxiliary momentum, and M is
a preconditioning matrix that could take into account the space
metric, but in our case the identity matrix.

Following this procedure, HMC is supposed to sample from
p(x), but as explained in Betancourt (2017), the discretization
induces a small error that will bias the resulting transition and
requires a correction. In order to correct this bias, every sample
is considered as a Metropolis–Hastings (MH; Metropolis et al.
1953; Hastings 1970) proposal and is accepted or rejected
according to an acceptance probability. This acceptance prob-
ability is designed from the Hamiltonian transition and is also
only score-dependent, as we show in Appendix A.

However, in most, if not all but the most trivial cases, sam-
pling in high dimension using Langevin or Hamiltonian dynam-
ics is made very difficult by the fact that the distribution manifold
is never Euclidean, meaning that assuming a diagonal noise
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covariance for LD, or a diagonal momentum matrix for HMC,
leads to extremely inefficient sampling.

To take a concrete example, we consider the case of distri-
bution of handwritten digits in the MNIST dataset, and imagine
an LD chain exploring this distribution. To transition from a one
to a seven, for instance, the chain running in pixel space will
try to add some white Gaussian noise at each update. However,
MNIST digits are binary, so any addition of noise is bound to
kick the chain out of the data distribution, and be rejected in a
Metropolis–Hastings step. Only the smallest step sizes ε (which
also tunes the amount of noise applied on the chain) will have a
nonzero chance of acceptance, meaning the chain is practically
never moving.

To summarize, having access to the score function is all we
need to sample from a distribution, but this remains difficult for
nontrivial high-dimensional distributions. In the next subsection,
we describe a strategy to circumvent this issue.

4.3. Efficient sampling in high dimensions with annealing

Various approaches have been suggested to increase the sam-
pling efficiency of HMC and LD for complex distributions,
which generally aim to reframe the chain in a space closer
to the intrinsic manifold of the distribution, rather than pixel
space. For instance, Girolami & Calderhead (2011) exploited
the Riemannian geometry of parameters space to define a
Metropolis–Hastings (Metropolis et al. 1953; Hastings 1970)
proposal, enabling high-efficiency sampling in high dimensions.

In our work, we follow another direction that recently gained
momentum from the literature on denoising diffusion mod-
els (Sohl-Dickstein et al. 2015; Song & Ermon 2019; Ho et al.
2020). Instead of trying to follow the non-Euclidean latent man-
ifold of the distribution, we look at transforming this distribution
so that it becomes easier to travel in pixel-space. This can be
done very simply by convolving the data distribution with noise.

To go back to our MNIST thought experiment, if we convolve
our binary handwritten digits with Gaussian noise, it becomes
very easy for an LD chain to move in pixel space, as the noise
added by the chain can be made to match the noise present in
the distribution. The higher the noise, the larger the pixel-wise
transition will be, and the faster the chain can transition from one
digit to the other. Another view of this effect is that, given enough
noise, all of the distinct modes of a distribution will begin to merge
with each other. Figure 2 illustrates the same two-moons distribu-
tion convolved with varying amount of Gaussian noise. At high
noise values (top left corner), the distribution becomes close to a
diagonal Gaussian, and thus extremely easy to sample in order to
explore all possible regions of the distribution.

We will call temperature T the variance σ2 of this Gaussian
kernel convolved with the target distribution.

Following our preliminary work (Remy et al. 2020), in this
paper we adopt a two-step sampling procedure, based on an
annealed version the HMC (Neal 2011; Betancourt 2017), simi-
lar to the annealed LD proposed by Song & Ermon (2019).

In the first step of our sampling procedure, we initialize a
chain using white Gaussian noise with a high temperature σ2

T.
Leveraging the conditional noise property of the score func-
tion described in Sect. 4.1, we have direct access to the score
function of the convolved distribution ∇ log pσ2

T
, which we can

use in a score-based HMC. We then let the chain evolve under
Hamiltonian dynamics, and progressively lower the tempera-
ture σ2 of the conditional score with a geometric schedule of
common ratio equal to 0.98. Each time the temperature σ2 is
decreased, the MCMC chain thermalizes to the new temperature

12

34

Fig. 2. Example of annealing on the two moons distribution. The dis-
tribution is convolved with a multivariate Gaussian of variance σ. This
variance decreases over the sampling procedure so that the MCMC is
always over high-density regions, i.e., σ4 > σ3 > σ2 > σ1. The chain
is initialized from a wide multivariate Gaussian, as in the top left panel,
and converges to the data distribution, as in the bottom right panel. In
blue is the density of the convolved distribution and the arrows represent
its score function.

in a few HMC steps. As described in Song et al. (2019), small
enough steps are important to ensure nonzero transition prob-
abilities between adjacent temperature values. Once the chain
has reached a sufficiently low temperature (ideally σ2 = 0), we
stop the chain and only retrieve the last sample. Multiple inde-
pendent samples are obtained by running multiple independent
annealed HMC chains in parallel. One must not think that having
one chain per sample makes the process much longer than hav-
ing multiple samples per chain. It is indeed much more efficient,
because in practice it is very long to ensure sample independence
within the same chain.

In practice, however, it has proven to be difficult to anneal
chains all the way to zero temperature. We find that, at low
temperatures, the chains do not properly thermalize at each
step and residual noise remains in our samples. This was also
observed by other authors using annealed LD instead of HMC
(Jolicoeur-Martineau et al. 2020; Song & Ermon 2019). In the
application in this paper, we can reach σ = 10−3 by fine-tuning
our annealing scheme.

Therefore, in a second step of our sampling procedure,
we propose a strategy to transport the annealed HMC samples
obtained in step 1 at a finite temperature all the way toσ2 = 0. To
achieve this, we use remarkable results from Song et al. (2020),
which establish a parallel between denoising diffusion models
(generative models based on random walks) and stochastic dif-
ferential equations (SDEs). We refer the interested reader to
Appendix B for more mathematical details and derivations, but
the main result from that paper that we use here is the following
ordinary differential equation (ODE):

dx = −
1
2

√
d
dt

(
σ2(t)

)
∇x log pt(x)dt, (22)
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where σ2(t) is the increasing variance schedule of the Gaussian
distribution with which we convolve the data distribution. In
our particular implementation, we used a linear schedule t 7→
σ2(t) = t. This ODE describes a deterministic process {x(t)}Tt=0
indexed by a continuous time variable t ∈ [0,T ], such that
x(0) ∼ p0 and x(T ) ∼ pT, where p0 denotes the data distribu-
tion and pT the convolution between the data distribution and a
multivariate Gaussian of variance T . This ODE can be solved
by any black-box ODE solver, provided that the convolved score
is available. In particular, it means that if we start the ODE at
a point in pt, where t is the intermediate temperature at which
we have stopped our HMC chains, we can transport that point to
p0. This procedure very effectively removes residual noise while
making sure we reach a point in the target distribution at zero
temperature.

