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Abstract—This paper introduces a new efficient autoprecoder
(AP) based deep learning approach for massive multiple-input
multiple-output (mMIMO) downlink systems in which the base
station is equipped with a large number of antennas with
energy-efficient power amplifiers (PAs) and serves multiple user
terminals. We present AP-mMIMO, a new method that jointly
eliminates the multi-user interference and compensates the
severe nonlinear (NL) PA distortions. Unlike previous works,
AP-mMIMO has a low computational complexity, making it
suitable for a global energy-efficient system. Specifically, we aim
to design the PA-aware precoder and the receive decoder by
leveraging the concept of autoprecoder, whereas the end-to-end
massive multi-user (MU)-MIMO downlink is designed using
a deep neural network (NN). Most importantly, the proposed
AP-mMIMO is suited for the varying block fading channel
scenario. To deal with such scenarios, we consider a two-stage
precoding scheme: 1) a NN-precoder is used to address the
PA non-linearities and 2) a linear precoder is used to suppress
the multi-user interference. The NN-precoder and the receive
decoder are trained off-line and when the channel varies, only
the linear precoder changes on-line. This latter is designed by
using the widely used zero-forcing precoding scheme or its low-
complexity version based on matrix polynomials. Numerical
simulations show that the proposed AP-mMIMO approach
achieves competitive performance with a significantly lower
complexity compared to existing literature.

Index Terms—multi-user (MU) precoding, massive multi-
pleinput multiple-output (MIMO), energy-efficiency, hardware
impairment, power amplifier (PA) nonlinearities, autoprecoder,
deep learning, neural network (NN)

I. INTRODUCTION

The future wireless networks will be able to accommodate
a broad collection of facilities of varying specifications, with
massive multiple-input multiple-output (mMIMO) technology
emerging as a core feature. Usually, direct linear signal
processing methods, such as the matched filter and zero-
forcing (ZF), are widely used as precoding techniques
for mMIMO downlinks, because of their ability to reduce
transmitter power consumption, to realize signal transmission
and to eliminate multi-user interference [1]. These linear
precoders, on the other hand, carry a high peak-to-average
power ratio (PAPR) to transmit signals [2]. As a consequence
of the high PAPR, mMIMO signals are very sensitive to the
non-linearity of the radio frequency power amplifier (PA),
which is the main hardware distortion and is inevitable in
a typical transmission chain. Indeed, when PA is present in

the transmission chain, signal distortion and phase rotation
emerge, resulting in a transmission performance degradation.

There are a variety of methods that can be used to reduce
the nonlinear distortion described above. One solution is
to apply a back-off to the power amplifier input signal
preventing nonlinear-operation of the PA; however, this
implementation reduces the PA efficiency. Another classical
solution is the digital predistortion (DPD), which is inserted
before the power amplifier stage to compensate its nonlinear
behaviors [3]. Although DPD allows more effective linear
operation of the PAs, classic DPD techniques may be deemed
unsuitable for mMIMO due to the significant additional
complexity. Brihuega et al. [4] explored a DPD method
based on minimizing the nonlinear distortion of the combined
signal at the intended receiver direction, and proposed a low-
complexity version to linearize an arbitrary number of parallel
and mutually different power amplifiers, with only a single
DPD. However, this method still has a high computational
complexity and it is limited to the context of single-user
fully digital beamforming transmitters, which is not suitable
for mMIMO scenario.

There are other methods that aim to decrease the PAPR
of the transmitted signal for the mMIMO scenario, the
motivation being that a low PAPR can avoid the PA
nonlinearity when PA is operated with high efficiency. In this
sense, [5] and [6] proposed several optimisation algorithms
focusing on reducing the PAPR in MU-MIMO systems.
Instead of solving the convex problem, another algorithm-
based solution is proposed in [7], in which the author uses
relaxation of the nonconvex constraints to obtain a convex
problem that approximates the original problem. In the same
direction, Zayani et al. have proposed the MU-PNL-GDm
algorithm based on gradient descent, performing jointly linear
precoding, PAPR reduction and DPD but it also suffers of
great computational complexity and high latency since it
consists on an iterative algorithm based gradient descent
approach [8].

On the other hand, machine learning methods, and recently
deep learning (DL), have been successfully applied to
efficiently perform the real-time optimization tasks required
for massive MU-MIMO. Sohrabi et al. [9] proposed an
autoencoder to enhance the performance of one-bit massive



MIMO systems: this approach has been shown to achieve
satisfactory performance but it is limited to multicasting com-
munications systems. Moreover, its computational complexity
is still challenging due to the high size of the deployed neural
networks. It is worth mentioning that the concept of end-
to-end learning based autoencoder has been widely studied
for single-input single-output (SISO) systems and has been
shown to deal with hardware imperfections [10] [11]. To the
best of our knowledge, none of existing works has explored
the potential of DL in dealing with PA non-linearities of
massive MU-MIMO Downlink systems over varying fading
channels.

