
HAL Id: hal-03551345
https://hal.science/hal-03551345v1

Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PARASITE: PAssword Recovery Attack against Srp
Implementations in ThE wild

Daniel de Almeida Braga, Pierre-Alain Fouque, Mohamed Sabt

To cite this version:
Daniel de Almeida Braga, Pierre-Alain Fouque, Mohamed Sabt. PARASITE: PAssword Recov-
ery Attack against Srp Implementations in ThE wild. CCS 2021 - ACM SIGSAC Conference on
Computer and Communications Security, Nov 2021, Virtual Event, South Korea. pp.2497-2512,
�10.1145/3460120.3484563�. �hal-03551345�

https://hal.science/hal-03551345v1
https://hal.archives-ouvertes.fr

PARASITE: PAssword Recovery Attack against Srp
Implementations in ThE wild

Daniel De Almeida Braga
daniel.de-almeida-braga@irisa.fr

Univ Rennes, CNRS, IRISA
Rennes, France

Pierre-Alain Fouque
pierre-alain.fouque@irisa.fr
Univ Rennes, CNRS, IRISA

Rennes, France

Mohamed Sabt
mohamed.sabt@irisa.fr

Univ Rennes, CNRS, IRISA
Rennes, France

ABSTRACT

Protocols for password-based authenticated key exchange (PAKE)
allow two users sharing only a short, low-entropy password to
establish a secure session with a cryptographically strong key. The
challenge in designing such protocols is that they must resist offline
dictionary attacks in which an attacker exhaustively enumerates
the dictionary of likely passwords in an attempt to match the used
password. In this paper, we study the resilience of one particu-
lar PAKE against these attacks. Indeed, we focus on the Secure
Remote Password (SRP) protocol that was designed by T. Wu in
1998. Despite its lack of formal security proof, SRP has become
a de-facto standard. For more than 20 years, many projects have
turned towards SRP for their authentication solution, thanks to
the availability of open-source implementations with no restrictive
licenses. Of particular interest, we mention the Stanford reference
implementation (in C and Java) and the OpenSSL one (in C).

In this paper, we analyze the security of the SRP implementa-
tion inside the OpenSSL library. In particular, we identify that this
implementation is vulnerable to offline dictionary attacks. Indeed,
we exploit a call for a function computing modular exponentiation
of big numbers in OpenSSL. In the SRP protocol, this function leads
to the call of a non-constant time function, thereby leaking some
information about the used password when leveraging cache-based
Flush+Reload timing attack. Then, we show that our attack is
practical, since it only requires one single trace, despite the noise
of cache measurements. In addition, the attack is quite efficient
as the reduction of some common dictionaries is very fast using
modern resources at negligible cost. We also prove that the scope of
our vulnerability is not only limited to OpenSSL, since many other
projects, including Stanford’s, ProtonMail and Apple Homekit, rely
on OpenSSL, which makes them vulnerable. We find that our flaw
might also impact projects written in Python, Erlang, JavaScript
and Ruby, as long as they load the OpenSSL dynamic library for
their big number operations. We disclosed our attack to OpenSSL
who acknowledged the attack and timely fixed the vulnerability.

CCS CONCEPTS

• Security and privacy→ Security protocols.

KEYWORDS

SRP, PAKE, Flush+Reload, PDA, OpenSSL

1 INTRODUCTION

1.1 Context and Motivation

Passwords are by far the most popular method of end-user au-
thentication on the web. Password breaches, due for instance to

sophisticated phishing attacks, seriously multiply the risk of au-
thentication compromise. Aware of such issues, a growing number
of service providers couple passwords with another authentication
factor: this is known as two-factor authentication (2FA). However,
a longitudinal analysis in [15] highlights that the adoption rate of
2FA has been mostly stagnant over the last years. This is partly due
to the fact that 2FA requires unwilling users to modify their way to
interact with the web. An alternative approach is to keep relying
solely on passwords, but to change how they are verified in a way
that protects against phishing attacks as well as server breaches
and dictionary attacks. The advantage of such an approach is that
it does not change users experience. However, this does not come
without cost; the burden is now shifted to service providers that
should support new cryptographic protocols. These protocols are
called password-authenticated key exchange (PAKE).

In its simplest form, a PAKE protocol allows two parties shar-
ing nothing but a low-entropy string (i.e., password) to mutually
authenticate each other and to establish a secure session. Thus,
PAKE protocols remove the need of public-key infrastructure (PKI).
In addition, passwords, or even their salted hash values, are not
stored on servers. This implies that an attacker who breaks into
a server no longer has any direct access to passwords. Instead,
they still require to perform a per-user dictionary attack to retrieve
the password, which makes PAKEs appealing for numerous indus-
trial solutions. An eminent example here is the recently released
Wi-Fi Protected Access 3 (WPA 3) standard that relies on PAKE
to improve security upon WPA 2. There are also plentiful of RFC
publications [28, 41, 43] standardizing PAKE and their usage.

The concept of PAKE is not new; it was initially described by
Bellovin and Merritt in 1992 [10] and has received considerable
attention since then. Nevertheless, they still suffer from slow adop-
tion [18]. Indeed, the early protocols were lacking important se-
curity properties, and the PAKE world was patent-encumbered
for some period of time [10, 30]. This resulted in protocols, such
as SRP [48] and J-PAKE [27], that included additional complexity
solely for patent circumvention, thereby making security proofs
more complex or impractical. The availability of efficient imple-
mentations was also negatively impacted by this complexity.

However, interest has been renewed in PAKE recently. The CFRG
(Crypto Forum Research Group) started a competition in 2019 with
the goal to recommended a small set of PAKE protocols for the
IETF community [16]. It is still early to measure the positive impact
of this competition on PAKE adoption. However, it allowed the
community to carefully review the various existing PAKEs with
respect to some specific criteria [41]. Unfortunately, most of the
reviews are based on the abstract design of the proposed candi-
dates, and not on their reference or deployed implementations. This

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

is regrettable for two reasons. First, the RFC 8125 [41] explicitly
requires (refer to section 4.1) that any PAKE shall protect against
timing and side-channel attacks. Second, it is well established now
that breaking cryptography is not merely a matter of theoretically
breaking a cryptographic algorithm. Implementation pitfalls matter
in order to guarantee that the running code does not leak any secret
information. Our paper aims at bridging this gap by scrutinizing
the different implementations in the wild of one particular PAKE,
namely the Secure Remote Password protocol (SRP).

1.2 Our Contribution

The Secure Remote Password protocol (SRP 6a, SRP) was introduced
by Wu [48]. Since SRP first iteration back in 1998, new versions
have been defined to address vulnerabilities and support stronger
algorithms. The Stanford SRP homepage lists four different versions
of SRP, with the last one being SRP 6a. The SRP version 3 is specified
in RFC 2945 [46], and the version 6 is described in RFC 5054 [43].

The case of SRP is quite peculiar. On the one hand, it has been
highly disapproved by some of the crypto community [25]. It was
not even considered by the CFRG PAKE competition, mainly be-
cause of its lack of formal security proof. On the other hand, SRP is
arguably the most widely used protocol of its type. It draws its pop-
ularity from its patent-free definition, quite straightforward design,
and the availability of efficient open-source implementations with
no restrictive licenses in many programming languages, including
C#, .NET, Java, C/C++, Python, Go, JavaScript, Rust, Erlang, and
Ruby.

SRP is not only included in some amateur code on Github. It
is actually used as security branding by various solutions. These
include: ING bank for their mobile app [29], the password manager
1Password [21], AWS (Amazon Web Service in its cognito authen-
tication extension) [6], Apple Homekit when pairing with the IoT
devices [5], the secure email system of ProtonMail [40], the GoTo
tools (GoToMeeting, GoToTraining, GoToWebinar) [34], etc.

Therefore, it becomes quite timely to look deeper into the dif-
ferent SRP implementations, as any identified vulnerability might
lead to serious consequences. Despite being widely deployed, these
implementations do not seem to have received any review for a
long time. Our goal is to consider a modern threats model, espe-
cially cache-based attacks, to analyze SRP. Nevertheless, it is quite
challenging to exploit all the existing implementations for two
main reasons. First, designing exploits that work for different pro-
gramming languages is not straightforward. Second, SRP is used
in diverse contexts; from mobile banking app to video conferenc-
ing systems. Thus, any identified vulnerability would be hard to
generalize.

In this paper, we adopt another approach, since we notice that
most SRP implementations are rather similar. Indeed, we mainly
focus on one reference implementation: OpenSSL’s (in C). We show
that the core part of the OpenSSL SRP has inspired 18 other projects
in 5 programming languages (refer to Table 2 for the complete list).
Moreover, these projects dynamically load the OpenSSL library in
order to call its big integers API. We underline that this implies that
any vulnerability that can be identified in the OpenSSL code may
constitute a generic attack vector for all these implementations,
regardless of their programming language.

The SRP property that we attempt to attack is its resistance
against offline dictionary attack. In theory, an attacker eavesdrop-
ping all messages within the authentication process can deduce
no information about the shared password. Our contribution is to
show that numerous SRP implementations do not satisfy such an
important property. Indeed, we first identify some leakage vector
in the client side of the OpenSSL SRP. Then, we exploit this leakage
through micro-architectural cache-based attack. We improve the
effectiveness of our attack in a real-world scenario, since it only re-
quires a single measurement to guess the secret password with high
probability. We simplify the execution of our exploit by automat-
ing the whole process, including spying on executed instructions,
interpreting the noisy cache measurements, and performing the
offline dictionary attack. Finally, we show the large scope of our
attack that goes beyond OpenSSL, and concerns widely deployed
solutions, such as Proton Mail and Apple Homekit.

In summary, this paper makes the following contributions:
• we perform a thorough analysis of the OpenSSL implemen-
tation of SRP, we report undocumented details about their
implementations, and we identify an execution flow in the
client side that depends on some sensitive data;

• we show how this non-constant time implementation can
leak some information about the secret password, we ex-
ploit our findings through cache-based techniques using
Flush+reload and a PerformanceDegradationAttack (PDA);

• we perform an offline dictionary attack against SRP, study
the theoretical amount of information that might be leaked
during an authentication exchange and experimentally vali-
date our analysis on OpenSSL 1.1.1h;

• we identify 18 projects and industrial solutions that depend
on the flawed implementation of OpenSSL and report on
unpublished attacks and weaknesses in the analyzed imple-
mentations. For each project, we point out the vulnerable
component and the overall security implication of the attack;

• we implement a Proof of Concept (PoC) of our vulnerability
on various impacted projects and make it open-source 1;

• we propose a (straightforward) mitigation of the attack and
empirically evaluate its overhead. We notified the concerned
projects following our policy of responsible disclosure, and
provided support in the patch integration. Two CVE IDs
have been reserved for us by GoToMeeting and Digi Xbee.

1.3 Attack Scenario

To illustrate our vulnerability, we propose the following attack
scenario. Note that this only serves as an example, and it does not
limit the scope of our work. We suppose a classical SRP use case,
where a client tries to authenticate themselves to a server using a
password. The goal is to recover the client’s password.

To this end, the attacker exploits a non-constant time execution
during an insecure modular exponentiation. Here, the attacker
will leverage some particular properties of the victim’s micro-
architecture to monitor the execution, and extract information
about some sensitive data. The attacker is then able to use this
leaked information to perform an offline dictionary attack in order
to recover the shared password with high efficiency.
1https://gitlab.inria.fr/ddealmei/poc-openssl-srp

https://gitlab.inria.fr/ddealmei/poc-openssl-srp

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

Our experiments show that a single trace is mostly enough to
recover the password from any practical dictionary size. Once the
attacker recovers the password, they can impersonate both server
and client in all future sessions.

2 BACKGROUND

In this section, we provide a brief description of the SRP protocol, as
well as its current limitations. We also introduce the cache attacks
that we will leverage to exploit our identified vulnerability.