We summarize our full sampling procedure as follows. First,
we initialize with white Gaussian noise xinit ∼ N(0,T · Id). Next,
we sample the posterior distribution with the annealed HMC
algorithm, which, at each step, requires: (a) evaluating the con-
volved score ∇ log pσ(γ|κ) using Eq. (19); (b) computing the MH
proposal using Eq. (21) and accepting it according to Eq. (A.1);
and (c) annealing if there are enough samples for a given tem-
perature. Finally, we project the last sample on the posterior dis-
tribution with the ODE described in Eq. (22).

5. Mass-mapping by neural score estimation

Having laid out the machine learning notions needed to imple-
ment our method, we now describe how to apply these tech-
niques to the weak lensing mass-mapping problem. Our strategy
will be to use DSM to learn a high-fidelity prior over conver-
gence maps, and use this prior in combination with the analytic
likelihood function Eq. (9) to access the full posterior of the
mass-mapping problem by annealed HMC sampling.

5.1. Hybrid analytic and generative modeling of the prior

One of the main limiting factors of previous mass-mapping
approaches is the limited complexity of the prior used in the
inversion problem (e.g., Gaussian, or sparse). Our first step
toward our mass-mapping technique is to build a prior that can
fully capture the non-Gaussian nature of convergence maps.
To achieve this goal, we propose an hybrid prior relying on a
Gaussian analytic model, complemented by a DSM approach
to learn from simulations, the delta between this Gaussian prior
and fully non-Gaussian convergence map distribution, accessible
through simulations.

We indeed know that analytic cosmological models provide
a reliable model of the 2 pt functions of the convergence field,
and can thus be used to define a Gaussian prior, which enjoys
a closed-form expression (Eq. (12)), as discussed in Sect. 3.2,
in the context of the Wiener filter. Moreover, because of its
tractable expression, we directly have access to its score func-
tion ∇ log pGaussian(κ). This Gaussian prior is particularly adapted
on large scales, where the matter distribution is well modeled by
a Gaussian random field, but does not capture the significantly
non-Gaussian nature of the convergence field on small scales.

On the other hand, we do have access to physical models
that can capture the full statistics of the convergence field, in
the form of numerical simulations. In these cases, however, the
simulator gives us access to an implicit distribution, meaning we
can only draw samples from the distribution, but we do not have
access to the likelihood of a given sample under the model. We
cannot, therefore, directly use black-box simulators as priors for

sampling the Bayesian posterior. This is where we can leverage
deep generative models to turn samples from an implicit distri-
bution into a model with a tractable likelihood that can be used
for inference.

In this work, we propose using DSM for this task, but we also
want to capitalize as much as possible on the analytic Gaussian
prior. Consequently, we aim to use the neural network to model
the higher-order moments of the convergence field that the
Gaussian prior cannot capture. In a DSM framework, it is
straightforward to implement such a network in practice by feed-
ing the neural network denoiser with: (1) the noisy input image,
(2) the noise level, and (3) the Gaussian score. The full prior p(κ)
is then computed as

∇ log p(κ) = ∇ log pGaussian(κ) + rθ
(
κ,∇ log pGaussian(κ)

)
, (23)

where rθ is the DAE trained to model only the residuals from
the Gaussian prior. During learning, a first step of denoising
is performed using ∇ log pGaussian(κ), then the neural network rθ
is optimized to denoise from this Gaussian guess, and is hence
referred to as the residual score.

Just as for conventional DSM, we can train the model on
simulations by adapting Eq. (20) to residual denoising score
matching:

LRDSM = E
u ∼ N(0, I)
σ ∼ N(0, s2)

‖ u + σ ∗
[
r(x + σ ∗ u, σ,∇ log pG(x + σ ∗ u))

+ ∇ log pG(x + σ ∗ u)
]
‖2, (24)

where pG is the Gaussian prior.
Figure 3 provides an illustration of this hybrid prior. From

the noisy input map b, we first compute the Gaussian score func-
tion. Panel c shows the Gaussian denoiser estimate computed
with Eq. (18) from the Gaussian score function. Then, feeding
the DAE with the noisy input, the input noise level, and the
Gaussian score function, we get the full score function. Panel d
shows the complete denoising estimate computed with Eq. (18),
again from the score function. Figure 3 exemplifies the ability
of the neural network to capture complementary scales to the
Gaussian prior.

Building the prior with this hybrid design reduces the com-
plexity of the modeling problem, and limits the reach of the
neural network model by only modeling a correction to the
analytical prior.

5.2. Neural score estimator architecture for mass-mapping

The DSM approach described in Sect. 4.1 was so far completely
generic and agnostic of the actual implementation of the para-
metric denoiser rθ. We describe here the concrete neural network
architecture that we will use throughout this work, fine-tuned to
image data of size 360× 360 pixels.

Following Eq. (19), we need to train a DAE in order to
model the prior score function. We used a U-net, inspired from
Ronneberger et al. (2015), with ResNet building blocks of con-
volutions from He et al. (2016) followed by batch normalization.
We also used spectral normalization, using a power iteration
method on the neural network weights Gouk et al. (2020), to
improve the regularity of the network in out-of-distribution
regions, where the score is not constrained by the data. Indeed,
as discussed in Appendix C, regularizing the spectral norm low-
ers the Lipschitz constant of the network, and thus enforces the
score field to be aligned for close inputs. It should be noted that
the network is noise conditional, which means that it takes as
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Fig. 3. Denoising of a 100 × 100 arcmin2 simulated convergence map (a), which was corrupted with a noise level of σ = 0.15 per pixel (b). The
Gaussian denoiser (c), computed with Eqs. (18) and (12), retrieves large scales of the convergence map. Adding the DAE residuals to the Gaussian
denoiser (d) allows us to recover both large and small scales of the κ map. This illustrates the Gaussian (analytic) and non-Gaussian (learned) parts
of our hybrid score function Eq. (19).

inputs both the image to denoise and the noise level. We dis-
tinguish two kinds of noise: the shape noise and the temper-
ature noise. The latter is given as input to the network. The
shape noise is encoded in the likelihood covariance matrix, and
so is not taken into account in the network. The noise level
was drawn from a normal distribution of standard deviation
σ = 0.2. Our U-net denoiser was trained using the Adam opti-
mizer (Kingma & Welling 2013), starting with a learning rate of
10−4 and decreasing up to 10−7 at the end. We used a batch size
of 32 to train the neural network for 40 000 steps.

More details on the architecture, training, and regularization
are given in Appendix C.