Regarding the issues discussed above and the motivations
behind this work, our main contributions are summarized as
follows:

e We present the first successful exploration of the
potential of DL in dealing with PA non-linearities in
massive MU-MIMO Downlink systems over varying
fading channels. The key idea is to represent transmit
precoder, PAs, channel and receiver as one deep NN,
i.e., as an end-to-end reconstruction task where only the
transmit precoder and the receive decoder are trainable.

o Unlike the existing literature [9] [10] [1 1], our proposed
AP-mMIMO is suited for varying channel scenario, i.e.,
its adaptation requires lower computational complexity.
For this, we consider a two-stage precoding scheme :
(1) a NN-precoder, which is trained off-line and fits for
any channel, and (2) a Linear precoder that depends on
the channel and can be designed using the widely used
zero-forcing precoding scheme or its low-complexity
MP-based version.

o In order to avoid the high computational complexity
entailed by the large-scale matrix inversion required
for ZF precoding, we adopt matrix polynomials (MP)
for data precoding [12] in the second stage precoding.
Numerical simulations show that these latter can achieve
performance close to that of the ZF precoder. It is worth
to mention that, unlike [9], the user power allocation
in our proposed AP-mMIMO is straightforward.

The rest of this paper is structured as follows. Section II
presents the system model investigated in this study. Sec-
tion III introduces the proposed AP-mMIMO framework and
the learning procedure. In Section IV, we investigate the
complexity of the proposed solution and present comparisons
to other approaches from the literature. Finally, numerical
simulation results are provided in Section V and the paper
concludes in Section VI with a discussion of open challenges
and areas for future investigations.

Notations: Lower-case letters (e.g. x) , bold lower-case
letters (e.g. x) and bold upper-case letters (e.g. X) stand
for scalars, vectors and matrices, respectively. We denote
the transpose and conjugate transpose by X7 and X%,
respectively. We use || x ||z and E{.} to denote l-norm
of vector x and the expectation operation, respectively.

II. MASSIVE MU-MIMO SIGNAL AND NONLINEAR PA
IMPAIRMENT MODEL

We consider, in this paper, a single-cell massive MIMO-
OFDM downlink system, where M, single-antenna users are
served simultaneously by the base station (BS) equipped with
M, antennas, over a fading channel H € CMr*M: which has
random complex Gaussian entries. M; is significantly larger
than M,. The symbols for the M, users are included in
the CMrx1 signal vector s, where s,,, is chosen from a M-
quadrature amplitude modulation (QAM) constellation, where
M is the modulation order. The BS uses a linear precoding
stage, transforming the vector s into a M;-dimensional vector
by using a CMe*Mr matrix W = [wy, W, ..., W)y |, using
the channel state information (CSI). This can be written as

1
x=——Ws

Vew

where is the power normalization factor. Here, the
precoding matrix can be obtained by using the ZF tech-
nique [13] or by the matrix polynomials technique [12],
which are calculated by W = H (HHH)f1 and W =
HY Z}y:o 1y (HHH )j, respectively, where p is a vector
containing the real-valued coefficients of the precoder matrix
polynomial. The factors x can be optimized theoretically and
they do not depend on the instantaneous channel estimates.
Note that the Horner’s implementation rule [12] should be
adopted for seeking low complexity. Interested readers are
referred to [12] for more details concerning the p coefficients
optimization and the Horner’s rule implementation.

For the case of massive MIMO with non-linear PAs, the
precoded symbols in Equation (1) are fed, towards the BS
antennas, through M, parallel transmit chains with PAs (see
Fig. 1). The resulting amplified symbols are

y=[fi (@), f2 (@), g, (war)]” = F(x) ()

where f,,,,(.) denotes the nonlinear amplification operation
of the m;-th PA. Then, the symbols received by the M,
users can be written as

)

1

r=Hy+b 3)

where b is the added Gaussian noise vector, and its entries
are i.i.d random variables having a circularly-symmetric
distribution with zero mean and o7 variance.