2.1 Password-Authenticated Key Exchange

A PAKE protocol is a cryptographic protocol that allows two parties
sharing a secret password to mutually authenticate each other
without explicitly revealing the password in the process.

The challenge of PAKE schemes is the low entropy of passwords
that makes them weak against dictionary attacks. In particular,
there are two types of attacks: offline and online. In an offline at-
tack, the adversary observes a protocol run, and then goes offline to
do password testing on their own. In an online setting, the attacker
requires to run the protocol with a password guess as input, and
observes whether the protocol run succeeds or fails. It is clear that
such an attack is unavoidable. However, online attacks could be
mitigated by rate-limiting countermeasures, e.g., by applying wait
times after failed login attempts. This countermeasure could not
be applied with offline attacks. Therefore, a PAKE protocol must
be designed to be resilient against offline dictionary attacks. More
discussions may be found in [30, 48]. Our attack breaks this prop-
erty for several SRP implementations by recovering some leaked
information about the password, making offline attacks possible.

PAKE protocols essentially come in two variants. Firstly, so-
called balanced or symmetric PAKE protocols, introduced in [10]
and formalized in [9], require both parties to know the shared
password in plaintext. This implies that a break into the server
leaks the password for all users. Examples include Dragonfly [28]
and CPace [26]. Secondly, so-called augmented or asymmetric PAKE
protocols, for instance SRP [48] and OPAQUE [31], are introduced
in [11] and later formalized in [13, 24]. These protocols are designed
such that the server is given access only to a password-verifier, and
the password itself is only available to the client. Thus, upon a
server compromission, an attacker is still forced to perform an
exhaustive offline dictionary attack. Such an additional protection
makes the task significantly more difficult for the attacker. Thus,
augmented PAKE protocols are generally preferred.

2.2 Secure Remote Password (SRP) Protocol

The SRP protocol is an augmented PAKE protocol introduced in
1998 [48] to bypass existing patents. Some argue that SRP is the
most widely used and standardized protocol of its type, despite its
lack of formal proof. SRP was standardized for the first time in 2000
in RFC 2944 [47] – Telnet Authentication: SRP. Nowadays, it is not
part of the recommended protocols by the CFRG PAKE selection
competition [16] in 2020.

Below, we describe the two phases of SRP: registration and login.
Before, we discuss the assumptions made for its design:

• a group 𝐺 of prime order 𝑝 , which is a safe prime (i.e. a
number of the form 𝑝 = 2𝑞 + 1, where 𝑞 is also prime), and
generator 𝑔 are publicly known.

• the particular group may be negotiated before the exchange,
or transmitted by the client.

• a public group-related parameter 𝑘 = 𝐻 (𝑔 | | 𝑝) is computed
by both entities upon the choice of the group, where 𝐻 is
any cryptographic hash function.

• the client knows a secret password.

Registration. In SRP, the server never gets the password in plain-
text. Instead, it stores the password in the form (client id, 𝑣, salt),
where 𝑣 is a password verifier and salt is a random string. Let 𝑥
be 𝑥 = 𝐻 (𝑠𝑎𝑙𝑡 | | 𝐻 (client id | | 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)). The verifier is generated
as follows: 𝑣 = 𝑔𝑥 mod 𝑝 . We notice that 𝑣 is bounded to both the
identifier and the password. The registration phase is assumed to
be performed in a third-party secure channel, so an attacker cannot
have access to this verifier. For all following login attempts, we
assume this registration step has been performed successfully.

Client Server

salt, v = lookUp(user_id)
b = rand(1, p-1)
B = kv + gb mod p

user_id, A

a = rand(1, p-1)
A = ga mod p

salt, B

u = H(A��B)
x = H(salt��H(user_id:pwd))
S = (B-kgx)a�ux mod p
K = H(S)

u = H(A��B)
S = (Avu)b mod p
K = H(S)

client_verify

Verify client
server_verify

Verify server

Figure 1: SRP login workflow. Group parameters 𝑔 and 𝑝 are

negotiated before-hand, and 𝑘 = 𝐻 (𝑔 | |𝑝) is computed after

the negotiation. Secret values are displayed in red, while the

salt, as a sensitive value, is displayed in purple.

Login. Before starting this phase, the client and the server
agree upon the group parameters 𝑔 and 𝑝 , as well as their digest
𝑘 = 𝐻 (𝑔 | | 𝑝). During login, first, the user generates a random num-
ber 𝑎 uniformly chosen from (1, 𝑝−1), computes𝐴 = 𝑔𝑎 mod 𝑝 and
sends it to the server along with their identifier. Upon reception,
the server looks up to the user’s password entry and fetches the cor-
responding password verifier and salt. Then, the server generates
a random number 𝑏 uniformly chosen from (1, 𝑝 − 1), computes
𝐵 = 𝑘𝑣 +𝑔𝑏 mod 𝑝 , and sends both the salt and 𝐵 to the user. Using
the salt and the password, the client is able to recover the verifier
𝑣 = 𝑔𝑥 mod 𝑝 . Now, both parties can compute the shared key 𝐾 .
Finally, they end up by exchanging confirmation messages to verify
the good proceedings of the protocol. Figure 1 summarizes SRP
workflow, with secret information in red (the salt is a sensitive
information, but not confidential).

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

2.3 SRP Limitations

In this part, we outline some inherent flaws of SRP. These flaws are
well known, but do not result in any severe vulnerability. We stress
that none of these flaws is necessary for our attack; only the first
one is used for optimization purposes.

2.3.1 Variation of SRP Settings. Since the first messages sent by
the server are not authenticated, an attacker might modify them.
This concerns both the salt and the group parameters (base and
modulus). Of course, such a modification will end up in failure in
the session establishment. However, it might be interesting to have
several runnings of SRP for the same password, which might allow
an attacker to increase the recovered leaked data.

2.3.2 Pre-computation Attacks. SRP as standardized does not pro-
tect from leak of server-side data. Namely, the attacker can pre-
compute a table of values based on the salt and a passwords dictio-
nary. This implies that as soon as the attacker succeeds in compro-
mising a server, they can instantly find a user’s password without
any further effort. This is due to the fact that anyone, including the
attacker, can ask for any user’s salt. Such an attack is unfortunate,
despite SRP being an augmented PAKE. To address the above threat,
SRP would need a modern password-based key derivation function,
such as Scrypt, so that pre-computations become expensive.

2.4 Cache Attacks

Micro-architectural attacks have long been used to gain information
about sensitive data in cryptographic implementations. Below, we
will only present the attacks that we use in our contribution.

2.4.1 Micro-architectural leaks. In modern CPUs, the time required
to access a particular memory address may vary significantly de-
pending on whether the data is already in cache (cache hit) or not
(cache miss). CPUs access memory to fetch the program data, or
the instructions to be executed. In both cases, if the access depends
on a secret value, it might leak some information by using the time
needed to load the required memory address. Indeed, the attacker
can use a spy process interacting with the cache, in such a way that
triggers these different time accesses. In most instruction-driven
attacks, the spy process is used to probe specific part of the victim
code in order to follow the execution of the process, and thereby
deducing which part of the code was executed.

2.4.2 Flush+reload and Performance Degradation Attack. In 2014,
Yarom and Falkner presented a ground breaking approach called
Flush+Reload [50]. The idea is to directly monitor memory ac-
cesses in the inclusive L3 cache of Intel’s CPU to accurately deter-
mine which memory addresses are accessed by the victim. To do so,
a spy process targets some specific memory lines (corresponding
to a sensitive instruction for instance) and repeatedly flush it out
of the CPU cache and reload it. If the victim tried to access it in the
meantime, the reload will be fast (cache hit). Otherwise, the reload
would look for the memory line in upper memory level, making
the operation significantly longer (cache miss).

In 2016, Allan et al. used a Performance Degradation Attack [3]
that constantly flush some memory line out of the cache in order
to make some operations longer to execute. Since then, the PDA is
often paired with other attacks to achieve better results.

3 ATTACKING SRP IMPLEMENTATION OF

OPENSSL

As mentioned previously, SRP has become widely deployed, and
therefore numerous implementations exist in various programming
languages. Here, we provide an in-depth look at the OpenSSL imple-
mentation of SRP, describe why it is vulnerable and explain how we
can efficiently exploit it. In particular, OpenSSL provides support
to TLS-SRP [43] through this implementation. Because of the pop-
ularity of OpenSSL, it is fair to assume that the codes have inspired
other implementations, or simply being reused as is (see section 5).
We study OpenSSL implementation up to version 1.1.1i (included),
which is the last version at the time of writing.

3.1 Threat Model

We assume that the attacker be able to perform a Flush+Reload
attack [50]. Since the operations required for this attack (cache ac-
cess and eviction) do not rely on particular permissions, a common
assumption is that the attacker deploys an unprivileged user-mode
program on the targeted device. This spyware runs as a background
task and records the CPU cache accesses to some specific functions.

One might argue that this is a strong threat model. However, we
insist on the fact that any unprivileged code can play the role of our
spyware, and therefore can be hidden into any third-party program
running on the victim’s computer. Moreover, previous papers in
the literature suggest that such memory accesses can be remotely
granted through a JavaScript code injection in web browser [38].
However, we did not investigate the effectiveness of our attack in
such a context. It is worth noting that the vulnerability itself stems
from a non-constant-time control flow. Sensitive information may
leak through the overall execution time, hence may be recovered
remotely. We did not explore this attack scenario neither, since it
would require a significant amount of measurements to get reliable
results (due to network noise and the low execution time difference).

To increase the amount of leaked data, the attacker may repeat
their measurements on a modified version of the session establish-
ment (by changing the salt as described in subsection 2.3). We stress
that this assumption is only needed to increase the efficiency of
our attack. To our surprise, it turns out that we seldom require
this; both theoretical (subsection 3.5) and experimental (subsec-
tion 4.3) amount of information that is leaked from a single session
establishment allows us to fully reduce a large password dictionary.

3.2 OpenSSL Implementation

In TLS-SRP, OpenSSL uses SHA-1 as a hash function 𝐻 , and sup-
ports all standardized groups in [43]. The code concerning SRP
can be found in crypto/srp/srp_lib.c and crypto/srp/srp_vfy.c, and
the standardized groups are hardcoded as big numbers in crypto/b-
n/bn_srp.c. In particular, the client-side function that computes
the shared key (and the verifier 𝑣), SRP_Calc_client_key, is illus-
trated in Listing 1. We notice that all big numbers involved in the
verifier (line 3) have default (non-secure) flags set. In particular, the
BN_FLG_CONSTTIME flag is not set.

The modular exponentiation function BN_mod_exp, defined in
crypto/bn/bn_exp.c, only calls the constant-time exponentiation as
a fallback, if a secure flag is set on one of the big numbers (base, ex-
ponent or modulus), or if the base is too large for the computation to

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

1 def SRP_Calc_client_key(N, g, B, x, a , u) :
2 # Compute the verifier 𝑣 = 𝑔𝑥 mod 𝑁

3 v = BN_mod_exp(g, x, N)
4
5 # Compute k = H(N || g)
6 k = srp_Calc_k(N, g)
7
8 # Compute the base 𝑏𝑎𝑠𝑒 = 𝐵 − 𝑘𝑣 mod 𝑁

9 tmp = BN_mod_mul(v, k, N)
10 base = BN_mod_sub(B, tmp, N)
11
12 # Compute the exponent 𝑒𝑥𝑝 = 𝑎 +𝑢𝑥
13 tmp = BN_mul(u, x)
14 exp = BN_add(a, tmp)
15
16 # Compute the shared 𝑆 = 𝑏𝑎𝑠𝑒𝑒𝑥𝑝 mod 𝑁 = (𝐵 − 𝑔𝑥)𝑎+𝑢𝑥 mod 𝑁

17 S = BN_mod_exp(base, exp, N)
18
19 return S

Listing 1: OpenSSL v1.1.1i implementation of the shared key

computation by the client. A python-like syntax has been

used to save up space, and add clarity. Variable names have

been replaced to fit the protocol description in section 2.

be optimized (more than one processor word). Otherwise, the opti-
mized modular exponentiation BN_mod_exp_mont_word, defined in
the same file, is called. This is the case for the SRP implementation.