5.3. Sampling from the posterior

The prior learned with DSM is naturally defined as a convolved
version of the data distribution. Besides, in order to use anneal-
ing on the posterior distribution, it is necessary to convolve the
likelihood as well. Under the assumption that the likelihood is
Gaussian, convolving with a multivariate Gaussian on x gives
the following expression:

log pσ2
L
(y|x) = −

‖y − Px‖22
2(σ2

n + σ2)
+ constant, (25)

where σ2
L is the variance of the convolved likelihood, σ2

n is the
noise variance of the measurement, and σ2 is the variance of the
convolved Gaussian, also called the temperature. We provide a
demonstration of Eq. (25) in Appendix D.

It is important to note that the MCMC algorithm does not
navigate the posterior distribution convolved at temperature σ2

at the same rate as the likelihood or the prior. Indeed, convolving
the product of two distributions is not equivalent to convolving
each distribution independently. However, we found empirically
that the annealed HMC converges toward the posterior distribu-
tion p(x|y) at zero temperature. We first demonstrate it with a
Gaussian posterior in Sect. 7.1 and then with the full posterior
distribution in Sects. 7.2.1, 7.2.2, and 7.3.

This way, the complete sampling procedure consists of run-
ning an MCMC on a proxy of the posterior distribution, which
is gradually annealed to low temperature, with chains progres-
sively moving toward the posterior distribution. Each chain is
initialized by sampling a multivariate normal distribution of unit
variance and we leverage the usage of GPUs by running several
chains in batches. Song & Ermon (2019) stress that random ini-
tialization guarantees obtaining independent samples from the
distribution. They also demonstrate that this does not only allow

us to sample different modes of the distribution, but also to
recover the relative weights of these modes.

6. Simulations and data

In this section we describe the simulated data we used to validate
our method, designed to emulate the COSMOS field on which
we aim to apply our algorithm.

6.1. COSMOS shear catalog

The COSMOS survey (Scoville et al. 2007) is a contiguous
1.64 deg2 field imaged with the Advanced Camera for Surveys
(ACS) in the F814W band. In this paper, we use the shape cata-
log obtained in Schrabback et al. (2010; hereafter S10) by reduc-
tion of this survey using the KSB+ method (Schrabback et al.
2007; Erben et al. 2001; Kaiser et al. 1995; Hoekstra et al.
1998), applying modeling for the variable HST/ACS point
spread function using principal component analysis and a cor-
rection for multiplicative shear measurement bias, which was
calibrated as a function of the galaxy signal-to-noise ratio (S/N)
using image simulations.

The S10 catalog is divided into a bright i+ < 25 (Subaru
SExtractor MAG_AUTO magnitude) and a faint i+ > 25 galaxy
sample. For the bright sample, individual high-quality photo-
metric redshifts are available by cross-matching against the
COSMOS-30 catalog (Ilbert et al. 2009), while for the faint sam-
ple, Schrabback et al. (2010) proposed a functional form for the
overall n(z) based on an extrapolation to fainter magnitudes of
the i814–redshift relation observed in the 23 < i814 < 25 range.
The redshift distribution of both samples is illustrated in Fig. 4.

In this analysis, we combine both bright and faint galaxy
samples into a single shape catalog, and will assume the com-
bined redshift distribution illustrated in Fig. 4. The only cut we
apply is to reject galaxies in the bright sample with zphot < 0.6
and i+ > 24. The photometric redshift cut is motivated by S10
finding indications that many of these galaxies are truly at high
redshifts. Thus, their inclusion would imply that the used esti-
mate of the redshift distribution is inaccurate. This yields a total
of 417 117 galaxies, which translates into a mean number of
galaxies 64.2 per arcmin2.

6.2. κTNG simulations

Having described the COSMOS field, we now present the
κTNG suite of simulations we used to create mock data.
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Fig. 4. Redshift distribution of the COSMOS catalog from
Schrabback et al. (2010). The redshifts for bright galaxies (i+ < 25)
are derived from the COSMOS-30 catalog (Ilbert et al. 2009), while the
n(z) distribution for faint galaxies (i+ > 25) is based on an extrapolation
to fainter magnitudes as described in Schrabback et al. (2010).

We used the κTNG simulated convergence maps (Osato et al.
2021), generated from the IllustrisTNG (TNG) hydrodynamic
simulations (Nelson et al. 2018, 2019; Pillepich et al. 2018;
Springel et al. 2018; Naiman et al. 2018; Marinacci et al. 2018).
The TNG simulations are a set of cosmological, large-scale grav-
ity and magneto-hydrodynamical simulations, where baryonic
processes such as stellar evolution, chemical enrichment, gas
cooling, and supernovae and black hole feedback are incorpo-
rated as subgrid models.

The κTNG suite is generated through tracing the trajecto-
ries of light-rays from z = 0 to the target source redshift. A
large number of realizations are generated by randomly translat-
ing and rotating the snapshots. Specifically, the full set includes
10 000 realizations of 5×5 deg2 convergence maps for 40 source
redshifts up to zs = 2.6, at a 0.29 arcmin pixel resolution. A flat
Λ-cold dark matter cosmology is assumed for both TNG and
κTNG: Hubble constant H0 = 67.74 km s−1 Mpc−1, baryon den-
sity Ωb = 0.0486, matter density Ωm = 0.3089, spectral index
of scalar perturbations ns = 0.9667, and amplitude of matter
fluctuations at 8 h−1 Mpc σ8 = 0.8159. Because κTNG maps
are computed by ray-tracing through the IllustrisTNG hydro-
dynamic simulations, there is no need for post-Born correction.
Though the current κTNG simulations do not incorporate intrin-
sic alignment, we can address the effect using the halo or galaxy
shape (Shi et al. 2021; Kurita et al. 2021).

6.3. Mock COSMOS data

To act as our prior for the reconstruction of the COSMOS field,
and for validation tests, we emulate mock COSMOS lensing cat-
alogs from κTNG simulations.

Using the binned galaxy distribution from the S10 catalog at
the same 0.29 arcmin resolution, we define a binary mask that
captures the limits of the survey, as well as missing data within
the survey area due to bright stars or image artifacts that prevent
the reliable measurement of galaxy shapes in some regions of the
survey. This binning also yields noise variance maps, defined by
the standard deviation of intrinsic galaxy ellipticities, rescaled
by the number of galaxies per pixels Ni:

Σ(i,i) =

 σ2
e

Ni
if Ni > 0

1010 otherwise
(26)

for each pixel i, and σe = 〈e, e〉, with e ellipticities from the
Schrabback et al. (2010) catalog. It it important to note that in
empty pixels, we assume a large variance instead of infinity.

κTNG provides finely sampled convergence source planes in
the range 0 < zs < 2.6. We combine these source planes to match
the redshift distribution of the survey illustrated in Fig. 4. To
handle source redshifts higher than zs ≥ 2.6, we resorted to a
redshift recycling approach in which the last source plane at z =
2.6 was reused, with an appropriate weight designed to match the
expected lensing kernel. This procedure yields a total of 10 000
convergence maps, now properly weighted to match the redshift
distribution of the binned data.