For our MIMO system, the major sources of distortions
in the transmitter are the nonlinear PAs, especially when
they are operated close to their saturation regions to increase
their power-efficiency. Now, we let x,,,(n) = p(n)e/*
be the n-th sampling point that is to be transmitted and
amplified via the antenna m;, where p(n) and ¢(n) denote,
respectively, the magnitude and phase of that sample. Then,
the relation between the baseband equivalent input and the
output signals of the PA in the m,-th antenna branch can be
written as

(¢+¥(ap(n)))

ym,(n) = glap(n))e’ 4)
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Fig. 1: Proposed AP-mMIMO structure: Generalization phase.

where ¢(.) is the amplitude-to-amplitude (AM-AM) conver-
sion and ¥(.) is the amplitude-to-phase (AM-PM) conversion
of the PA. The factor « is a multiplicative coefficient applied
at the input of the PA to obtain the PA working point
according to the given input back-off (IBO). Here, all IBOs
are given in dB related to its saturation point. The factor
« is needed to ensure a signal x,,,(n) with a given IBO

value, and is obtained through 4/ Psa:/ (10“130O P,). Pyat is
the saturation input power of the PA and P; represents the
transmitting power of the signal. In this paper, the functions
g(p) and ¥(p) are modeled by the modified Rapp model
proposed by the 3GPP for the New Radio (NR) evaluation
[14]. In this modified Rapp, which reflects closely to realistic

PAs, AM/AM and AM/PM conversions can be described by

Gp Apl
9(p) = = Yp)=—Fa O
(1 Gp 2”)2” (1+ (%)q)
+ Vsat

where G is the small signal gain, Vi, is the saturation
level, p is the smoothness factor and A, B and q are fitting
parameters.

III. PROPOSED AUTOPRECODER STRUCTURE AND
LEARNING SOLUTION

In this section, we present our autoprecoder based end-
to-end mMIMO communication structure and the train-
ing/generalization details.

A. Autoprecoder structure representation

The structure of the proposed AP-mMIMO is shown in
Fig. 2. Since most deep learning libraries currently support
real-valued operations, we map complex vectors to real ones
by concatenation of real and imaginary parts (R-to-C and
C-to-R blocks in Fig. 2).

The symbol ¢ € {1,...,M} denotes the index of the
intended message for a given user and m is its one-hot
representation, i.e., a M-dimensional vector with the m-th

element being one and the other elements being zero. This
vector is fed to the transmit neural network with multiple
dense nonlinear layers followed by a linear layer. Here, a
dense layer is a matrix multiplication with learnable weights
followed by a non-linear activation function. The linear layer
should contain two linear neurons representing the outputs
I and @ of the base-band complex signal corresponding to
one user.

The 2-dimensional real-valued signal at the output of the
NN-precoder m in this model can be written as

m=Kror_i(--Ky-01(Ki-1,, +11) +---np_;)+ny

(6)
where T is the number of layers (i.e., T — 1 hidden layers
and one output layer), o, is the activation function for the
t-th layer. ©1 = {Kj, nt}thl represents the set of the NN
parameters (matrices and bias). The dimensions of the NN
parameters are

thM, t=1
dlm(Kt): Et th,h t:2,...,T—1,
2xby, t=T, )
. by x1, t=1,....T -1,
dlm(nt):{ 2t><1 T

where /; is the number of neurons in the ¢-th hidden layer.

Note that only one NN-precoder is trained during the
learning phase (as shown by Fig. 2) and is used for the M,
users at test time. In the generalization phase, we generate
the 2M,. real-valued signal corresponding to the M,. users (as
shown by Fig. 1), performing as the first stage of precoding.
The second stage is a classical linear precoder, e.g. zero-
forcing one. It is worth noticing that the transmit signal, at
each antenna, at the output of the linear precoder is adjusted
to the desired IBO (for the sake of simplicity, it is not
presented in the Figs. 1 and 2).

Similarly to the transmitting NN precoder, another NN
with R dense layers is used as decoder at the receiver side. In
the NN-decoder, the r-th layer contains ¢, neurons, models
the receivers’ operations. In our system the same NN-decoder



Precoder Decoder
) )
( H|R c|
C | 1-het [M NN | W Linear | |X Y | Channel r NN m
— . to to [—* arg max
mapping Precoderl Precoder H I Decoder
r Lo S
b
L - 1
—1
[ Loss: Categorical cross-entropy }

Fig. 2: Structure of the learning phase. Two NNs are trained, one at the transmitter side and another one at the receiver

side, using categorical cross-entropy as loss function.

is used for all user’s decoding procedures. Similar as the
precoder, only one NN-decoder is trained during the off-line
learning phase, however all users used the same decoder
during the on-line test phase.