This fast exponentiation, summarized in Listing 2, uses a square-
and-multiply (from MSB to LSB) approach, with Montgomery mul-
tiplication [35]. For maximum efficiency, the leading zero bytes
are ignored, and the exponentiation only starts after the first MSB.
Then, a word𝑤 (whose bit-size is defined by the processor archi-
tecture) is used as an accumulator to perform fast multiplications
and squaring until its overflow (first loop from line 10 to 23). Once
it overflows, a big number 𝑟 (long-term accumulator) is initialized
with the Montgomery representation of𝑤 . The big number 𝑟 will,
at the end, represent the result of the modular exponentiation. The
word accumulator𝑤 is reset to either 1 (if it overflowed on a squar-
ing) or 𝑔 (if it overflowed on a multiplication). For the remaining
iterations (line 32 to 51), the process is fairly similar: fast operations
are performed on the accumulator, and every time it overflows,
the big number is updated accordingly (𝑟 = 𝑟 × 𝑤). However, in
this second part, the big number 𝑟 is also squared at each iteration
(line 42) to keep it updated, making the overall iteration longer.

3.3 Vulnerability Details

3.3.1 Targeting the modular exponentiation. Since no constant-
time flag is set, and the base 𝑔 is either 2, 5 or 19, the optimized
exponentiation is performed during the verifier computation. In par-
ticular, the secret exponent 𝑥 = 𝐻 (𝑠𝑎𝑙𝑡 | | 𝐻 (𝑖𝑑 | | 𝑝𝑤𝑑)) is directly
related to the password, which implies that recovering information
on the exponent would provide the attacker enough information
to perform an offline dictionary attack reducing the set of possible
passwords. Information is leaked in several ways.

First of all, skipping the leading zero bits makes the overall exe-
cution time depends on log2 (𝑥): the number of required iterations
gives us the number of leading 0s in the exponent.

Moreover, we note that square-and-multiply might leak informa-
tion as well, since the execution of each iteration depends on the
value of the bit being processed. Unfortunately, performing these
operations on processor words makes them very fast. Consequently,

1 def BN_mod_exp_mont_word(g, x, n):
2 nbits = BN_nb_bits(x)
3
4 # w is the word accumulator, used to make fast computations
5 # Set it to g since the exponentiation starts after the first bit to 1
6 w = g
7
8 # Do the optimized square and multiply on processor word only,
9 # until w overflows
10 for b in range(nbits−2, −1, −1):
11 # Square at every step
12 next_w = w∗w
13 if (next_w / w) != w: # overflow
14 w = 1
15 break
16 w = next_w
17 # Multiply if bit is 1
18 if BN_is_bit_set (x , b) :
19 next_w = w ∗ g;
20 if (next_w / g) != w: # overflow
21 w = g
22 break
23 w = next_w
24
25 # Once the word accumulator overflowed, we need a big number to
26 # store its Montgomery representation as a "long term" accumulator.
27 r = BN_to_montgomery_word(w, n)
28
29 # Then get back to the square−and−multiply, with the additional
30 # constraint to update the long term accumulator r every time the
31 # word accumulator overflows .
32 for bit in range(b, −1, −1):
33 # Square at every step on the processor word
34 next_w = w ∗ w;
35 if (next_w / w) != w:
36 # If it overflows , update r , and reset the word
37 r = BN_mod_mul_word(r, w, n)
38 next_w = 1
39 w = next_w;
40
41 # We update the Montgomery representation by squaring at each step
42 r = BN_mod_mul_montgomery(r, r, n)
43
44 # If the bit is set , we multiply by g
45 if BN_is_bit_set (x , bit) :
46 next_w = w ∗ g;
47 if (next_w / g) != w:
48 # If it overflows , update r , and reset the word
49 r = BN_mod_mul_word(r, w, n)
50 next_w = g;
51 w = next_w;
52
53 # Finally , set r = r∗w
54 if w != 1:
55 r = BN_mod_mul_word(r, w, n)
56
57 return BN_from_montgomery(r)

Listing 2: Modular exponentiation as performed by

OpenSSL. Code has been reorganized to be more readable,

and a python-like syntax has been adopted to save up space.

it is hard to distinguish them in practice, even by using high res-
olution cache attacks, such as Flush+Reload. Hence, recovering
information during the first loop (line 10 to 23 of Listing 2) is hard.

However, starting from the first overflow on the accumulator
𝑤 , the Montgomery representation is involved, making each itera-
tion significantly longer, therefore more distinguishable. Hence, an
attacker can exploit the Flush+Reload attack to monitor the mem-
ory line corresponding to the squaring of 𝑟 at each iteration (call
to BN_mod_mul_montgomery on line 42 of Listing 2). This function
being only called once every iteration, knowing when it is called
allows the attacker to distinguish iterations from one another.

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

In addition, if𝑤 overflows, an additional call to BN_mod_mul_word
is performed (line 37 and 49 of Listing 2), making the particular
iteration significantly longer. Therefore, the delay between two
different iterations (or two calls to BN_mod_mul_montgomery) will
be longer. This delay can be increased by performing a Performance
Degradation Attack (PDA) on BN_mod_mul_word to make overflow
iterations even longer to execute, hence easier to identify.

Consequently, an attacker is able to distinguish iterations, and to
determine whether an overflow occurs. The principle of our attack
is based on the fact that the number of iterations between two
overflows is directly related to the binary sequence of the exponent
being processed. Thus, the attacker can guess some bit patterns
inside the exponent, which we detail below.

3.4 Exploiting the Leakage

The possible bit patterns we can observe between two overflows
of the accumulator𝑤 depend on two parameters: the generator 𝑔,
and the bit size of the processor word in a particular architecture.
To demonstrate the attack, and without loss of generality, we fix
the values for both parameters in the following sections. In order
to meet the experimental setup we were using, we will consider𝑤
as a 64-bit word, which is the case for any x64 processor.

3.4.1 Choice of the Generator. The choice of the used generator
is motivated by two major criteria. First, we consider the securi-
ty/performance ratio offered by all standardized groups: groups
1024, 1536 are discouraged because of their low security. Similarly,
group 2048 only provides enough security until 2030 [7]. Hence,
higher order groups are more likely to be used. Finally, groups 6144
and 8192 may cause performance issues for some usage and only
bring unnecessary security. Hence, a reasonable choice would be
to use either group 3072 or 4096, both using a generator 𝑔 = 5.

Next criterion is only valid from an attacker perspective: an
attacker would prefer a generator allowing to recognize as many
patterns as possible. Indeed, using 𝑔 = 19 allows us to extract more
information on average using the patterns alone. However, we
show that 𝑔 = 5 is the most interesting candidate when combining
the pattern-related leak and the leak from the leading bits format.
Additionally, it is more likely to be used in practice (𝑔 = 19 being
reserved to group 8192). Henceforth, we fix the generator to 𝑔 = 5
in the following sections. We stress that for other values of 𝑔, the
same reasoning can be applied, but results in different possible
patterns, and a lower average leak. For the sake of completeness,
we provide a full study for all standard values of 𝑔 in Appendix A.

3.4.2 Identifying bit patterns. Assume we start with a fresh ac-
cumulator 𝑤 = 𝑔, meaning we either start the exponentiation, or
we overflowed and processed a bit set to 1 (otherwise𝑤 = 1, and
processing 0 bits would not modify the value𝑤).

Now, we can generate all combinations leading to an overflow on
𝑤 by applying the square and multiply on different bit sequences,
and stop when we overflow. Thus, we identified two cases: (i) if the
first two bits are 1, an overflow occurs after 3 iterations (for 111
and 110); (ii) otherwise, an overflow occurs after 4 iterations.

Let ℓ be the maximum bit length of the exponent, and let 𝑇 =

{𝑣,𝑉 }ℓ be the trace representing the list of iterations corresponding
to the exponentiation. Here, 𝑣 denotes a classic iteration (processing

either a 0 or a 1), and𝑉 denotes an iteration where an overflow of𝑤
occurs, i.e., an iteration where line 37 or 49 of Listing 2 is executed.

An attacker is able to recover such a trace by using Flush+Reload.
Let 𝑏 ∈ {0, 1} denote a bit of unknown value, and 𝑡 be a chunk of
the trace representing the operations between two overflows. We
can convert our trace 𝑇 into a set of possible values by extracting
information on each chunk 𝑡 as follow:

• A chunk 𝑡 = 𝑉𝑣𝑣 , 𝑡 = 𝑉𝑣 or 𝑡 = 𝑉 is impossible, since at
least 4 operations are needed to get the overflow.

• If 𝑡 = 𝑉𝑣𝑣𝑣 :
– We know that 𝑤 = 𝑔 at the first iteration following the
reduction (otherwise an additional iteration is needed to
overflow), hence the first bit processed is a 1: 𝑡 = 1𝑏𝑏𝑏.

– An overflow in 3 iterations with𝑤 = 𝑔 is only possible if
the next two bits are 11. We end up with 𝑡 = 111𝑏.

• If 𝑡 = 𝑉𝑣𝑣𝑣𝑣 , we cannot recover the exact bit values, but we
can reduce the set of possible values:
– If𝑉 = 1, 𝑡 will be in the set {110𝑏𝑏, 10𝑏𝑏𝑏}. Otherwise, the
accumulator would have overflowed one iteration before.

– Otherwise, we meet the previous condition with a leading
zero and get 𝑡 = 0111𝑏.

We note 𝑦𝑦𝑦𝑦 ∈ {110𝑏, 10𝑏𝑏, 0111} the bits that take one of
these seven possible patterns. Hence, 𝑡 = 𝑦𝑦𝑦𝑦𝑏

• If 𝑡 = 𝑉𝑣...𝑣 with 𝑙𝑒𝑛(𝑡) = 𝜆 > 5, the firsts 𝜆 − 5 bits of 𝑡
(including the leading 𝑉) are 0. Hence 𝑡 = 00..0𝑦𝑦𝑦𝑦𝑏

On the last chunk of a trace, we will only be able to guess that
leading bits are zeros if its length is greater than five, because we
do not know when the accumulator would have overflowed.

3.4.3 Bits Pattern Parser. We designed an automated parser to
interpret the information leaked by our spy process. Our parser
produces guesses for as many bits values as possible.

Vvvvv Vvvv Vvvvvv Vvvvv Vvvvv Vvvvv Vvvv
yyyyb 111b 0yyyyb yyyyb yyyyb yyyyb bbbb

Listing 3: Example of trace interpretation. First line is the

original trace, recovered using Flush+Reload, the second

one is the interpretation.

Listing 3 presents an example of how we can interpret a trace
to recover part of the bits. Strictly speaking, in our example, we
are able to only recover 4 bits. However, each 𝑦𝑦𝑦𝑦 can only take
seven possible values (i.e., 110𝑏, 10𝑏𝑏 and 0111), which greatly limits
the possible values of the exponent. As mentioned previously, we
cannot deduce information on the last chunk.

3.4.4 Acquiring more information. In case the information recov-
ered from a single session establishment does not allow to prune
enough passwords from the dictionary, the attacker can simply
perform the attack on a second session, and change the salt trans-
mitted by the server. Thus, the attacker will get different execution
traces corresponding to the same password. Next, we discuss the
amount of leaked data from a single session both theoretically
(subsection 3.5) and experimentally (section 4).

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

3.5 Theoretical Amount of Leaked Information

The value of the exponent 𝑥 is the output of a cryptographic hash
function of bit-length ℓ . In this context, we can compute the av-
erage leakage based on the length ℓ and the probability to meet
the different patterns in a uniformly distributed bit string (defined
by the value 𝑔 of the generator). All following statements hold for
𝑔 = 5, and detailed computations for all standard values of 𝑔 can be
found in Appendix A.