Mock observations of COSMOS shear maps are obtained
by first computing the shear from simulated convergence maps,
sampling spatially variant noise according to Σ, and applying the
binary mask to mask out unobserved regions.

7. Tests with simulated data

In this section, we validate our sampling procedure on mock
COSMOS data generated as described in the previous section.
We begin by demonstrating our sampling method in an analyti-
cally tractable Gaussian case, before testing full posterior sam-
pling using the neural score matching approach introduced in
Sect. 5.

7.1. Sampling validation with an analytic Gaussian prior

In this section, we assume that the convergence κ is a Gaussian
random field, and therefore that it is associated to a Gaussian
prior. We show that one can compute the Wiener filter estimate
using our posterior sampling method.

Our method, based on the evaluation of the gradient of the
log posterior, enables us to recover both the MAP and the mean
posterior, which should match.

We used the halofit matter power spectrum from
jax-cosmo1, using the Planck Collaboration XIII (2015;
Table 4, final column) results, to build the Gaussian prior
covariance matrix. In the following, we also refer to it as the
“fiducial” power spectrum. From the score function of the
Gaussian posterior, (i.e., ∇ log p(κ|γ)), one can compute the
MAP using the gradient descent algorithm. As the posterior
distribution is Gaussian, there is only one minimum, so we are
sure to obtain the MAP. The MAP matches the posterior mean,
so this also provides a check of the validity of our sampling
procedure.

Figure 5 compares the Wiener filter computed with the mes-
senger field method, from Elsner & Wandelt (2013), and our
score-based MAP and posterior mean reconstructions for the
same input shear field. The residuals between the MAP and the
Wiener filter are very low (two orders of magnitude smaller than
the signal), and the residuals are also unstructured, as expected;
both are computed with the same input data and fiducial cosmol-
ogy, and should mathematically match. We also show the rela-
tive error between the power spectrum of the Wiener filter and
the MAP, and the relative error between the Wiener filter and the
posterior mean, which is almost zero at every scale. The pos-
terior mean is computed by averaging 1500 posterior samples,
sampled with the annealed HMC presented in Sect. 4.2, reaching
10−3 temperature and then projected on the posterior distribution

1 https://github.com/DifferentiableUniverseInitiative/
jax_cosmo
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Fig. 5. Comparison between the Wiener filter (top left) and our score-
based MAP (not shown) and posterior mean reconstructions (top right,
average of 1500 samples), assuming a Gaussian prior. The MAP recon-
struction matches the Wiener filter, both in terms of absolute pixel error
and power spectrum ratio (bottom right, blue line). Our posterior mean
is also in excellent agreement with the Wiener filter, as illustrated by
the pixel absolute error (bottom left) and the power spectrum relative
error (bottom right, orange line). The bottom panel shows the relative
error between the Gaussian posterior samples’ power spectra and the
theoretical power spectrum.

with the ODE sampler. The amount of samples was chosen to get
the relative power spectrum to zero at all scales.

This experiment with a Gaussian prior validates that our
sampling procedure is well adapted to sampling from the pos-
terior distribution in this analytically tractable case.

7.2. Tests with a simulation-based prior

7.2.1. Sampling with a neural prior

In the last section, we showed that with the gradient of the log-
Gaussian posterior, we can sample the posterior distribution, and
that we can therefore recover classical results such as the Wiener
filter estimate. In this section, we apply the same sampling pro-
cedure, using a simulation-based prior.

In Fig. 3 we saw that denoising a convergence map with a
deep neural network trained on κTNG simulated maps (using
the full prior) is much more effective for small-scale structure
inference than using the Gaussian assumption alone. We will
now show that the same results hold for posterior samples (using
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Fig. 6. Comparison between the κTNG samples’ power spectrum and
our posterior power spectrum. The red curve is computed from the
κTNG simulated map. The green curve is the power spectra of a white
Gaussian noise realization that we use to initialize the chains. The blue
curve is the mean power spectrum of posterior samples, assuming our
proposed hybrid prior, and the blue interval represents the standard devi-
ation of the power spectra computed over 400 samples.

the full posterior) with a neural prior. The likelihood remains
exactly the same as the one used in the previous section (i.e.,
from Eq. (25)). Likewise, the sampling procedure is unchanged,
only the prior is extended with a neural network as defined in
Eq. (23).

Figure 6 illustrates that the power spectra of our
DLPosterior samples is consistent with the ground truth κTNG
simulated convergence map power spectrum, validating that we
are able to sample maps with the correct statistics. This is also
apparent from visual inspection, and posterior samples shown
in Fig. 7 are very similar to convergence maps from the κTNG
simulations, illustrating that we are able to sample κ maps at the
simulation resolution. In addition, Fig. 6 demonstrates that the
prior choice has a strong influence on the map statistics. Using
the Gaussian prior alone leads to sampling a map that matches
the fiducial power spectrum, which has more power at high ` due
to the limited resolution of the simulation.

Convergence maps sampled from the full posterior are shown
in the second row of Fig. 7. One can observe two regimes in these
samples. On one hand, sampling in the unobserved regions (out-
side of the white boundary of the survey) is only driven by the
prior. These regions therefore have high variance between sam-
ples because of the different chain initialization maps. On the
other hand, in the data region, the sampling is driven by both
the likelihood and the prior. Therefore, there is a high correla-
tion between the samples, and with the ground truth convergence
map, within the white contours.

A51, page 10 of 20



Remy, B., et al.: A&A 672, A51 (2023)

149.5150.0150.5
RA

1.50

1.75

2.00

2.25

2.50

2.75

3.00

D
E

C

Ground Truth κ

149.5150.0150.5
RA

Posterior mean (500)

149.5150.0150.5
RA

DeepMass

149.5150.0150.5
RA

Posterior Std. Dev.

149.5150.0150.5
RA

1.50

1.75

2.00

2.25

2.50

2.75

3.00

D
E

C

Posterior sample

149.5150.0150.5
RA

Posterior sample

149.5150.0150.5
RA

Posterior sample

149.5150.0150.5
RA

Posterior sample

−0.05

0.00

0.05

0.10

0.15

0.20

Fig. 7. Comparison of deep learning-based mass-mapping methods on one mock COSMOS field. First row: ground truth κTNG convergence map,
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color bar, except for the standard deviation, which is displayed in the range [0, 0.035]. Second row: samples from the posterior distribution, using
the hybrid Gaussian-neural score prior. The input noise level is computed according Eq. (26) and the mask contours correspond to the COSMOS
survey boundary mask.