It is worth mentioning that by using this approach,
we decrease the measurements of the receivers’ training
parameters, theoretically resulting in a faster training process
and low-complexity precoder/decoder on-line running. Note
that the last layer’s activation function is set to softmax
activation in the receivers’ NN in order to produce the
probability vector at user m,., py € (0, 1)|M|, where the i-th
element indicates the probability for the intended symbol’s
index to be i. Finally, user m, declares m, as the decoded
index of the intended symbol, which corresponds to the index
of the element of p; with the highest probability. This is
required so that we can train the network using cross-entropy
to make the model learns to map the correct output with the
correct input.

B. Implementation details

The AP-mMIMO based deep NN in Fig. 2 is implemented
using TensorFlow, an open source Python-based machine
learning framework. To train the NN-precoder and the NN-
decoder, we use the Adamax optimizer, a version of the
stochastic gradient descent approach for optimizing neural
networks. We use the categorical cross-entropy as the loss
function. Each of the NN-precoder and NN-decoder has only
one hidden layer (i.e., T'= 2 and R = 2) with, respectively,
Uy and /.. Furthermore, we use rectified linear unit (ReLU)
as the hidden layer activation function.

Fig. 1 illustrates the generalization phase of our proposed
AP-mMIMO illustrating a typical massive MIMO downlink
system. We recall that the NN-precoder and NN-decoder
blocks are identical for all users and are trained with 10°
channel matrix H, which are chosen randomly. For the
proposed NN-precoder and NN-decoder, we generate training
set m with size of also 10°.

Finally, we train both the NN-precoder and the NN-
decoder, simultaneously and through the different mMIMO
chain operations, using the categorical cross-entropy loss as
shown in Fig. 2. The cross-entropy constrains the output
of the decoder to be the same symbol as the one in input
to the precoder. Gradients are backpropagated through the

decoder and then the precoder, which allows us to perform
the weight updates [15].

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the online computational
complexity of the proposed AP-mMIMO and compare it
against the algorithm based solution MU-PNL-GDm [8],
which jointly perform linear precoding, PAPR reduction and
DPD. To the best of our knowledge, among the existing
literature, the MU-PNL-GDm offers the best performance
in terms of symbol error rate (SER) but its computational
complexity and latency are too high, making it not suitable
for real-time massive MU-MIMO downlink systems.

We recall that, in the proposed AP-mMIMO, the linear
precoding can be either the ZF or its variant based on the
matrix polynomials. Consequently, we have two AP-mMIMO
schemes : 1) AP-mMIMO (ZF) and 2) AP-mMIMO (MP).

Table I summarizes the complexities of implementing the
four different methods (i.e., AP-mMIMO (ZF), AP-mMIMO
(MP), MU-PNL-GDm [8]) and classical ZF precoding and
DPD combination method. In the last case, dedicated DPD
block per antenna branch is used. This DPD is based on
the well-known multi-layer perception (MLP) NN model.
The NN predistorter has two inputs, two outputs and one
hidden layer with 32 neurons, demanding then 128 real
multiplication to execute one symbol. For all scenarios,
we compute the number of real multiplications where T
represents the channel coherence interval, means that the
channel characteristics keep constant during 7 symbols.

Note that the training of the NN-precoder and the NN-
decoder is performed off-line, so its corresponding com-
plexity is not considered. Therefore, the online compu-
tational complexity, during a channel coherence interval
(i.e., processing 7 symbols) , related to the proposed AP-
mMIMO includes the performing of the NL precoding, linear
precoding (ZF or MP) and NL decoding. For other methods,
the total computational complexity includes linear precoder
preparation and precoding vector update. Concerning the
complexity of the MU-PNL-GDm, readers are referred to
[8] for further details. Here, we note that the N, refers to
the number of total iterations in the algorithm in order to
achieve certain performance.



TABLE I: Complexity analysis

Method ZF+DPD MU-PNL-GDm [8]

AP-mMIMO (ZF) AP-mMIMO (MP)

Linear precoder 8M; Mr2 + MS’ -

computation

8M; M2 + M3 -

NN- - - (M + 2)0.My7 + (M 4 2)6 My (M + 2)0 Myr + (M + 2)6: M7
precoder/decoder
Precoding vector 4T My M, T Niter (12M¢ M- + 128 M) 4T My M, 47(2T + 1) M M, [12]
update
DPD 7128 My - -
M; = 100 antennas and serving M, = 10 single-antenna
10°
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V. SIMULATION RESULTS

In this section, we evaluate the performance of the
proposed AP-mMIMO based end-to-end massive MU-MIMO
downlink systems under PA non-linearities. For all the
simulations, we consider the BS to be equipped with

users simultaneously. 16-quadrature amplitude modulation
(QAM) is considered (i.e., M = 16). The memory-less
modified Rapp model is adopted to determine the PA input
and output, with parameters G = 16, Vs; = 1.9, p = 1.1,
A = =345, B = 0.17, and ¢ = 4 [I4]. Note that new
test data over 10° channel realizations were considered to
evaluate the SER performance.