Our spy process does not build a trace for the leading bits. The
reason is twofold. First, the exponentiation starts at the MSB of the
exponent. Second, the first iterations are fast and hardly observable,
since their corresponding computations are performed without
Montgomery representation. For 𝑔 = 5, we observe on average 6.75
leading bits, and can recover L𝑙𝑒𝑎𝑑 = 4.5 bits of information.

Next, on the remaining bits, we are able to identify patterns as
described in subsubsection 3.4.2. Given a trace of 𝑘 bits, we can
estimate the average length E[𝑁] of a pattern and the average
information E[𝐿] leaked by each pattern to get the information we
can recover: L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑘) = E[𝐿] × 𝑘/E[𝑁] .

By combining these two sources of leakage, we get the total
leakage based on the bit-length ℓ of the exponent:

L(ℓ) = L𝑙𝑒𝑎𝑑 + L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (ℓ − 6.75) ≈ 0.4 · ℓ + 2.06.

We stress that using a hash function with larger output would
only increase the exponent size, thus leak more information.

3.6 Mounting an Offline Dictionary Attack

The above leakage allows an attacker to recover a significant part
of 𝑥 . Since the secret value is only defined by the password and
some public values, they can compute various candidates for 𝑥 and
check whether the outcomes would match the recovered part.

If multiple passwords match the pattern, the attack is repeated
by modifying the salt (which is sent unprotected by the server), and
thus a new 𝑥 corresponding to the same password is observed.

Since a cryptographic hash function is expected to behave like
a random oracle, the digest corresponding to an invalid password
will match the 𝑛 bits of our trace with probability 2−𝑛 . Therefore,
an attacker recovering 𝑘 bits of information on an exponent can
expect to eliminate all candidates in a dictionary of 2𝑘 entries.

Pre-computations are still possible. Indeed, hashing password
candidates can be performed before the attack. However, this needs
to be done for each client username and each salt. In order to reduce
the effort of pre-computations, the attacker can force the use of
a fixed salt, and only varies username. This pre-computation is
pretty fast considering there is only two hashes to compute on
small data. Specialized hardware instructions may be available on
recent platforms, significantly speeding up the process.

3.7 Consequence of Password Recovery

As stated is in section 2, SRP authentication is based on the knowl-
edge of the password (by the client) and the verifier (by the server).
The vulnerability we described allows an attacker to recover enough
information about a password-related value to perform a dictionary
attack on any practical dictionary size, even with the use of a small
output hash function such as SHA-1.

Assuming the attacker knows the password, they can: (i) imper-
sonate the client; (ii) impersonate the server (since the attacker is
able to compute the verifier from the password).

The required measurements being as fast as the session estab-
lishment, the overall complexity is dominated by the dictionary
reduction. If an attacker has a large computational power, this at-
tack can be performed on the fly. Hence, the attacker could gain a
full MitM position and passively or actively process all data trans-
mitted through the secure channel. The attack is still interesting
even when it might take some time because of bigger dictionaries
or more restricted computational power. Indeed, recovering the
password after the sessions still allows the attacker to impersonate
the client and/or gain active MitM position in all future sessions.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

All experiments were performed on a Dell XPS13 7390 running on
Ubuntu 20.04, kernel 5.4.0-58, with an Intel(R) Core(TM) i7-10510U
and 16 GB of RAM. Binaries were compiled with gcc version 9.3.0-
17ubuntu1 20.04 using their build script with the default configura-
tion (optimization included).

We successfully reproduced our experiments in a Docker con-
tainer running on the same hardware. This Docker is available in
our github repository2. The container includes all elements needed
to reproduce our experiments, from data acquisition with the victim
program, to the dictionary attack recovering the password.

We used the FR-trace program of Mastik v0.02 [49] as a spy
process performing both Flush+Reload and PDA. We ran all tests
on OpenSSL version 1.1.1h, but a quick code analysis suggests that
all versions of OpenSSL up to v1.1.1i included are also vulnerable.

4.2 Practical Attack on OpenSSL

4.2.1 Trace collection. To demonstrate our attack, we used a
simple C program with passwords drawn randomly from a
dictionary to compute the verifier by the OpenSSL function
SRP_compute_client_key. As motivated earlier, we used the gen-
erator 𝑔 = 5. Specifically, we worked with the 6144 bit MODP group,
described in [43], so the client uses the largest modulus available
with this generator. Group upgrade/downgrade attacks are dis-
cussed in subsection 2.3. Other parameters (the salt for instance)
are randomly generated to avoid the setup of a server.

We then run the spy process collecting our traces that distin-
guish the different iterations and that determine in which one an
accumulator overflows.

Once the spyware runs as a background process, the execution
of our victim program will produce an execution trace. Figure 2
depicts a part of such a trace. The red line represents the threshold
we used during the Flush+Reload: any value below this threshold
means an execution of the monitored code (i.e. a new iteration).
Any value above the threshold means that the victim is performing
some other computation. In this trace sample, we can identify two
groups of iterations, separated by a significant time gap (horizontal
gap). This gap is what identifies an overflow: the iteration is slightly
longer because of the additional operations and the delay caused

2https://gitlab.inria.fr/ddealmei/poc-openssl-srp

https://gitlab.inria.fr/ddealmei/poc-openssl-srp

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

250 300 350

50

100

150

200

Time

Cy
cl
es

ne
ed
ed

to
re
lo
ad

Figure 2: Partial execution trace using the password

dAdinretAm, username admin and salt 0102030405060708.
Any value below the threshold represents an execution of

the monitored instruction (i.e. a different bit being pro-

cessed). We can identify two groups, with the horizontal gap

between them representing an overflow of the accumulator.

by the PDA. The full trace is presented in Appendix B. We note that
the trace collection is as fast as an SRP session establishment.

4.2.2 Trace interpretation. From the data acquired by the spy pro-
cess, we need to extract exploitable information on the exponent.
To avoid the cumbersome task of manually interpreting the trace
graph, we implemented a parser script taking a raw trace, and
outputting the list of pattern length composing the exponent.

The parser works as follows: after sanitizing the raw trace (by
removing trailing measurement detecting no activity, and the trace
header containing system information), we used some heuristic
methods to produce a more reliable trace.

First, outlier values are removed, and impossible patterns close
to the minimal pattern size are rounded up (these errors are usually
caused by the spy missing an iteration). In practice, it means that a
three-bit pattern is considered as a four-bit pattern. Likewise, any
isolated iteration (one or two-bit pattern) is removed from the trace,
since it can be considered as an error in the measurement, or the
consequence of a misprediction caused by the processor.

Then, we convert the trace into a readable form by only noting
the number of iterations for each chunk in the trace. We used this
representation as an input to our dictionary reduction program.

4.2.3 Dictionary reduction. This part of the attack is generic, since
it behaves as a classical dictionary partitioning attack, as seen
in [14, 44]. The idea is to take a list of potential passwords, and
see if each candidate matches the trace we collected on the secret
password. If the candidate does not match, we discard the password.
Otherwise, we keep it and can apply the same process on a new
leak (changing the salt for instance) to further reduce the list of
candidates until an online attack becomes reasonable.

Precise microarchitectural measurements being hard to get per-
fect, some minor errors may slip into our traces. Hence, in a realistic
scenario, we cannot expect to have a perfect match between the
trace we collect, and the real trace of the password. To circumvent

this constraint, we build a scoring system, by computing a differ-
ential score for each candidate based on how different it is to the
reference trace (see Appendix C for the detailed computation). For
each candidate yielding a score below a predefined threshold (set
to 10 in our experiments), the password is returned, along with
its score, as a valid candidate. If no candidate is returned (mean-
ing there is an issue with the trace), the lowest-score candidate is
returned as the most probable password.

4.3 Results

We tested our Proof of Concept on 100 different passwords, drawn
randomly from the Rockyou dictionary [37]. Since the exponent
generation behaves as a random oracle seeded by the password, the
username and the salt, we kept a constant value for the salt and
the username. Moreover, the password length and format do not
impact the exponent, nor the leaked information.

For each password, we repeated our attack 15 times, yielding
a total of 1500 different traces. Then, we parsed each trace inde-
pendently, and tried to recover the password in the dictionary. We
also computed the average number of traces needed to achieve a
reliable result by obtaining multiple traces on the same password.

4.3.1 Reliability of our measurements. In 96.9% of our experiments,
a single measurement is enough to find the password with high
probability. On the remaining 3.1%, namely the errors, the result is
clearly inconclusive since the score is above 20, whereas we often
get a score below 10 when the valid password is found. Repeating
the measurement twice was enough to achieve 100% accuracy.

It is worth noting that some measurements were totally inaccu-
rate for unknown reasons, resulting in an non-exploitable trace. In
this case, we performed the measurement again. This only repre-
sents a negligible amount of our measurements, and only occurred
during intensive testing sessions.

4.3.2 Average information per trace. Due to the quick iterations
prior to the use of the Montgomery representation (i.e. before the
first accumulator overflows), the beginning of the trace tends to
be noisy. Thus, we were not able to reliably and consistently guess
exactly how many MSB were skipped. Instead, we considered the
total number of detected patterns, otherwise stated, the number of
overflows on the accumulator during the exponentiation.

Our experiments show that we can guess 63.9 bits per trace on
average. However, not all these guessed bits are accurate. Indeed,
because of the noisy measurements, we notice an average difference
of 3.9 bits with the reference hash value computed from the secret
password. This small difference did not prevent us from correctly
recovering the password (thanks to our scoring technique).

It is interesting to see that, in theory, given an 160-bit exponent,
we expect an average leakage of 65.5 bits of information on 𝑥 (see
subsection 3.5 for details). Our practical results show that we are
able to extract almost as much information as we could expect from
a single measurement. The small loss of information, nearly 8.4%,
comes from the lack of precision in the beginning of the trace.

We stress that using a stronger hash function (SHA-256 or SHA-
512 for instance) would result in a longer digest, allowing to acquire
even more information on the exponent and the password.

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

Table 1: Cost of dictionary reduction for various dictionaries

Dictionary Nb. entries Reduction time Cost ($)

Rockyou 1.4 · 107 0.00029 s 2.6 · 10−6
CrackStation 3.5 · 107 0.00073 s 6.6 · 10−6
HaveIBeenPwned 5.5 · 108 0.014 s 1 · 10−4
8 characters 4.6 · 1014 2h40 87.23

4.3.3 Practical dictionary attack. As discussed in subsection 3.6,
recovering 𝑘 bits of information on the exponent allows an attacker
to lower the probability of having a false negative to 2−𝑘 , while
eliminating wrong passwords.

The bottleneck of the attack being the dictionary reduction, we
estimated its complexity in practice. As OpenSSL relies on SHA-
1 in SRP, the cost of testing each password is dominated by the
complexity of computing two SHA-1 digests on small data. For the
following computation, we will assume that our attacker uses a
single, publicly available, Amazon AWS p4d.24xlarge instance that
runs eight NVIDIA A100 GPUs. Based on Hashcat benchmark for
SHA-1 [17], a single GPU can compute 6.1 ·109 password candidates
per second. Therefore, a single AWS instance can roughly evaluate
4.8 · 1010 password candidates per second.

Table 1 presents the cost for reducing some relevant dictionaries.
We used the current price of an Amazon AWS p4d.24xlarge instance
as a reference [4], which is currently 32.77$ per hour. The dictio-
naries that we present have been used in previous work [14, 44] to
demonstrate how practical offline dictionary attacks are on PAKEs.

Considering the size of these dictionaries and our experimental
results, a single (reliable) measurement allows an attacker to recover
enough information on the password to reduce the entire dictionary.

5 IMPACT ANALYSIS

OpenSSL is one of the most popular and deployed cryptographic
libraries [36]. This explains why their SRP implementation is used
as a reference for many third-party projects: both amateur and
industrial. More interestingly, other popular languages, such as
JavaScript, Ruby and Erlang rely on OpenSSL for big numbers
operations. To our surprise, we discovered that the scope of our
vulnerability is much broader than the OpenSSL TLS-SRP.