7.2.2. Posterior mean

As for the Wiener filter, a way to validate the posterior distribu-
tion is to look at the posterior mean solution. In this section, we
compare to the state-of-the-art method to date, DeepMass, which
is another deep-learning based method. We trained DeepMass on
examples drawn from our prior and likelihood model with the
exact same U-net architecture as our denoiser. Using the conver-
gence maps from our simulated dataset, we created mock noisy
shear maps according to the likelihood in Eq. (25). DeepMass
computes the posterior mean solution (Sect. 3.4), which can
be recovered by averaging the posterior samples from our pro-
cedure, (i.e.,

∫
κp(κ|γ)dκ ≈

∑
κ∼p(κ|γ) κ). Even if DeepMass

learns both the prior and the likelihood, the two posterior means
should match since both methods were learned on the same
simulations.

A qualitative comparison of the method is discussed
in Fig. 7. Table 1 shows a quantitative comparison of
the Kaiser–Squires, the Wiener Filter, MCALens, GLIMPSE,
DeepMass, and our mass-mapping method, based on two met-
rics. The first metric is the root mean square error (RMSE),
defined as:

RMSE
(
κ̂, κgt

)
=

√√
1
n

n∑
i=1

(
κ̂i − κ

gt
i

)2
, (27)

where i is the pixel index, κ̂ the mean-subtracted estimated con-
vergence map, κgt the mean-subtracted ground truth convergence
map we aim to recover. It should be noted that we use the mean-
subtracted convergence map here. The reason for this is the
mass-sheet degeneracy, which does not constrain the mean of
the convergence map.

Table 1. Metrics comparison between different mass-mapping methods.

Method RMSE ↓ r ↑

KS (σsmooth = 1 arcmin) 2.40 × 10−2 0.57
Wiener filter 2.31 × 10−2 0.61
GLIMPSE (3) 2.84 × 10−2 0.42
MCAlens (5) 2.19 × 10−2 0.67
DeepMass 2.18 × 10−2 0.68
DLPosterior mean 2.16 × 10−2 0.68

Notes. RMSE (the lower the better) is computed according to Eq. (27)
and the Pearson Correlation coefficient r (the higher the better) accord-
ing to Eq. (28). For a fair comparison to Kaiser–Squires, we kept the
smoothing coefficient that minimized the RMSE.

The second metric is the Pearson correlation coefficient r,
defined as:

r
(
κ̂, κgt

)
=

Cov
(
κ̂, κgt)

σκ̂σκgt
, (28)

where Cov is the covariance and σκ is the standard deviation of
the convergence map κ.

In the top row of figure Fig. 7, we display our posterior mean
against DeepMass, the ground truth, and the Wiener filter. Qual-
itatively, we can clearly observe that both DeepMass and our
posterior mean recover the convergence map with striking visual
similarity, and at a much higher resolution than the Wiener fil-
ter applied to the same field (see Fig. 5). We can indeed identify
the presence of clusters, which correspond to true clusters in the
ground-truth map. For further visual comparison, Fig. G.1 shows
Kaiser–Squires, Wiener filter, MCALens, GLIMPSE, DeepMass,
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Fig. 8. Histograms of coefficient amplitudes. A wavelet coefficient
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ground corresponds to the coefficient of samples where we did not add
any cluster. The background coefficients follow a Gaussian distribution,
and we can thus define a standard deviation σ for detection. We can see
that the lower the cluster mass, and thus the lower the S/N, the closer
the histograms are to the background.

and our posterior mean and sample convergence estimates from
the same input shear field.

Just as in the case of the Gaussian prior explored in the pre-
vious section, one can observe that computing the mean of the
posterior samples cancels out the signal outside the survey mask,
where the reconstruction is only constrained by the prior. This
is expected since sampling with a random initialization yields a
random sample on the posterior. Moreover, this is confirmed by
the standard deviation map, showing that the uncertainty of the
reconstruction is much higher in masked regions than in regions
constrained by data.

Quantitatively, we also compare our reconstruction to meth-
ods based on other priors, which are MCAlens and GLIMPSE.
These methods are based on sparse priors, which are described
in Sect. 3.3. It turns out that MCAlens, DeepMass, and our pos-
terior mean all reach the lowest RMSEs and highest Pearson
correlations. This results are expected since both the DeepMass
and DLPosterior mean are data-driven. DeepMass is explic-
itly trained to minimize the pixel reconstruction error, leading
to an estimate of the posterior mean, which our method is also
targeting. This result shows that our method reaches the state-of-
the-art reconstruction of convergence maps.

The fact that MCAlens leads to metrics similar to the
DeepMass and DLPosterior mean could be explained by the
fact that MCAlens modeling (the convergence map being mod-
eled as the sum of a Gaussian random field and a non-Gaussian
one being sparse in the wavelet domain) is able to capture well
enough the main properties of the convergence map.

7.3. Demonstration with cluster detection

In a Bayesian perspective, we expect that there is a relation
between the number of times a cluster appears within poste-
rior samples and its S/N. In this section, we show the extent to
which having access to posterior samples allows us to quantify
the uncertainty of a cluster detection and how it relates to the
cluster S/N.

In order to compare the occurrence of a cluster in the poste-
rior and its S/N, we insert a Navarro–Frenk–White (NFW) lens-
ing signal, described in Navarro et al. (1997) and Takada & Jain
(2003), of a given mass, redshift, and concentration, into a mock
shear field. We consider a cluster at redshift zh = 0.5, concentra-

tion c = 1, lensing a source at redshift s = 1. We run the experi-
ments at different halo masses {9 × 1013, 3 × 1014, 6 × 1014}M�,
simulating an S/N increase for a given noise level in the data. We
used the code from the lenspack2 repository to build the NFW
shear map, which is summed to the mock shear field from our
test dataset.

In this section, all the maps are filtered with an aperture mass
filter with starlets functions (Leonard et al. 2012). Starlets are
well localized in real space, and thus it is well very adapted to
cluster detection (Starck et al. 1998). In the following, we either
use pixels or coefficients to refer to pixels of the filtered conver-
gence maps.

Therefore, for a given NFW cluster, its intrinsic S/N, which
we also call the input S/N, is defined as

S/Ninput =

max
i, j

κ̆NFW
[
i, j

]
Std

(
κ̆background

) , (29)

where κ̆NFW denotes the convergence NFW profile that has been
filtered and the maximum is taken over the pixels of the map,
κ̆background is the background convergence map, namely the mock
convergence field over which we add the NFW profile that is
being filtered. The mock convergence field is computed from
COSMOS-like data, similar to the fields described in Sect. 6.3.

