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Abstract—In this paper we propose to study the dispersion
diagram of non-canonical glide-symmetric unit cells via integral
equations with the use of the periodic Green’s function and
discretized via the method of moment. The proposed approach
is validated with a fully metallic implementation of a Luneburg
lens operating at Ka-band with potential use for 5G communi-
cations. The promising preliminary numerical results highlight
the potentialities of this approach.

Index Terms—Integral equation, periodic Green’s function,
periodic structures, glide symmetry

I. INTRODUCTION

The study of properties of higher-symmetric metasurfaces
require fast and accurate modelling tools to predict the
behaviour of the structure and optimize a final prototype.
By means of an accurate characterization of the behavior
of these higher-symmetric metasurfaces, new radiating sys-
tems and guiding wave devices can be designed to achieve
performance beyond the state-of-the-art in terms of beam-
scanning capabilities, operational bandwidth, losses in differ-
ent technologies such as slotted substrate-integrated waveguide
(SIW), filters and resonators, open and closed gap waveguides,
planar printed-circuit-board (PCB), 3-D printable materials for
artificial lenses. These new materials are made of periodic cells
invariant under higher symmetries, such as glide or twist sym-
metries. As an example, while a periodic structure is invariant
under translations, a glide-symmetric structure is also invariant
under a translation and a mirroring. These symmetries lead
to marvelous uncommon properties: ultra wide bandwidth of
operation, reduced losses, scanning capabilities, and enhanced
stopband for electromagnetic (EM) bandgap materials. They
have the potential to meet the expectation required by new
communication standards.

The mode matching technique [1] has been commonly used
to solve this kind of problems: the unit cell can be decomposed
into sub-domains where Maxwell equations can be solved
analytically. However, the application of this technique is
limited to unit cells with canonical shapes. For more generic
unit cells, formulations as the finite difference time domain
(FDTD) [2] or the finite integration technique (FIT) [3] can
be used due to their easy implementation from differential
equations. However, it is well known that they are volumetric

formulations strongly burdened by the discretization of the
object and the surrounding space, where artificial termination
boundary conditions has to be imposed. As a consequence,
the accurate analysis of extended three-dimensional systems
could require a high computational cost.

A different approach that has been extensively applied in the
radio frequency (RF) and microwave regime, due to its high
level of accuracy and versatility, is the well-known method of
moments (MoM). This approach brings important advantages
in problems including both perfect electric conductors and
penetrable bodies, because they can be formulated in terms
of surface integral equations (SIEs) defined over the material
boundary surfaces and interfaces. This avoids the discretization
of volumes and strongly reduces the required number of
unknowns, which now scales linearly with the electrical size
of the surfaces.

In this paper, we propose a novel tool, based on MoM-SIEs
in conjunction with the free-space periodic Green’s function
(FSPGF) and a root-finding algorithm. Its aim is to correctly
characterize higher-symmetric materials and to analyze and
design non-canonical unit cells that are cases not suitable for
the mode-matching approach.

II. UNIT CELLS ANALYSIS VIA MOM-SIES

Let us consider a perfect electric conductor (PEC) unit cell
where we can formulate the electric field integral equations
(EFIE). In the EFIE, the electric fields at the interface surfaces
are written in terms of the equivalent surface electric (density)
current J(r) as

−ES
tan {J(r)} = Ei

tan(r) (1)

where ES
tan is the tangential component on the PEC surface

of the scattered field due to the PEC; Ei
tan is a know incident

field, also tangential to the PEC surface, and r = (x, y, z) is
a point on the PEC surface. The scattered field ES

tan can be
expressed as

ES
tan {J(r)} = −jωA−∇Φ (2)



where ω = 2πf , being f the frequency. A is the vector
potential and Φ the scalar potential expressed as

A = µ

∫
S

J(r)G(r, r′) dS′

∇Φ = − 1

jωε

∫
S

∇′J(r)G(r, r′) dS′ (3)

where ε and µ are the constitutive parameters of vacuum,
G(r, r′) is the Green’s function of the problem and r′ =
(x′, y′, z′) is a source point on the PEC surface. We are
considering here a free-space periodic problem, since once the
PEC surface is removed no other media (e.g., layered media)
are present. Therefore, G(r, r′) is the free-space periodic
Green’s function (FSPGF), defined as in [4]

G(r, r′,kt00) =

∞∑
m=−∞

∞∑
n=−∞

Gm,n (4)

where the FEPGF is expressed as a sum of spatial terms Gm,n

with

Gm,n = e−jkt00·ρmn
e−jkRmn

4πRmn
(5)

where kt00 = kx0x̂+ ky0ŷ is the transverse vector wavenum-
ber that defines the inter-element phasing for the 2-D array
in terms of the propagation angles of the first Floquet mode.
ρmn = ms1 + ns2, being s1 and s2 the lattice vectors, and
Rmn =

√
(z − z′)2 + |ρ− ρ′ − ρmn|2, with ρ = xx̂ + yŷ

and ρ′ = x′x̂ + y′ŷ. In the same way the FEPGF can be
written as a sum of spectral terms G̃p,q as

G(r, r′,kt00) =

∞∑
p=−∞

∞∑
q=−∞

G̃p,q (6)