Since our attack targets the dynamic library, our exploit works on
other vulnerable codes, regardless the used programming language
as long as it is linked to the vulnerable version of OpenSSL. Due to
the wide range of impacted projects, we did not implement each
attack scenario, but designed an exploit for OpenSSL, node-bignum,
Apple HomeKit ADK, and PySRP and only evaluated the impact
for other projects.

In this section, we go through the most popular open-source and
proprietary projects that we found to be vulnerable. In most cases,
we noticed that the big numbers or the cryptographic libraries of
a specific language is based on OpenSSL, making any SRP project
based on this standard library vulnerable. Due to the wide variety
of projects, and the low code transparency of closed-source solu-
tions, the real scope of our vulnerability is hard to establish. Thus,
we underline that this impact analysis is far from being exhaus-
tive. Furthermore, practical attack consequences may vary between

Table 2: Non-exhaustive list of vulnerable projects. Projects

with a
∗
are not patched. Vulnerable versions are inclusive.

Software/Library Language Vulnerable versions

OpenSSL C Up to v1.1.1i
Apple HomeKit ADK C no release
CMaNGOS C no release∗
GoToMeeting closed source Up to v10.15.0∗
GoToWebinar closed source Up to v10.15.0∗
GoToTeaching closed source Up to v10.15.0∗
GoToRemote closed source Up to v10.15.0∗
node-bignum JavaScript Up to 0.13.1∗
node-srp JavaScript Up to 0.2.0∗
node-srp-typescript JavaScript Up to 0.3.0∗
caf_srp JavaScript no release
OTP Erlang Up to 23.2.1
strap Elixir no release∗
srp-elixir Elixir 0.2.0∗
ruby/openssl Ruby Up to 2.2.0∗
sirp Ruby Up to 2.0.0∗
pysrp Python Up to 1.0.16
xbee-python Python Up to 1.3.0∗
proton-python-client Python no release

applications depending on the context, and thus can hardly be nar-
rowly defined. A general note on password recovery consequences
in SRP can be found in subsection 3.7. Table 2 sums up the vulnera-
ble projects that we identified in the wild.

5.1 TLS-SRP using OpenSSL

As release 1.0.1, OpenSSL offers an implementation for TLS-SRP [43]
that uses a shared password to establish a secure session. There
are several reasons to use TLS-SRP. First, using password-based
authentication does not require reliance on certificate authorities.
Second, it provides mutual authentication, while TLS with server
certificates only authenticates the server to the client. Third, phish-
ing attacks are harder to perform, since the authentication does not
involve to check the URL being certified.

Our main contribution is illustrated by exploiting this SRP. Thus,
one might argue that the scope of our work is limited for two
reasons. Firstly, TLS-SRP is not supported by any browser, and
therefore is not widely used over the Internet. Secondly, TLS 1.3
does not provide any support for PAKE yet [8], and might never
support SRP, since it is not part of the CFRG PAKE selection [16].

Despite these reasons, we argue that the interest of our work
is much broader than just TLS-SRP. Indeed, we found that the
OpenSSL implementation is used as is inmany other projects. In par-
ticular, the vulnerability is caused by an insecure call to the function
BN_mod_exp, without setting the constant-time flag. Developers are
not to blame here, because the documentation of BN_mod_exp never
mentions that, by default, this function is not constant time if the
base fits in a processor word. This is unfortunately the case in SRP,
and might be also in other protocols.

https://www.openssl.org/
https://github.com/apple/HomeKitADK
https://github.com/cmangos/mangos-classic
https://support.goto.com/meeting
https://support.goto.com/webinar
https://support.goto.com/training
https://support.logmeininc.com/gotoassist-remote-support
https://github.com/justmoon/node-bignum
https://github.com/mozilla/node-srp
https://github.com/antoine-pous/node-srp-typescript
https://github.com/cafjs/caf_srp
https://github.com/erlang/otp
https://github.com/twooster/strap
https://github.com/thiamsantos/srp-elixir
https://github.com/ruby/openssl
https://github.com/grempe/sirp
https://github.com/cocagne/pysrp
https://github.com/digidotcom/xbee-python
https://github.com/ProtonMail/proton-python-client

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

5.2 Stanford Reference Implementation

The Stanford University has dedicated a web page for SRP, since the
project started at it. The website hosts some pages describing the
protocol evolution and its various use-cases. Namely, it provides
reference implementations: a standalone Java implementation (re-
lying on the default JDK), as well as a C implementation (relying
on a third-party library to handle big numbers and cryptographic
operations). We have studied both.

The Java implementation is completely flawed, but out of the
scope of our contribution. We give an overview of the problems
in Appendix D, and strongly discourage its usage.

As for the C implementation, it only performs SRP-related op-
erations: manages messages and parameters, keeps track of the
protocol state and calls the appropriate callbacks. The underlying
mathematical operations are provided by a third-party library. The
project supports and recommends the following libraries: OpenSSL,
Cryptolib, GNU_MP, MPI and TomMath/TomCrypt. Among these
libraries, OpenSSL is likely to be the choice of many developers, due
to its large support in many systems. Our study shows that the mod-
ular exponentiation API for OpenSSL uses the vulnerable function
call of BN_mod_exp, making this default reference implementation
vulnerable. Moreover, we verified that the generic attacks discussed
in subsection 2.3 are possible, since both the salt and the group
parameters are transmitted without any protection.

The Stanford implementation draws its importance from the
fact that it is one of the first available C implementations with no
restrictive license. Therefore, it is fair to assume that it be using else-
where. Nevertheless, it is not clear how many projects are impacted,
especially the proprietary ones whose code is not open-source.

5.3 Apple HomeKit Accessory Development Kit

Apple HomeKit allows users to communicate with and control
accessories (going from garage doors to smart light-bulb or doorbell)
through a dedicated application. This communication goes through
the HomeKit Accessory Protocol (HAP) that is deployed on more
than a billion Apple devices.

When a new device is first introduced into the network, the
user must pair it with the application. To do so, a secure session is
established with a modern variant of SRP. Namely, the following
changes are made (Stanford’s website is explicitly cited): (i) SHA-
1 is replaced by SHA-512, (ii) only the 3072-bit modulus group
from [43] is supported. In this setup, the application acts as a client,
the device is the server holding the verifier, and the password is a
code displayed on the device. The SRP session is used to exchange
long-term Ed25519 keys, that are later used for all future sessions.

Apple’s specification mandates a device code conforming to
XXX-XX-XXX, meaning only 108 passwords are possible. Considering
such a restricted set of password candidates and the reliability of
our measurement, an attacker would be able to guess the code
on-the-fly from a single session, and recover the long term key.

If commercial accessories must use Apple’s HomeKit ADK
through the MFi program, the open-source version relying on
OpenSSL is available on Github [5]. This implementation calls
BN_mod_exp on fresh big numbers (without modifying any flag)
on the client device. Hence, it is vulnerable to our attack. The large
exponent size, because of SHA-512, allows the attacker to get about

205.7 bits of information, which are more than needed to recover
the device code. In this context, the consequences of our attack
are disastrous: an attacker would have full control on the targeted
smart device if they can impersonate the user during the pairing.

As a side note, we stress that our current attack focuses on par-
ticular properties found on Intel processors, which are usually not
valid for ARM processors (commonly used on iPhones, iPads and
recent Mac). Namely, non inclusiveness of the LLC and the absence
of a user-land flush instruction make it harder to perform cross
core attacks. However, all these obstacles can be circumvented as
demonstrated in the work of Lipp et al. [32]. We encourage readers
to refer to this article for further details on how to adapt the attack
for ARM architecture. Furthermore, Mac computers manufactured
before late-2020 integrates an Intel processor, and the Home appli-
cation can be installed on them, making the current attack valid on
a significant number of machines.

5.4 LogMeIn Tools

LogMeIn provides various tools for remote communications and
collaborations services. We analyzed four of these tools: GoToMeet-
ing (designed for visio-conferences), GoToWebinar (designed for
webinar), GoToTraining (designed for teaching classes) and GoToAs-
sit (remote IT assistance). All these tools have a common point:
they rely on SRP for user authentication [33]. Since these tools
are proprietary, we performed some reverse-engineering on their
Windows 10 binaries, and found that they use OpenSSL for SRP.
The impact of our attack varies according to the targeted tool.

Concerning GoToMeeting, SRP is used to authenticate users in
their visio-conference solutions. Our attack allows the recovery
of users’ passwords, and therefore the solution would suffer from
users impersonation. Similar consequences are related to GoToWe-
binar and GoToTraining, since they share a significant part of their
security specifications with GoToMeeting [34].

As for GoToAssist, SRP is used to establish the secure session
protecting screen-sharing, keyboard/mouse control, and diagnostic
data and text chat [33]. Thus, an attacker recovering the secret
password may be able to put themselves in an active MitM po-
sition, achieving complete control over the victim computer by
impersonating the IT support, until the end of the connection.

5.5 ProtonMail Python Client

According to the security description of ProtonMail [1], each user
defines two passwords: the mailbox password that is used to protect
the private key encrypting messages, and the login password that
is used along with SRP to provide remote authentication.

ProtonMail customizes their SRP implementation with several
technical choices. First, they replaced SHA-1 by a combination of
bcrypt and expanded SHA-512, so the attacker would require more
time to compute the digest for each candidate (an attacker could test
roughly 4.2 · 105 passwords per second, on the setup described in
subsubsection 4.3.3). Note that using such a long exponent (2048 bits
exponent) would leak a huge amount of information through our
attack. Second, they use non-standard group parameters. Indeed, in
order to avoid large scale pre-computation attacks, they generate a
new 2048-bit modulus for each user. However, since the generator
is fixed to 𝑔 = 2, our attack still applies.

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

Note that recovering the login password would allow an at-
tacker to connect to the victim account, but not have access to their
messages or their private key (assuming a different password has
been used). However, the login password is shared with ProtonVPN.
Therefore, recovering it allows the attacker to take complete control
of the victim’s ProtonVPN account, thereby benefiting from their
subscription and viewing sensitive data, such as billing information

It is worth noting that not all the implementations of ProtonMail
are concerned by our attack. For instance, we did not find any
OpenSSL call in the JavaScript client. In fact, only the python client
is vulnerable, as it is based on the project pysrp. More details about
this project are found in Appendix E.

5.6 Big Numbers Libraries and SRP in the Wild

To handle big integers, high-level programming languages typically
have two choices: (i) re-implement a library or a package to give
support; (ii) use an implementation that is provided by a low-level
language. In practice, the latter is a quite popular approach, espe-
cially when we consider efficiency during cryptographic operations.

A preliminary review of core libraries of various open-source
languages reveals that OpenSSL, through different wrappers, is
often used to manipulate big numbers. Therefore, these projects in-
herit the OpenSSL vulnerability. In particular, we observed that all
SRP projects based on OpenSSL, or using a vulnerable SRP project,
can be exploited by our attack. Namely, we identified the vulner-
ability in a JavaScript node to handle big numbers (node-bignum,
used in more than 2500 other projects that we did not analyze),
Ruby’s official OpenSSL package, Erlang and Elixir OTP library and
a popular Python SRP implementation. For more information on
these vulnerable projects, we defer the reader to Appendix E.

6 MITIGATION & DISCLOSURE

Our attacks were performed on the most updated versions of the
evaluated projects, as published at the time of discovery. Following
the practice of responsible disclosure, we timely disclose our find-
ings to all projects mentioned in Table 2. We further participated
in the design and the empirical verification of the proposed coun-
termeasures. We describe a brief overview of our communications.