We now describe the detection procedure. Given a shear
field, we sample convergence maps with our method and each
posterior sample is filtered with the aperture mass. Given one
posterior sample, the detection criteria defined as:

Detection =

True if
max

i, j
κ̆post. sample[i, j]

Std(κ̆background) > 3,

False otherwise,
(30)

which means that we consider that a cluster is detected when
the convergence is over three times the noise background ampli-
tude. The distribution of the convergence background is illus-
trated as the hatched histogram in Fig. 8. Similar histograms
were computed from posterior samples with an added cluster in
the input shear and plotted next to the background. In Fig. 8,
we can see that when decreasing the input S/N, by reducing the
halo mass, the distribution of the cluster maximum coefficient
shifts toward lower levels, approaching the background distribu-
tion. The background distribution histogram in hatched black in
Fig. 8 is the histogram of the κ̆background map. Figure F.1 shows
stamp coefficients after filtering.

Figure 9 shows the frequency of the cluster detection in our
posterior samples as a function of the input S/N.

8. Reconstruction of the COSMOS field

In this section we apply our full methodology to the recon-
struction of the COSMOS field, using the catalog described in
Sect. 6.1. The likelihood convariance and the simulation-based
prior remain the same as in the validation section.

As a baseline, we show the Kaiser–Squires reconstruction of
the COSMOS convergence field in the top left panel of Fig. 10.
We applied a Gaussian-smoothing with a variance σsmooth =
1 arcmin, chosen so that the RMSE is minimized and the
Pearson correlation coefficient is maximized for simulated data.
Although large-scale and small-scale structures can already be
observed on this map, its power spectrum does not correspond
to the fiducial matter power spectrum, and no feature at scales

2 https://github.com/CosmoStat/lenspack
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Fig. 9. Comparison of the probability of cluster detection given the input
data and the detection method with respect to the S/N. The ratio of
detection corresponds the number of samples above 5σ over the total
number of samples. The S/N was computed by dividing the maximum
κ value of the NFW profile by the noise in the κ field. We considered
clusters at redshift zh = 0.5 and concentration c = 1 varying the halo
mass.

smaller that 1 arcmin can be observed. Moreover, there is not
any uncertainty quantification on the reconstruction.

In Fig. 10 we also present our reconstruction of the
COSMOS convergence field, alongside uncertainty quantifica-
tion. The top-right panel shows a posterior sample that looks
very similar to a posterior sample from simulated input from
κTNG simulations. It can be noticed that, although there is only
input shear within the white contours (i.e., in the survey foot-
print), a complete convergence map is sampled from the poste-
rior distribution. We furthermore validate, in Fig. 11, the quality
of COSMOS posterior sample reconstruction by showing that
their power spectra are in good agreement with those of κTNG
convergence maps.

As proposed in Sect. 3.4, we chose the posterior mean as
our estimate for the convergence reconstruction. The bottom left
panel of Fig. 10 shows the average of 400 samples making the
DLPosterior mean of the COSMOS field. One can visually
observe the similar large-scale structures of the field between
the Kaiser–Squires and the DLPosterior mean, while the latter
contains much more resolved features, especially concerning the
cluster shapes.

Another way to examine our COSMOS convergence map is
to compare it to another probe for cluster mass detection. Thus,
in the bottom left and top right panels, we overlay a subset of
X-ray clusters from the Finoguenov et al. (2007) catalog. Most
of the X-ray clusters match to a resolved peak in the convergence
field, which is, in a way, expected, since we selected the most
massive X-ray clusters.

Alongside the DLPosterior mean, we also provide the
DLPosterior standard deviation, in the bottom right panel of
Fig. 10. One can observe again that the variance is the high-
est outside the survey contours, since there is no data. Another
interesting behavior of the posterior is that the location where the
uncertainty is also high is where the signal is the most intense.

The most recent mass-map of the COSMOS field was pub-
lished in Massey et al. (2007), using an generalized version of
the Kaiser–Squires method. When comparing the two maps,
although we do not share the same shape catalog or redshift
distribution, the maps clearly share similar mass distributions.

However, the COSMOS-DLPosterior mean is much more
resolved. In particular, we can identify several clusters in what
looks like one coarse cluster in the Massey et al. (2007) mass-
map at coordinates RA = 150.4, Dec = 2.5.

9. Discussion

Having presented the method and results, in this section we pro-
pose a discussion on some important points, including scientifi-
cally relevant use-cases, limitations, and possible extensions.

As mentioned earlier in this paper, taking the average over
posterior samples should reduce to the DeepMass results. One
may wonder about the tradeoff between the two approaches if the
results should be the same. We would argue that the two meth-
ods are complementary. DeepMass is much faster at producing
a convergence map, as it only requires a forward pass of the
U-net. However, DeepMass remains an “amortized” solution,
with no strong guarantees on the solution it recovers in prac-
tice, as it does not have an explicit likelihood. This also means
that the entire model needs to be retrained for any change in the
lensing catalog (to account for variations in the mask or noise).

We expect that the method presented in this paper will find
its most compelling applications in the study of localized struc-
tures through the weak lensing effect, where the benefits of a
full pixel-level posterior are the strongest. As a particularly rele-
vant example, we mention the discussion surrounding the poten-
tial detection in the Abell 520 (A520) cluster of a dark clump
(Jee et al. 2012; Clowe et al. 2012), a localized peak visible in
mass-maps but with no optical counterpart. Quantifying the sig-
nificativity of such a structure using nonlinear mass-mapping
algorithms targeting a MAP solution (for instance, based on
sparse regularization) is a difficult task. It was attempted for this
particular field using different techniques in Peel et al. (2017)
and Price et al. (2018), but without strong quantitative state-
ments. The method developed in this paper, however, would be
able to access the full posterior of the problem.

For cosmological applications, however, it is likely that the
use cases of the method presented in this work will remain lim-
ited. Indeed, for higher-order statistics that rely on simulations to
evaluate their likelihood, the particular mass-mapping technique
used is not critical, as any systematics due to reconstruction
errors induced by the algorithm are calibrated on simulations.
A simple Kaiser–Squires inversion should, in principle, suffice
in most cases of interest. From an information theoretic point
of view, the information is preserved by a Kaiser–Squires inver-
sion (in the presence of masks, keeping both E- and B-modes)
while any posterior summary may discard some cosmological
information. Nevertheless, the ability to sample constrained real-
izations may find very useful applications, such as inpainting
masked regions for the purpose of facilitating the computation
of 3pt functions, or void detection algorithms.