Evaluating (4) with the Ewald method, the FSPGF is then
expressed as the sum of a “modified spectral” and a “modified
spatial” series [5]

G(r, r′,kt00) =

∞∑
m=−∞

∞∑
n=−∞

GE
m,n +

∞∑
p=−∞

∞∑
q=−∞

G̃E
p,q (7)

where GE
m,n and G̃E

p,q are the terms of the spatial and spectral
sums, respectively. The weight of the two sums can be tuned
by modifying a real parameter, the E splitting parameter,
present in the definition of the terms. E balances the the
asymptotic rate of convergence of the spatial and spectral
series, and consequently minimizes the overall number of
terms needed to evaluate the FSPGF. The convergence rate
is optimum when the “optimum” value of the Ewald splitting
parameter is used

Eopt =

√
π

A
, (8)

where A is the area of the unit cell [6].

Once defined the FSPGF we solve the equation (1) using
the MoM [7], in order to transform an integral equation into
a system of linear equations, by discretizing the current J as

J(r) =

N∑
n=1

InΛn(r), (9)

where Λn(r) are known basis functions that discretize the
surface of interest. The basis functions commonly used are
the Rao-Wilton-Glisson (RWG) ones [8]. The discretization
(9) allows us to write (1) as the matrix system

[Z(kt00)][I] = [V ], (10)

where [I] is the N -size vector collecting the unknown coeffi-
cients In that describe the current surface. [Z] is the system
N ×N matrix with each element equal to

[Z]m,n(kt00) = jωµ

∫
S

Λm(r) ·
∫
S

Λn(r
′)G(r, r′,kt00)dS′dS

+
1

jωε

∫
S

∇ ·Λm(r)

∫
S

∇ ·Λn(r
′)G(r, r′,kt00)dS′dS (11)

and [V ] is the N -size right hand side vector with each element
equal to

[V ]m =

∫
S

Λm(r) ·Ei
tan(r) dS. (12)

To analyze the unit cell and draw its dispersion diagram,
we have to find, for each frequency, the kt00 value for which
the system matrix [Z (kt00)] is singular; in other words we are
searching for the conditions of resonance. Hence, varying kt00,
we estimate the reciprocal of the 1-norm condition number
(“rcond”) of [Z (kt00)] in order to find its minimum that
corresponds to badly conditioned [Z (kt00)]. To search the
minimum of the function “rcond”, we will use the root finder
algorithm developed in [9]. This algorithm needs three initial
guesses for rcond

[
Z(ki

t00)
)
], with i = 1, 2, 3; these three

initial guesses can be chosen around the kt00 found for a
previous frequency analasis. Each iteration n requires only
one evaluation of rcond[Z(kn

t00)].
A schematic description of the described procedure is shown

in Fig. 1. Figure 1.(a) reports the geometrical description of
a fully metallic unit cell that is infinitely replicated along
xy-plane. To analyze it with the MoM-SIEs procedure, we
dismiss all the metallic surfaces orthogonal to the propagation
(where there is zero field) and not present in the periodic
structure, as shown in Fig. 1.(b). Then, the remaining surfaces
are meshed with triangular cells with dimensions of at least
one tenth of the working wavelength [see Fig. 1.(c)]. In order
to guarantee the current continuity at the unit cell borders,
during the meshing of the geometry, we have to ensure a
conformal mesh at the unit cell borders and to add fictitious
triangular cells in both axes of the periodicity, as shown in
Fig. 1.(d). The RWG basis functions defined at the unit cell
borders allow to properly model the current continuity.



Fig. 1. Schematic description of the geometrical procedure.

III. PRELIMINARY NUMERICAL RESULTS

In order to show the validity of the proposed method, we
analyze the unit cell with a glide symmetry described in [10],
shown here for completeness in Fig. 1.(a). The used design
parameters are g = 0.3mm, p = 3.2mm, and h = 0.8mm; the
considered frequency is 5 GHz and we assume a propagation
along kt00 = kxx̂ only. In this work, we simplify the search
for zeros and we run the simulations for different kx in a
range that include the expected value of kx for which the
system matrix [Z(kx)] is singular. In all cases the “rcond” is
evaluated as shown in Fig. 2 for different values of n, where

n =
kx
k0
, (13)

i.e., the equivalent refractive index. The reported “rcond”
shows clearly a minimum close to 1.3 according to [10].

Fig. 2. Reciprocal of the 1-norm condition number of the system matrix for
a range of n where n = kx/k0 at 5 GHz for the unit cell defined in [10].

IV. CONCLUSION AND PERSPECTIVES

We presented a scheme based on the use of MoM-SIEs
and periodic Green’s function to analyze and design higher-
symmetric metasurfaces with non-canonical unit cells. The
method has been initially validated with a fully metallic
implementation of a Luneburg lens [10].

The next steps are further validations of the results for a
wide frequency range and the implementation of the tool for
the search of zeros in the function “rcond”. We will also study
the acceleration of the evaluation of the MoM matrix using
fast methods [11] and the interpolation of Ewald-accelerated
periodic Green’s function [5]. We also expect to extend the
method to metallic and finite dielectric unit cell.
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