The Case of OpenSSL. We started by contacting OpenSSL fol-
lowing their security policy. They acknowledged the attack and
were able to reproduce it using our docker container. Therefore,
they decided to mitigate the attack and include the patch in the
next release. To our surprise, they refused to publish a related CVE
because they claimed that cache attacks are out of scope of their
threat model. We argued back that a CVE may help to shed some
light on the problem, as we cannot reach all the proprietary solu-
tions relying on OpenSSL. However, the final decision was not to
issue any CVE.

Then, we discussed with OpenSSL the best fix to deploy.
Everyone agreed that the mitigation should be to prevent
the function BN_mod_exp from calling the vulnerable function
BN_mod_exp_mont_word. There are two options to apply this. First,
the function BN_mod_exp is re-written, so that it never calls the
vulnerable function. Second, the call of the function BN_mod_exp is
modified, so that the flag BN_FLG_CONSTTIME is set on the exponent.

No option was perfect. Indeed, the first option would have in-
creased the execution time of other code using the optimized modu-
lar exponentiation. However, it might fix all projects implementing
SRP through the big integers API of OpenSSL. The latter option is
easier to test and validate, as it solely concerns the SRP implemen-
tation in crypto/srp/srp_lib.c. However, it only fixes the particular
SRP implementation of OpenSSL, but not the projects directly call-
ing BN_mod_exp. OpenSSL maintainers took a variant of the second
option, as they also set the constant-time flag on the result of the
function BN_mod_exp. Thus, we had no choice, but to contact the
vulnerable implementations that we previously identified.

It is worth noting that the patch introduced some overhead, since
the optimized function is not called anymore. We empirically evalu-
ated the incurred overhead by running our benchmark 30000 times
with random values. Our results show an overhead of 11.18% on the
execution of SRP_Calc_client_key. This overhead might explain
the rational about keeping the function BN_mod_exp_mont_word
that might be used in applications requiring fast execution.

The Remaining Projects. We ended up by contacting the remain-
ing projects, since the OpenSSL patch does not cover them. Two
projects are distinguished: Ruby and Erlang/OTP. Indeed, they
quickly patched their implementation after our report and our vali-
dation of their suggested fix. Ruby ranked our vulnerability 8.7/10 in
terms of severity, and took care of notifying all Ruby-based projects.
We designed and integrated a patch for four other projects: Proton
Mail (who acknowledge our vulnerability through their bug bounty
program), the JavaScript node-bignum, the Python pysrp, and the
Apple Homekit. The patch for node-bignum is still to be integrated.
As for World of Warcraft, they took some time to acknowledge our
attack, but we are still in discussion to agree on the best solution for
their project. The issues identified in GoTo tools and Digi Xbee have
been assigned CVE-2021-25279 and CVE-2021-25280 respectively,
but we did not get further answer from them. Finally, we mention
the case of cafjs, whose maintainer recognized the vulnerability,
but never replied to our subsequent emails proposing a mitigation.

7 RELATEDWORK

Cache attacks represent a special case of timing attacks on soft-
ware implementations, exploiting cache and micro-architectural
properties of the victim station. First introduced by Bernstein on
AES [12] in 2005, they took some time to be fully popularized. The
Flush+Reload attack, first proposed by Yarom and Falkner in [50],
leverages specific properties, found in Intel processors, to soften the
requirements and allow high resolution cross-core attacks. Yarom
et al. demonstrated their attack by extracting nearly all bits of RSA
secret exponent in GnuPG library. This attack has been extended
and made more reliable by pairing it with a Performance Degrada-
tion Attack in [3] by Allan et al. as explained in section 2. Yarom
proposed the Mastik toolkit for exploiting such vulnerabilities [49].
For the ARM processors, this kind of attack has been ported by
Lipp et al. in [32], explaining how to bypass many obstacles.

The big integer modular exponentiation of OpenSSL has been
a popular target for side channel attacks since the work of Perci-
val in 2005 [39], recovering secret exponent bits used as lookup
indexes during the Sliding Window Exponentiation (SWE). Con-
sequently, OpenSSL introduced a constant-time flag to identify

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

sensitive BIGNUM and process them securely. It also resulted in a
constant-time alternative for the modular exponentiation. However,
related vulnerabilities continue to exist. Indeed, flag inheritance,
legacy code and independent update of the complex code base have
repeatedly led to using insecure variant of sensitive operations
on secret inputs. Focusing only on the modular exponentiation,
the work of Garcia et al. on DSA [22] describes how a lack of flag
inheritance caused DSA to use the insecure SWE when signing,
thereby exposing to the attack described by Percival [39]. Using
Flush+Reload and a PDA, they were able to improve the original
attack, and recover the full private key with a reasonable amount
of measurements. In 2019, Aldaya et al. outlined the use of several
known side-channel vulnerable functions in OpenSSL [2]. Although
the core of their work is the RSA key generation process (partic-
ularly the binary GCD), they mention a security risk related to
the use of an insecure SWE during the Miller-Rabin primality test.
This could be exploited to leak information on the primes, using a
similar attack as described in previous works. In 2020, Garcia et al.
described another attack on DSA [23] due to an insecure call to the
modular exponentiation when processing a DSA private key of a
specific format. In this context, the default modular exponentiation
(SWE) is called to compute the corresponding public key, and the
key can be recovered accordingly.

It is true that our contribution also arises from bad flag manage-
ment, but we successfully show another scenario in which different
insecure functions are called because of the exponent size. In con-
trast to previous work, we are able to recover enough information
with one single trace, by leveraging pattern identification rather
than bit-by-bit recovery. Moreover, since we consider the case of
PAKE, any bit of information can be used to drastically reduce the
set of possible inputs. Thus, we provide a practical use-case, where
we do not need to recover the complete value that we are looking
to guess. Instead, any bit of leaked information actually breaks the
security property of the protocol that, we recall, is designed to resist
offline dictionary attacks.

Recently, some software attacks have targeted the Dragonfly
PAKE implemented in WPA3 by Vanhoef and Ronen in [44]. The
cache attack they described has been extended to a more efficient
attack on FreeRadius and iwd implementations in [14] by Braga
et al. Both works exploit the hash-to-curve function mapping a
password to an elliptic curve point. These works show that PAKE
protocols are particularly vulnerable to any secret leakage because
of the nature of passwords.

SRP is a widely used protocol without security proof despite a
formal analysis performed by Sherman et al. in [42]. Some attacks
have been identified and lead to the version 6a of this protocol.
However, there is still no real attack on this protocol. In [45], a bug
has been identified on cSRP (affecting also PySRP) and srpforjava
implementations. Instead of computing 𝑘𝑣 + 𝑔𝑏 mod 𝑝 , the imple-
mentations calculate 𝑘𝑣 + (𝑔𝑏 mod 𝑝), allowing to recover the most
significant bits of 𝑣 and hence perform a dictionary attack. To the
best of our knowledge, our attack is the first cache attack to be
performed on SRP.

8 CONCLUSION

Despite being disapproved by some of the crypto community, the
SRP protocol is still widely deployed in practice. Our work analyzes
the security of some popular SRP implementations. In this paper,
we identified that the function BN_mod_exp of OpenSSL, which is
often used in SRP code, is called in a way that leads to non-constant
time execution of the protocol. Then, we exploited this property
through cache attacks in order to leak some sensitive data. The
leakage revealed enough data about the password to perform a
complete offline dictionary attack against SRP. We showed that our
attack is practical, since it only requires one single trace, despite
the noise of cache measurements. In addition, it is quite efficient as
the reduction of some common dictionaries is almost instantaneous
with modern resources at negligible cost.

Our contribution is part of a long line of attacks caused by a
flawed mitigation system, designed to prioritize performance over
security, even for sensitive operations. Indeed, sensitive inputs need
to be explicitly flagged to call secure implementations. This partic-
ular design makes the patching process messier, since the OpenSSL
patch is only valid for their SRP implementations. Hence, all vul-
nerable projects need to independently provide their own patch.
This unfortunate situation makes it tedious to fix all the impacted
projects, as we might have missed most of the proprietary ones.
Thus, we believe that secure implementations should be provided
by default when the associated overhead can be afforded.

A final long-term lesson of our work is that cache attacks are
now proved to be practical, and represent a real danger. We also
show that any leakage inside PAKE protocols can be successfully
exploited because of the low entropy of passwords. Standards and
RFC proposals already take these threats into account, and require
cryptographic implementations to be resilient against side-channel
attacks. We regret that mainstream libraries, such as OpenSSL, do
not include them on their threat model. Indeed, acknowledging and
patching is a good first step, but issuing a CVE would help raising
awareness within the community about these issues.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers for their time and
constructive feedback. Daniel De Almeida Braga is funded by the
Direction Générale de l’Armement (Pôle de Recherche CYBER). This
work was supported in part by the French ANR grant Cyberschool
ANR-18-EURE-0004.

REFERENCES

[1] Proton Technologies A.G. 2016. ProtonMail Security Features and Infrastruc-
ture. https://protonmail.com/blog/wp-content/uploads/2016/12/ProtonMail_
Authentication_excerpt.pdf

[2] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and
Billy Bob Brumley. 2019. Cache-Timing Attacks on RSA Key Generation. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019, 4 (2019), 213–242.

[3] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and Yuval
Yarom. 2016. Amplifying side channels through performance degradation. In
ACSAC. ACM, 422–435.

[4] Amazon. 2020. Amazon EC2 P4d Instances. https://aws.amazon.com/fr/ec2/
instance-types/p4/

[5] Apple. 2020. HomeKit Accessory Development Kit (ADK). https://github.com/
apple/HomeKitADK

[6] Hamza Assyad. 2018. Now generally available: Amazon CognitoAuthentication
Extension Library. https://aws.amazon.com/blogs/developer/now-generally-
available-amazon-cognitoauthentication-extension-library

https://protonmail.com/blog/wp-content/uploads/2016/12/ProtonMail_Authentication_excerpt.pdf
https://protonmail.com/blog/wp-content/uploads/2016/12/ProtonMail_Authentication_excerpt.pdf
https://aws.amazon.com/fr/ec2/instance-types/p4/
https://aws.amazon.com/fr/ec2/instance-types/p4/
https://github.com/apple/HomeKitADK
https://github.com/apple/HomeKitADK
https://aws.amazon.com/blogs/developer/now-generally-available-amazon-cognitoauthentication-extension-library
https://aws.amazon.com/blogs/developer/now-generally-available-amazon-cognitoauthentication-extension-library

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

[7] Elaine B. Barker and Quynh Dang. 2015. Recommendation for Key Management,
Part 3: Application-Specific Key Management Guidance. Technical Report. NIST.
SP800-57 Part 3 Rev.1.

[8] Richard Barnes and Owen Friel. 2018. Usage of PAKE with TLS 1.3. Internet-Draft
draft-barnes-tls-pake-04. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-barnes-tls-pake-04 Work in Progress.

[9] Mihir Bellare, David Pointcheval, and Phillip Rogaway. 2000. Authenticated Key
Exchange Secure against Dictionary Attacks. In EUROCRYPT (Lecture Notes in
Computer Science), Vol. 1807. Springer, 139–155.

[10] StevenM. Bellovin andMichael Merritt. 1992. Encrypted key exchange: password-
based protocols secure against dictionary attacks. In IEEE Symposium on Security
and Privacy. IEEE Computer Society, 72–84.

[11] Steven M. Bellovin and Michael Merritt. 1993. Augmented Encrypted Key Ex-
change: A Password-Based Protocol Secure against Dictionary Attacks and Pass-
word File Compromise. In CCS. ACM, 244–250.

[12] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

[13] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. 2000. Provably Secure
Password-Authenticated Key Exchange Using Diffie-Hellman. In EUROCRYPT
(Lecture Notes in Computer Science), Vol. 1807. Springer, 156–171.

[14] Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt. 2020. Drag-
onblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In
ACSAC. ACM, 291–303.