We also want to highlight that the method presented in this
paper can be extended in multiple directions. In this config-
uration we would be limited to analyzing small-volume sur-
veys. However, we could train a prior on spherical maps, having
a spherical likelihood, and run analysis and then run large-
volume survey analyses. We are considering here a prior at
a fixed cosmology, primarily due to the high computational
cost of high-resolution hydrodynamical simulations at different
points in cosmological parameter space. Concretely, this means
that our solution is heavily biased toward the fiducial cosmol-
ogy on scales poorly constrained by the data. We note, how-
ever, that the hybrid deep learning + physical gaussian prior
we have introduced in this work provides a natural framework
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Fig. 10. HST/ACS COSMOS field reconstructions along known X-ray clusters from the XMM-Newton survey. Top left: Kaiser–Squires (with a
Gaussian smoothing of σ = 1 arcmin). Top right: sample from the posterior distribution. Bottom left: mean of the posterior distribution. Bottom
right: standard deviation of the posterior distribution (over 400 samples, shown in the clipped range [0, 0.035]).

for extending our method to include cosmological dependence.
On large scales, the prior is mostly driven by the analytic
power spectrum, and thus easy on condition on cosmology,
while on small scales, only the non-Gaussian residuals are cap-
tured by the neural network. This implies that the cosmology-
dependent part of the model that needs to be learned from sim-
ulations is mostly on small scales. This makes it very likely
that in the close future, one could develop such a cosmology-
dependent residual prior from suites of numerical simulations
of smaller cosmological volume, but spanning a range of cos-
mological models. The recent multifield CAMELS simulations
(Villaescusa-Navarro et al. 2022) would be an ideal dataset for
this purpose. Another avenue for future work would be extend-
ing the method to the sphere, which is simply a matter of defining
a U-net, for instance using a DeepSphere (Perraudin et al. 2019)
approach for convolutions on a spherical domain.

10. Conclusion

In this paper, we have presented a unified view of the mass-
mapping problem as a Bayesian posterior estimation problem.
Most existing methods either rely on simple priors (i.e., a

Gaussian prior for the Wiener filter) and/or only return a point
estimate of the mass-mapping posterior. Instead, we have pro-
posed a framework that allows us to: (1) use numerical simula-
tions to provide a full non-Gaussian prior on the convergence
field; and (2) sample from the full Bayesian posterior of the
mass-mapping problem under this simulation-driven prior and
a physical likelihood.

The proposed approach, dubbed DLPosterior, relies first
on using a DSM technique to learn a prior from high-resolution
hydrodynamical simulations (the κTNG dataset; Osato et al.
2021), an approach that has proven to be extremely scalable and
easy to implement. And as a second ingredient, we have intro-
duced an annealed HMC approach that allows us to sample the
high-dimensional Bayesian posterior of the problem with high
efficiency. We demonstrate that we are able to achieve, on aver-
age, an independent posterior sample in 10 GPU minutes on
an Nvidia Tesla V100 GPU. Moreover, the annealing scheme
ensures that we sample independent samples with the correct
weights of the posterior modes.

We first validated the sampling approach in an analyti-
cally tractable, fully Gaussian case, where we recovered the
Wiener filter. We then validated the entire method over mock

A51, page 14 of 20



Remy, B., et al.: A&A 672, A51 (2023)

103 104

`

10−12

10−11

10−10

10−9

C
`

κ-TNG sims
D.L.Posterior COSMOS
D.L.Posterior sims

Fig. 11. Power spectra comparison between the COSMOS field recon-
struction and simulations. We compare power spectra of posterior sam-
ples for the COSMOS field in blue and for a simulated field in red.
We also display the power spectrum of samples from the training set in
orange to show the matching.

observations, by comparing the posterior mean obtained by our
method to a deep learning estimate of this posterior mean, using
the DeepMass method. We found excellent agreement between
these two independently estimated posterior summaries, with
near identical Pearson correlation coefficients and RMSEs. This
consistency gives us high confidence that the full posterior is
correctly sampled even in the non-Gaussian case.

In further comparisons, DLPosterior, demonstrated a
quantitative improvement on convergence reconstructions
against other standard methods, based on a large class of pri-
ors such as the Kaiser–Squires inversion, the Wiener filter, or
GLIMPSE2D. In addition, contrary to most of these methods,
DLPosterior provides uncertainty quantification with the pos-
terior samples, such as the posterior variance. In this respect,
we have also shown that the recovered posterior can be inter-
preted to quantify uncertainties, by establishing a close corre-
lation between posterior convergence values and the S/N for
clusters that are artificially introduced into a field.

Finally, we applied the validated method to the reconstruc-
tion of the HST/ACS COSMOS field based on the shape catalog
from Schrabback et al. (2010), and produced the highest-quality
convergence map of this field to date.

In the spirit of reproducible and reusable research, all soft-
ware, scripts, and analysis notebooks are publicly available3.
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Appendix A: Score-based Metropolis-Hastings

The discretized implementation of the HMC algorithm requires
correcting for the discretization error. The chain update com-
puted with Equation (21) is a proposal that is accepted with prob-
ability of the form min{1, p(x∗)q(xn|x∗)/p(xn)q(x∗|xn)}, where xn
is the last sample of the chain, x∗ is the HMC proposal, p is the
target density, and q is a proposal distribution from a random
walk (i.e., q(xn|x∗) = N(xn|x∗,M) with M the HMC precondi-
tionig matrix).

In our approach, we do not directly have access to the distri-
bution p, but to its score function ∇ log p. However, we can still
approximate the log ratio needed to compute the MH acceptance
probability from the scores using the path integral

log p(x∗)− log p(xn) =

∫ 1

0
∇x log p(t∗ (x∗− xn)+ xn) · (x∗− xn)dt,

(A.1)

which we evaluate in practice with a simple four points
Simpson integration rule. This integral could be approximated
to any precision at the cost of additional score evaluations.

Thus, with Equation A.1 at hand, we are able to implement
a large class of MCMC algorithm, such as the HMC or the
Metopolis adjusted Langevin algorithm, using the score function
only.

Appendix B: Sampling by solving a stochastic
differential equation

Recent work from Song et al. (2020) improves annealed sam-
pling procedures by generalizing the process as an SDE. An SDE
has the following form:

dx = f (x, t)dt + g(t)dw, (B.1)

where f (·, t) : Rd → R is a vector valued function, g(·) : R → R
is a scalar function, and w is a Wiener process. This equation
models a diffusion process {x(t)}Tt=0 indexed by a continuous time
variable t ∈ [0,T ], such that x(0) ∼ p0 and x(T ) ∼ pT , where
p0 denotes the data distribution, and pT denotes the convolution
between the data distribution and a multivariate Gaussian of vari-
ance T . The variance T being much larger than the support size
of the data distribution, pT can be seen as a wide multivariate
Gaussian.