Fig. 3 illustrates the SER vs. signal-to-noise ratio (SNR) of
the proposed AP-mMIMO when PAs are operating at IBO =
1 dB and 3 dB. As references, we plot the scenario that there
is no PA distortion correction (“PA w/o correction”) and
the linear case where the PA is considered as an ideal one
(“Linear”). As comparison, we plot the scenario where ZF
precoding and DPD method are applied in the communication
system (“ZF+DPD”). We recall that, in this case, dedicated
DPD block based on MLP NN model is used at each
antenna branch. Finally, we plot the results of our proposed
AP-mMIMO method in solid lines. Here, each of the NN-
precoder and NN-decoder has one hidden layer of 16 neurons
and the SNR is defined as SNR = ]E{||yn|\§}/o§ From the
Fig. 3, we can clearly note that our proposed AP-mMIMO
scheme provides significant improvements compared to the
case without correction, which is quite close to the one
provided by an ideal massive MU-MIMO system. With
IBO=3 dB, the performance of AP-mMIMO is slightly better
than that of the classical technique (ZF+DPD). However, this
performance improvement becomes significant when IBO =
1 dB, i.e. when the PA is operating in a region with higher
energy efficiency. It is worth mentioning that the two options
of the proposed AP-mMIMO, either with ZF or MP, provide
the same performance in terms of SER when J = 5, as
mentioned in [12], where J = 5 represents the order of
the polynomial. Then, for the sake of simplicity, only one
AP-mMIMO SER curve is given for each IBO value.

Most importantly, the advantage of our proposed method
is the extreme low complexity needed in online mode,
which makes it interesting for real-time massive MU-MIMO
downlink systems. Indeed, according to the results illustrated
in Fig. 4, the computational complexity vs. 7, one can note
that our proposed method, the AP-mMIMO ZF/MP, has
much lower complexity for all range of 7 compared to the
MU-PNL-GDm algorithm [8]. Compared with the classical
ZF+DPD method, our proposed method has lower complexity
while achieving better SER performance, especially when



the power-efficiency is sufficiently high. This confirm the
capability of such global optimization (end-to-end learning)
in tackling PA non-linearity. Here, N, = 6 and J = 5,
as presented, respectively, in [8] and [12]. When 7 = 5,
the complexity of AP-mMIMO (ZF) and AP-mMIMO
(MP) are only 17.85% and 11.94% of that of MU-PNL-
GDm, respectively. What is more, the proposed AP-mMIMO
(MP) requires lower complexity than the classical ZF+DPD
method, about 53% of the complexity required when 7 = 5.
Another benefit of our approach is related to the fact that it
is a data-driven one. So, its performance do not depend
on the availability of an accurate PA model. However,
the performance of ZF+DPD and MU-PNL-GDm methods
deteriorates when there is a model deficiency in capturing
the actual PA properties.

In addition, we note that when 7 is small (< 10), the
AP-mMIMO (MP) scheme requires lower complexity than
the AP-mMIMO (ZF) one. However, this latter performs
better, in terms of complexity, when 7 becomes larger.

VI. CONCLUSION

In this paper, we introduced a novel DL Autoprecoder
based mMIMO downlink transmission, which is capable to
learn a precoder and a decoder to eliminate the MUI and
compensate the PA impairments over varying fading channels.
Numerical results clearly showed the ability of the proposed
AP-mMIMO to provide competitive performance with a
much lower computational complexity compared to existing
literature. Interesting findings of this paper include: 1) The
adopted two-stage precoding scheme makes the proposed
AP-mMIMO suitable for varying fading channels. So, only
the linear precoding is adapted once the channel changes.
2) The NN-precoder/decoder can be trained off-line and do
not depend on the instantaneous channel estimates. 3) The
AP-mMIMO (MP) is recommended for fast varying channel
scenarios while the AP-mMIMO (ZF) performs better for
slow varying channels.

To our knowledge, this work represents the first exploration
of the potential of DL in dealing with PA non-linearities in
massive MU-MIMO downlink systems over varying fading
channels, offering interesting insights for the design of
energy-efficient massive MU-MIMO based 6G systems. As
a future work, the ideas presented here could be extended
to study the capability of end-to-end DL approaches for
intelligent reflecting surface (IRS), a promising solution for
6G communications.
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