[15] Elie Bursztein. 2018. The bleak picture of two-factor authentication adoption
in the wild. https://elie.net/blog/security/the-bleak-picture-of-two-factor-
authentication-adoption-in-the-wild

[16] CFRG. 2020. PAKE Selection. https://github.com/cfrg/pake-selection
[17] Chick3nman. 2020. Hashcat v6.1.1 benchmark on the Nvidia Tesla

A100 PCIE variant GPU. https://gist.github.com/Chick3nman/
d65bcd5c137626c0fcb05078bba9ca89

[18] John Engler, Chris Karlof, Elaine Shi, and Dawn Song. 2009. Is it too late for
PAKE?. In W2SP. The Internet Society.

[19] Rob Faludi. [n.d.]. Who uses Erlang for product development? https://erlang.
org/faq/introduction.html#idp32560400

[20] Rob Faludi. 2017. Introducing the Official Digi XBee Python Library. https:
//www.digi.com/blog/post/introducing-the-official-digi-xbee-python-library

[21] Rick Fillion. 2018. Developers: How we use SRP, and you can too. https:
//blog.1password.com/developers-how-we-use-srp-and-you-can-too

[22] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. 2016. "Make Sure DSA
Signing Exponentiations Really are Constant-Time". In CCS. ACM, 1639–1650.

[23] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejan-
dro Cabrera Aldaya, and Billy Bob Brumley. 2020. Certified Side Channels. In
USENIX Security Symposium. USENIX Association, 2021–2038.

[24] Craig Gentry, Philip D. MacKenzie, and Zulfikar Ramzan. 2006. A Method
for Making Password-Based Key Exchange Resilient to Server Compromise. In
CRYPTO (Lecture Notes in Computer Science), Vol. 4117. Springer, 142–159.

[25] Matthew Green. 2018. Should you use SRP? https://blog.
cryptographyengineering.com/should-you-use-srp

[26] Björn Haase and Benoît Labrique. 2019. AuCPace: Efficient verifier-based PAKE
protocol tailored for the IIoT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2
(2019), 1–48.

[27] Feng Hao and Peter Ryan. 2010. J-PAKE: Authenticated Key Exchange without
PKI. Trans. Comput. Sci. 11 (2010), 192–206.

[28] Dan Harkins. 2015. Dragonfly Key Exchange. RFC 7664 (2015), 1–18.
[29] ING Bank. 2018. InsideBusiness App security. https://new.ingwb.com/en/service/

insidebusiness-app/insidebusiness-app-security
[30] David P. Jablon. 1996. Strong password-only authenticated key exchange. Comput.

Commun. Rev. 26, 5 (1996), 5–26.
[31] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. OPAQUE: An Asymmetric

PAKE Protocol Secure Against Pre-computation Attacks. In EUROCRYPT (3)
(Lecture Notes in Computer Science), Vol. 10822. Springer, 456–486.

[32] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security Symposium. USENIX Association, 549–564.

[33] LogMeIn. 2017. Remote Support and Service Desk Security. https:
//assets.cdngetgo.com/b0/b1/97dd1f0e42fa8b8e5433333dffae/gotoassist-
remotesupport-servicedesk-security-white-paper.pdf

[34] LogMeIn. 2020. Web conference security. https://logmeincdn.azureedge.
net/gotomeetingmedia/-/media/pdfs/UCC_security_white_paper_snapshot_
April2020.pdf

[35] P. Montgomery. 1985. Modular multiplication without trial division. Math. Comp.
44 (1985), 519–521.

[36] Matús Nemec, Dusan Klinec, Petr Svenda, Peter Sekan, and Vashek Matyas. 2017.
Measuring Popularity of Cryptographic Libraries in Internet-Wide Scans. In
ACSAC. ACM, 162–175.

[37] Cubrilovic Nik. 2009. RockYou Hack: From Bad To Worse. https://techcrunch.
com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/

[38] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. In CCS. ACM, 1406–1418.

[39] Colin Percival. 2005. Cache missing for fun and profit.
[40] Proton Mail Technologies. 2016. ProtonMail Security Features and Infrastruc-

ture. https://protonmail.com/blog/wp-content/uploads/2016/12/ProtonMail_
Authentication_excerpt.pdf

[41] Jörn-Marc Schmidt. 2017. Requirements for Password-Authenticated Key Agree-
ment (PAKE) Schemes. RFC 8125 (2017), 1–10.

[42] Alan T. Sherman, Erin Lanus, Moses Liskov, Edward Zieglar, Richard Chang,
Enis Golaszewski, Ryan Wnuk-Fink, Cyrus J. Bonyadi, Mario Yaksetig, and Ian
Blumenfeld. 2020. Formal Methods Analysis of the Secure Remote Password
Protocol. CoRR abs/2003.07421 (2020).

[43] David Taylor, Thomas Wu, Nikos Mavrogiannopoulos, and Trevor Perrin. 2007.
Using the Secure Remote Password (SRP) Protocol for TLS Authentication. RFC
5054 (2007), 1–24.

[44] Mathy Vanhoef and Eyal Ronen. 2020. Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd. In IEEE Symposium on Security and Privacy.
IEEE, 517–533.

[45] Ronald Volgers. 2016. Exploiting two buggy SRP implementations.
https://www.computest.nl/nl/knowledge-platform/blog/exploiting-two-
buggy-srp-implementations/

[46] Thomas Wu. 2000. The SRP Authentication and Key Exchange System. RFC 2945
(2000), 1–8.

[47] Thomas Wu. 2000. Telnet Authentication: SRP. RFC 2944 (2000), 1–7.
[48] Thomas D. Wu. 1998. The Secure Remote Password Protocol. In NDSS. The

Internet Society.
[49] Yuval Yarom. 2016. Mastik: A Micro-Architectural Side-Channel Toolkit. https:

//cs.adelaide.edu.au/~yval/Mastik/
[50] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolu-

tion, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium.
USENIX Association, 719–732.

A AVERAGE LEAKAGE FOR STANDARD

GENERATORS

In this appendix, we detail how we estimated which one of the
defined generators offers the best average leak for an attacker.

We start by implementing a script to produce all possible bit
patterns leading to an overflow of the accumulator. Assuming we
start with a fresh accumulator 𝑤 = 𝑔, we notice that: (i) 𝑔 = 2
implies that𝑤 always overflows after five more iterations, (ii) 𝑔 = 5
implies that𝑤 can overflow after three or four iterations, and (iii)
𝑔 = 19 implies that𝑤 always overflows after three more iterations.

We will start by the case 𝑔 = 5 since it is the more complex.
Computation are fairly similar for 𝑔 = 2 and 𝑔 = 19. We recall
that the information given by an event E of probability 𝑝𝐸 can be
computed as 𝐼 (𝐸) = − log2 (𝑝𝐸).

Let 𝑘 denote the number of iterations in the trace, and ℓ be bit-
length of the exponent (including zero bits needed to match the
length defined in the implementation specification).

A.1 g = 5

A.1.1 Leaks from the leading bits. On average, we can expect∑ℓ
𝑖=0 𝑖2

−𝑖 = 2 leading zero bits. Then, since the square-and-multiply
loop starts after the first bit sets to one, the accumulator is initialized
to𝑤 = 𝑔, and three patterns are possible before the first overflow: (i)
111𝑏 with probability 2−2, (ii) 110𝑏𝑏 with probability 2−2, (iii) 10𝑏𝑏𝑏
with probability 2−1. The average length of the first undetected
pattern is therefore 4.75.

Hence, for a random exponent, we expect to detect ℓ − 6.75
iterations on average. In addition, the average information we can
recover from the leading bits is expressed as

L𝑙𝑒𝑎𝑑 = 2 + 3 × 2−2 + 3 × 2−2 + 2 × 2−1 = 4.5.

https://datatracker.ietf.org/doc/html/draft-barnes-tls-pake-04
https://datatracker.ietf.org/doc/html/draft-barnes-tls-pake-04
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://elie.net/blog/security/the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild
https://elie.net/blog/security/the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild
https://github.com/cfrg/pake-selection
https://gist.github.com/Chick3nman/d65bcd5c137626c0fcb05078bba9ca89
https://gist.github.com/Chick3nman/d65bcd5c137626c0fcb05078bba9ca89
https://erlang.org/faq/introduction.html#idp32560400
https://erlang.org/faq/introduction.html#idp32560400
https://www.digi.com/blog/post/introducing-the-official-digi-xbee-python-library
https://www.digi.com/blog/post/introducing-the-official-digi-xbee-python-library
https://blog.1password.com/developers-how-we-use-srp-and-you-can-too
https://blog.1password.com/developers-how-we-use-srp-and-you-can-too
https://blog.cryptographyengineering.com/should-you-use-srp
https://blog.cryptographyengineering.com/should-you-use-srp
https://new.ingwb.com/en/service/insidebusiness-app/insidebusiness-app-security
https://new.ingwb.com/en/service/insidebusiness-app/insidebusiness-app-security
https://assets.cdngetgo.com/b0/b1/97dd1f0e42fa8b8e5433333dffae/gotoassist-remotesupport-servicedesk-security-white-paper.pdf
https://assets.cdngetgo.com/b0/b1/97dd1f0e42fa8b8e5433333dffae/gotoassist-remotesupport-servicedesk-security-white-paper.pdf
https://assets.cdngetgo.com/b0/b1/97dd1f0e42fa8b8e5433333dffae/gotoassist-remotesupport-servicedesk-security-white-paper.pdf
https://logmeincdn.azureedge.net/gotomeetingmedia/-/media/pdfs/UCC_security_white_paper_snapshot_April2020.pdf
https://logmeincdn.azureedge.net/gotomeetingmedia/-/media/pdfs/UCC_security_white_paper_snapshot_April2020.pdf
https://logmeincdn.azureedge.net/gotomeetingmedia/-/media/pdfs/UCC_security_white_paper_snapshot_April2020.pdf
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://protonmail.com/blog/wp-content/uploads/2016/12/ProtonMail_Authentication_excerpt.pdf
https://protonmail.com/blog/wp-content/uploads/2016/12/ProtonMail_Authentication_excerpt.pdf
https://www.computest.nl/nl/knowledge-platform/blog/exploiting-two-buggy-srp-implementations/
https://www.computest.nl/nl/knowledge-platform/blog/exploiting-two-buggy-srp-implementations/
https://cs.adelaide.edu.au/~yval/Mastik/
https://cs.adelaide.edu.au/~yval/Mastik/

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

Note that, assuming ℓ is large enough, its impact on the leakage
through the leading bits is negligible.

A.1.2 Leaks from the patterns. Next, we can determine the leakage
by identifying each pattern as described in subsubsection 3.4.2. Let
𝜆 ≥ 4 denote the number of iterations in the pattern.

• 𝜆 = 4: the three first bits are set to 1, which occurs with
probability 𝑝4 = 2−3, thereby leaking 3 bits of information.

• 𝜆 = 5: the pattern is in the set {10𝑏𝑏𝑏, 110𝑏𝑏, 0111𝑏}. This
occurs with probability 𝑝5 = 2−2 + 2−3 + 2−4 and leaks
approximately 1.2 bits of information.

• 𝜆 ≥ 6: the 𝜆−5 firsts bits of the pattern are 0. This occurs with
probability 𝑝𝜆 = 2−𝜆+5 and leaks 𝜆 − 5 bits of information.
Furthermore, the last 5 bits verify the previous condition,
meaning we get 1.2 additional bits of information.

The last two cases can be combined to get a pattern with
𝜆 ≥ 5 bits and probability 𝑝𝜆 =

(
2−2 + 2−3 + 2−4

)
2−(𝜆−5) , leak-

ing 𝜆 − 5 + 1.2 bits of information.
Let 𝐿 be the random variable corresponding to the information

leaked by a pattern. We get the average leak from a pattern with

E[𝐿] =
ℓ∑

𝑖=4
𝑝𝑖 𝐼 (𝑝𝑖) = 𝑝4𝐼 (𝑝4) +

ℓ∑
𝑖=5

𝑝𝑖 𝐼 (𝑝𝑖) ≈ 2.29.