A result from Anderson (1982) shows that one can reverse
the SDE in Equation B.1, starting from samples x(T ) ∼ pT and
obtaining samples x(0) ∼ p0, by computing the reverse-time
SDE, involving the score function:

dx =
[
f (x, t) − g(t)2∇x log pt(x)

]
dt + g(t)dw̄, (B.2)

where w̄ is a Wiener process with backward time, from T to 0.
Song et al. (2020) stress that the annealed LD is a discretized

version of an SDE. Indeed, the chain update of the annealed LD
is:

xi = xi−1 +

√
σ2

i − σ
2
i−1 zi−1, (B.3)

with i ∈ {1, . . . ,N}, where the {σi}
N
i=1 is the increasing variance of

the Gaussian with which we convolve the data distribution, also
called the temperature, and zi are multivariate Gaussian realiza-
tion. Then if N → ∞, the temperature becomes a continuous

function σ(t) and zi becomes a Gaussian process w(t). Thus, the
process {x(t)}Tt=0 is given by the SDE:

dx =

√
d
dt

(
σ2(t)

)
dw. (B.4)

Finally, Song et al. (2020) demonstrate that for any reverse-
time SDE expressed as in Equation B.2, there is a correspond-
ing deterministic process whose trajectory has the same marginal
probability densities {pt(x)}Tt=0, satisfying an ODE:

dx =

[
f (x, t) −

1
2
g(t)2∇x log pt(x)

]
dt, (B.5)

with the exact same notation as in the SDE equation. Thus, in
order to sample from the distribution p0, one can solve the cor-
responding ODE of the annealed LD:

dx = −
1
2

√
d
dt

(
σ2(t)

)
∇x log pt(x)dt, (B.6)

using any black-box ODE solver. We notice that, once again, the
sampling procedure only depends on the score function. Thus,
one can sample from the target distribution, denoted p0 in this
formalism, starting from random samples from a multivariate
Gaussian pT .

Appendix C: U-net architecture

(without SN) (with SN)

Fig. C.1. Comparison of the score function learning with and without
spectral normalization. In blue is the density of the swiss roll distribu-
tion, and the black vector field is the learned score function evaluated
on a grid.

We used a three-scale U-net architecture (Ronneberger et al.
2015) composed of residual blocks (He et al. 2016). Each block
is composed of two convolutions followed by a batch normaliza-
tion and three convolutions for the bottleneck. Each batch nor-
malization is followed by a rectified linear unit (ReLU) nonlin-
earity, except the last one. As densigned in Ronneberger et al.
(2015), we performed downsampling by average pooling and
upsampling by interpolation. We used the sequence of channels
[32, 64, 128, 128] over the different scales.

Sampling requires evaluating the score function in regions
where the network did not necessarily observe data. As described
in section 4.2, annealing is useful to smooth the distribution,
and thus the associated score. Besides, we investigated the effect
of spectral normalization on the network regularity in those
regions. Indeed, as it can be seen in Figure C.1, spectral normal-
ization smoothens the learned gradient map far from the high
densities. Regularizing the spectral normal of a network low-
ers its Lipschitz constant, which prevents high variation between
close points, thus aligning unconstrained gradients.
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An important feature of the network is the noise condition.
The input image is concatenated with a noise standard devi-
ation map, as well as the input of the bottleneck of the net-
work. We also followed the advice of Song & Ermon (2020) to
divide the output of the network by the absolute value of the
noise level. It is observed that the norm of the score function
is inversely proportional to the noise power, and neural net-
works have issues in doing this rescaling automatically. This
output normalization turns out to be necessary when we con-
sider a large order of magnitude between the noise powers during
annealing.

Appendix D: Convolution of the likelihood

Proposition: let x ∈ Rd, y ∈ Rd, pσ1 (y|x) , N(y | Px, σ2
1Id) be the

likelihood and pσ2 (x) , N(x | 0, σ2
2Id) a centered multivariate

Gaussian distribution. We assume that the operator P is unitary
(i.e., it verifies P†P = Id).

Then the convolution of the likelihood with the centered
gaussian is:

pσ1 ~ pσ2 (y|x) = N(y | Px, (σ2
1 + σ2

2)Id). (D.1)

Proof : According to the definition of pσ1 and pσ2 , we have:

pσ1 ~ pσ2 (y|x) =
∫

pσ1 (y|x − t)pσ2 (t)dt

=
1

(2πσ2
1σ

2
2)d

∫
exp

− 1
2σ2

1

(
(y − P(x − t))†(y − P(x − t))

)
× exp

 t†t
2σ2

2

 dt,

=
1

(2πσ2
1σ

2
2)d

∫
exp

(
−

1
2σ2

1

(
‖y − Px‖22 + 2y†Pt

− 2x†P†Pt + t†P†Pt
))

exp
 t†t

2σ2
2

 dt

=
1

(2πσ2
1σ

2
2)d

∫
exp

(
−

1
2σ2

1

(
‖y − Px‖22 + 2y†u
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Appendix E: Signal-to-noise ratio of the
convergence field κ

In Figure E.1 we show the ratio between the fiducial power spec-
trum and the power spectrum of the input noise.
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Fig. E.1. Signal-to-noise ratio of the input data. The S/N corresponds to
the ratio between the fiducial power spectrum and the power spectrum
of the input noise. This shows that the S/N is equal to 0.1 from ` = 104,
and therefore the reconstruction from this scale does not correspond to
the input data, but is driven by the prior only.

Appendix F: Cluster detection

Detection

No detection

Fig. F.1. Filtered maps of the convergence posterior samples estimated
by our method. Every cutout corresponds to the same region of the map.
In the upper panels, a cluster was added in the input shear, but not in
the lower panels. The upper panel cutouts of the filtered maps show
the recovered cluster shape in the center of the map, while lower panel
cutouts show the coefficient from structure nearby. Selection was done
with a 3σ threshold. The axes indicate the pixel numbers.

In the detection experiment described in section 7.3, we added a
NFW profile into the input shear map. We then ran our cluster
detection procedure on the associated DLPosterior samples.
Figure F.1 shows cutouts of those samples around the cluster
location. The upper plot shows the samples that were selected
with a 3σ threshold and the bottom plot shows the ones that
were not selected. We can clearly recognize the shape of a cluster
among the samples with positive detection (i.e., with maximum
coefficient above 3σ).
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Appendix G: Comparison of mass-mapping
methods

In figure G.1, we show how the different methods described in
section 3 recover a convergence map from the same input shear
field used in section 7 and the COSMOS-like survey mask.
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Fig. G.1. Comparison of mass-mapping methods. Ground truth corresponds to the convergence map κ that we aim to recover, taken from
Osato et al. (2021), the DLPosterior mean and the DLPosterior sample are the results discussed in section 7, DeepMass is from Jeffrey et al.
(2020b), MCALens with λ = 4 is from Starck et al. (2021), the GLIMPSE method with λ = 3 is from Lanusse et al. (2016), Survey Mask is the
COSMOS catalog binary mask, Kaiser–Squires with Gaussian smoothing (σsmooth = 1 arcmin) is from Kaiser & Squires (1993), and the Wiener
filte is from Elsner & Wandelt (2013), Jeffrey et al. (2018b).
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