Let 𝑁 be the random variable corresponding to the length of a
pattern. The average length of a pattern is:

E[𝑁] =
ℓ∑

𝑖=4
𝑖𝑝𝑖 = 4𝑝4 +

ℓ∑
𝑖=5

𝑖𝑝𝑖 ≈ 5.75.

Finally, we can get the amount of leaked information by estimat-
ing the number of patterns we can expect based on the length 𝑘 of
the bit string we are considering:

L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑘) = E[𝐿] ×
𝑘

E[𝑁] ≈ 0.4 · 𝑘.

Hence, the average leakage from an ℓ-bit random exponent is

L(ℓ) = L𝑙𝑒𝑎𝑑 + L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (ℓ − 6.75) ≈ 0.4 · ℓ + 2.06.

A.2 g = 2

Since all overflows occur after five iterations once 𝑤 = 𝑔, the
pattern in our trace looks like 𝑡 = 0 . . . 01𝑏𝑏𝑏𝑏𝑏, with |𝑡 | = 𝜆 > 5,
with probability 𝑝𝜆 = 2−𝜆+6 × 2−1, leaking 𝐼 (𝑝𝜆) = 𝜆 − 5 bits of
information. The average information leak per pattern is therefore

E[𝐿] =
ℓ∑

𝑖=6
𝑝𝑖 × 𝐼 (𝑝𝑖) =

ℓ∑
𝑖=6

2−𝑖+5 × (𝑖 − 5) ≈ 2.

Following the same reasoning, we can get the average pattern length
E[𝑁] and deduce the expected leakage for an ℓ-bit exponent:

E[𝑁] =
ℓ∑

𝑖=6
𝑝𝑖 × 𝑖 =

ℓ∑
𝑖=6

2−𝑖+5 × 𝑖 ≈ 7.

Hence, the average leakage from the patterns is equal to

L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (𝑘) = E[𝐿] ×
𝑘

E[𝑁] ≈ 2
7𝑘

The average number of leading zero bits does not depend on the
generator, but the information leaked on the first pattern leading
to the first overflow does. Here, we only have one possible pattern
length, which does not leak any information, therefore:

L(ℓ) = 2 + L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (ℓ − 8) ≈ 0.29 · ℓ − 0.29.

A.3 g = 19

Computations are very similar for 𝑔 = 19 except all overflows occur
after three iterations once𝑤 = 𝑔, the pattern in our trace looks like
𝑡 = 0 . . . 01𝑏𝑏𝑏, with |𝑡 | = 𝜆 > 3, with probability 𝑝𝜆 = 2−𝜆+4 × 2−1,
leaking 𝐼 (𝑝𝜆) = 𝜆 − 3 bits of information. The average information
leak per pattern is therefore

E[𝐿] =
ℓ∑

𝑖=4
𝑝𝑖 × 𝐼 (𝑝𝑖) =

ℓ∑
𝑖=4

2−𝑖+3 × (𝑖 − 3) ≈ 2.

Following the same reasoning, we can get the average pattern length
E[𝑁] and deduce the expected leakage for an ℓ-bit exponent:

E[𝑁] =
ℓ∑

𝑖=4
𝑝𝑖 × 𝑖 =

ℓ∑
𝑖=4

2−𝑖+3 × 𝑖 ≈ 5.

Hence, the average leakage from the patterns is equal to

L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (ℓ) = E[𝐿] ×
ℓ

E[𝑁] ≈ 2
5 ℓ .

Similarly, the average total leakage is:

L(ℓ) = 2 + L𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 (ℓ − 5) ≈ 0.4 · ℓ .

B SAMPLE OF AN EXECUTION TRACE

Figure 3 illustrates the execution trace acquired when the follow-
ing parameters: password dAdinretAm, username admin, and salt
0x0102030405060708.

C DIFFERENTIAL SCORE COMPUTATION

In this appendix, we explain how we computed the differential
score between the trace of a password candidate, and the trace we
actually measured.

Let 𝑥 be the secret password, and 𝑝 be a password candidate.
(1) We perform the same modular exponentiation on 𝑝 , and

output an array containing the length of each pattern during
the exponentiation: 𝑝𝑎𝑡𝑝 .

(2) Having 𝑝𝑎𝑡𝑝 and 𝑝𝑎𝑡𝑥 , we initialize the score 𝑠 with the
difference in the total number of the observed iterations

𝑠 =

������ ∑
𝑖 𝑖𝑛 𝑝𝑎𝑡𝑝

𝑖 −
∑

𝑗 𝑖𝑛 𝑝𝑎𝑡𝑥

𝑗

������
(3) For each pattern, starting from the last one, we add to the

score the difference between the measured pattern’s length,
and the candidate’s.

𝑠+ =

𝑙𝑒𝑛 (𝑝𝑎𝑡𝑥)∑
𝑖=1

|𝑝𝑎𝑡𝑥 [−𝑖] − 𝑝𝑎𝑡𝑝 [−𝑖] |

PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild

0 500 1,000 1,500 2,000 2,500 3,0000

200

400

600

800

Time

Cy
cl
es

ne
ed
ed

to
re
lo
ad

Figure 3: Full execution trace using the password dAdinretAm,
username admin and salt 0102030405060708. Values below

the threshold means the victim executed the monitored in-

struction.

Thus, any minor issue during the measurement (missing one
iteration for instance) has little impact on the overall score, since the
comparison is re-synchronized at each pattern. We start at the end
to avoid the lack of precision of the first traces, so that a potential
missing part at the beginning does not de-synchronize the entire
trace comparison.

D STANFORD’S JAVA IMPLEMENTATION

We present a quick overview of the major flaws in Stanford’s Java
reference implementation of SRP.

First, it is worth noting the implementation is obsolete: some
mitigation for existing attacks are missing, indicating we are not
dealing with SRP-6a, but a previous version.

• Very basic API, with poor security.
• Use java.math.BigInteger to handle big number (modular
exponentiation, ...)

• Not up to date:
– server sends𝐵 = 𝑣+𝑔𝑏 , in recent version of SRP,𝐵 = 𝑘𝑣+𝑔𝑏
to prevent an attacker to check two passwords in an online
dictionary attack

– 𝑢 = 32MSB of H(B), instead of𝑢 = 𝐻 (𝐴| |𝐵), so an attacker
recovering 𝑣 can impersonate any client

– No verification on A and B values
∗ Possibility to fix the key to 𝐾 = 𝐻 (0) on the server side
(if 𝐴 = 0)

∗ 𝑢 = 32 MSB of H(B), instead of 𝑢 = 𝐻 (𝐴| |𝐵), so an
attacker recovering 𝑣 can impersonate any client

∗ Offline dictionary attack if 𝐵 = 0
• No group verification
– Possible to use small order groups
– Possible to perform small subgroups attacks

• The exponent used to compute the DH key shares are only
64 bits long (hardcoded value)
– Given 𝐴 = 𝑔𝑎 mod 𝑝 (transmitted in clear), attackers are
able to recover 𝑎 in O(232).

– Knowing 𝑎, the only unknown in the client side compu-
tation of 𝑆 is 𝑥 , which is directly related to the password.
Hence, attackers may be able to perform an offline dictio-
nary attack to recover the password, by trying to compute
𝑆 with a given password, and verifying the confirmation
message𝑀1 sent by the client.

– Attack complexity:O(232+𝑛×O(3∗SHA1+2∗mod_exp)) =
O(232) with 𝑛 the number of password in the dictionary.
O(3∗SHA1+2∗mod_exp) is the cost of computing𝐾 = 𝐻 (𝑆)
from a password candidate

This implementation should be either completely re-
implemented, or deleted, but it should not be presented as
a reference since it does not include good security practice, is
severely outdated and presents very weak parameters by default.

E IMPACT ANALYSIS ON BIG NUMBERS

LIBRARIES AND SRP PROJECTS IN THE

WILD

E.1 JavaScript’s node-bignum

Among the nodes providing big numbers support, some provide a
full big integers implementation in pure JavaScript (bignumber.js
or jsbn.js), while others rely on native libraries such as GMP (node-
bigint) or OpenSSL (node-bignum). In this paper, we only assess
the security of node-bignum.

Although the project node-bignum may not be the most popular
one to manipulate big integers in JavaScript (compared to bignum-
ber.js for instance), we were able to find notable SRP projects rely-
ing on it. For instance, both Mozilla’s node-srp and a more active
fork node-srp-typescript leverage node-bignum to provide cryp-
tographic operations on big integers. Thus, these two reference
projects are directly vulnerable to our attack.

E.2 Ruby Openssl library

Reviewing the official Github repository of Ruby, we identified that
it provides wrappers for some the OpenSSL API, including the big
integers operations. We found that these wrappers are used by the
sirp project, in such a way that makes vulnerable to our attack. In
particular, Ruby does not provide any wrapper for the OpenSSL
function that sets the flags to be constant time. Therefore, no SRP
project written in Ruby can be plausibly assumed to be secure,
provided that the reference OpenSSL package is used.

E.3 Erlang and Elixir

Erlang is mainly built upon the Open Telecom Platform (OTP),
which is a large collection of general purposes libraries for Erlang.
All the cryptography-related functionality ensured by OTP are
implemented through callbacks to OpenSSL. Hence, any projects
based on OTP are vulnerable to our attack. Namely, OTP provides
support for TLS-SRP, with the same implementation (and the same
vulnerability) as OpenSSL. Given the list of the main companies

Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt

using Erlang (e.g., Whatsapp) [19], the range of the vulnerability
may be considerable.

Elixir is built on top of Erlang, and, in particular, its cryptographic
operations are provided by Erlang’s OTP. Thus, some Elixir projects
providing SRP implementations, such as strap and srp-elixir, are
vulnerable to our attack.

E.4 Python SRP package

Although Python offers its own cryptographic packages, some
projects choose to directly call OpenSSL in order to provide support
for big numbers. More notably, the pysrp project implements SRP
by leveraging OpenSSL, especially for the big integers operations.

This package being the default Python implementation for SRP, it
is used in at least 10 other open-source projects3, accumulating
hundreds of stars on Github.

One project of particular interest is xbee-python (the official
python library designed to interact with Digi XBee’s radio fre-
quency modules) that requires the vulnerable python package to au-
thenticate with XBee devices over Bluetooth Low Energy. These ra-
dio devices can be deployed in a wide range of products, for a wider
range of applications (from intelligent lighting controls to storage
tank monitoring and orbital experiments by the NASA [20]).

3https://libraries.io/pypi/srp

	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 Our Contribution
	1.3 Attack Scenario

	2 Background
	2.1 Password-Authenticated Key Exchange
	2.2 Secure Remote Password (SRP) Protocol
	2.3 SRP Limitations
	2.4 Cache Attacks

	3 Attacking SRP Implementation of OpenSSL
	3.1 Threat Model
	3.2 OpenSSL Implementation
	3.3 Vulnerability Details
	3.4 Exploiting the Leakage
	3.5 Theoretical Amount of Leaked Information
	3.6 Mounting an Offline Dictionary Attack
	3.7 Consequence of Password Recovery

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Practical Attack on OpenSSL
	4.3 Results

	5 Impact Analysis
	5.1 TLS-SRP using OpenSSL
	5.2 Stanford Reference Implementation
	5.3 Apple HomeKit Accessory Development Kit
	5.4 LogMeIn Tools
	5.5 ProtonMail Python Client
	5.6 Big Numbers Libraries and SRP in the Wild

	6 Mitigation & Disclosure
	7 Related Work
	8 Conclusion
	References
	A Average leakage for standard generators
	A.1 g = 5
	A.2 g = 2
	A.3 g = 19

	B Sample of an execution trace
	C Differential score computation
	D Stanford's Java implementation
	E Impact analysis on big numbers libraries and SRP projects in the wild
	E.1 JavaScript's node-bignum
	E.2 Ruby Openssl library
	E.3 Erlang and Elixir
	E.4 Python SRP package

