Numerical Modelling of Glide Periodic Structures via Integral Equations
J. Rivero, J A Tobón Vásquez, G. Valerio, F. Vipiana

To cite this version:

HAL Id: hal-03551297
https://hal.science/hal-03551297
Submitted on 1 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Numerical Modelling of Glide Periodic Structures via Integral Equations

J. Rivero*, J. A. Tobón Vásquez*, G. Valerio†‡, F. Vipiana*
*Dept. of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
†Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris (GeePs), 75252, Paris, France
‡Université Paris-Saclay, CentraleSupélec, CNRS, GeePs, 91192, Gif-sur-Yvette, France
guido.valerio@sorbonne-universite.fr

Abstract—In this paper we propose to study the dispersion diagram of non-canonical glide-symmetric unit cells via integral equations with the use of the periodic Green’s function and discretized via the method of moment. The proposed approach is validated with a fully metallic implementation of a Luneburg lens operating at Ka-band with potential use for 5G communications. The promising preliminary numerical results highlight the potentialities of this approach.

Index Terms—Integral equation, periodic Green’s function, periodic structures, glide symmetry

I. INTRODUCTION

The study of properties of higher-symmetric metasurfaces require fast and accurate modelling tools to predict the behaviour of the structure and optimize a final prototype. By means of an accurate characterization of the behavior of these higher-symmetric metasurfaces, new radiating systems and guiding wave devices can be designed to achieve performance beyond the state-of-the-art in terms of beam-scanning capabilities, operational bandwidth, losses in different technologies such as slotted substrate-integrated waveguide (SIW), filters and resonators, open and closed gap waveguides, planar printed-circuit-board (PCB), 3-D printable materials for artificial lenses. These new materials are made of periodic cells invariant under higher symmetries, such as glide or twist symmetries. As an example, while a periodic structure is invariant under translations, a glide-symmetric structure is also invariant under a translation and a mirroring. These symmetries lead to marvelous uncommon properties: ultra wide bandwidth of operation, reduced losses, scanning capabilities, and enhanced stopband for electromagnetic (EM) bandgap materials. They are written in terms of the equivalent surface electric (density) current \(\mathbf{J}(\mathbf{r}) \) as

\[
-E^S_{\text{tan}}(\mathbf{r}) = E^i_{\text{tan}}(\mathbf{r})
\]

(1)

where \(E^S_{\text{tan}} \) is the tangential component on the PEC surface of the scattered field due to the PEC, \(E^i_{\text{tan}} \) is a know incident field, also tangential to the PEC surface, and \(\mathbf{r} = (x, y, z) \) is a point on the PEC surface. The scattered field \(E^S_{\text{tan}} \) can be expressed as

\[
E^S_{\text{tan}}(\mathbf{r}) = -j\omega \mathbf{A} - \nabla \Phi
\]

(2)
where $\omega = 2\pi f$, being f the frequency. A is the vector potential and Φ the scalar potential expressed as

$$A = \mu \int_S \mathbf{J}(r') G(r, r') \, dS' \quad \nabla \Phi = -\frac{1}{j \omega \varepsilon} \int_S \nabla' \mathbf{J}(r') G(r, r') \, dS'$$

(3)

where ε and μ are the constitutive parameters of vacuum, $G(r, r')$ is the Green’s function of the problem and $r' = (x', y', z')$ is a source point on the PEC surface. We are considering here a free-space periodic problem, since once the PEC surface is removed no other media (e.g., layered media) are present. Therefore, $G(r, r')$ is the free-space periodic Green’s function (FSPGF), defined as in [4]

$$G(r, r', \mathbf{k}_{\text{FEPGF}}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} G_{m,n}$$

(4)

where the FEPGF is expressed as a sum of spectral terms $G_{m,n}$ with

$$G_{m,n} = e^{-j k_{\text{FEPGF}} \cdot \mathbf{p}_{mn}} e^{-j k_{mn} R_{mn}}$$

(5)

where $k_{\text{FEPGF}} = k_{\text{FEPGF},x} \hat{x} + k_{\text{FEPGF},y} \hat{y}$ is the transverse vector wavenumber that defines the inter-element phasing for the 2-D array in terms of the propagation angles of the first Floquet mode. $\rho_{mn} = m s_1 + n s_2$, being s_1 and s_2 the lattice vectors, and $R_{mn} = \sqrt{(z-z')^2 + |\rho - \rho' - \rho_{mn}|^2}$, with $\rho = x\hat{x} + y\hat{y}$ and $\rho' = x'\hat{x} + y'\hat{y}$. In the same way the FEPGF can be written as a sum of spectral terms $G_{p,q}$ as

$$G(r, r', \mathbf{k}_{\text{FEPGF}}) = \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} G_{p,q}$$

(6)

Evaluating (4) with the Ewald method, the FSPGF is then expressed as the sum of a “modified spectral” and a “modified spatial” series [5]

$$G(r, r', \mathbf{k}_{\text{FEPGF}}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} G^E_{m,n} + \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} G^E_{p,q}$$

(7)

where $G^E_{m,n}$ and $G^E_{p,q}$ are the terms of the spatial and spectral sums, respectively. The weight of the two sums can be tuned by modifying a real parameter, the E splitting parameter, present in the definition of the terms. E balances the asymptotic rate of convergence of the spatial and spectral series, and consequently minimizes the overall number of terms needed to evaluate the FSPGF. The convergence rate is optimum when the “optimum” value of the Ewald splitting parameter is used

$$E_{\text{opt}} = \sqrt{\frac{\pi}{A}}$$

(8)

where A is the area of the unit cell [6].

Once defined the FSPGF we solve the equation (1) using the MoM [7], in order to transform an integral equation into a system of linear equations, by discretizing the current \mathbf{J} as

$$\mathbf{J}(r) = \sum_{n=1}^{N} I_n \mathbf{A}_n(r),$$

(9)

where $\mathbf{A}_n(r)$ are known basis functions that discretize the surface of interest. The basis functions commonly used are the Rao-Wilton-Glisson (RWG) ones [8]. The discretization (9) allows us to write (1) as the matrix system

$$[Z(\mathbf{k}_{\text{FEPGF}})] [I] = [V],$$

(10)

where $[I]$ is the N-size vector collecting the unknown coefficients I_n that describe the current surface. $[Z]$ is the system $N \times N$ matrix with each element equal to

$$[Z]_{m,n}(\mathbf{k}_{\text{FEPGF}}) = j \omega \mu \int_S \mathbf{A}_m(r) \cdot \nabla ' \mathbf{A}_n(r') G(r, r', \mathbf{k}_{\text{FEPGF}}) dS'dS$$

(11)

and $[V]$ is the N-size right hand side vector with each element equal to

$$[V]_m = \int_S \mathbf{A}_m(r) \cdot \mathbf{E}_{\text{tan}}(r) \, dS.$$

(12)

To analyze the unit cell and draw its dispersion diagram, we have to find, for each frequency, the k_{FEPGF} value for which the system matrix $[Z(\mathbf{k}_{\text{FEPGF}})]$ is singular; in other words we are searching for the conditions of resonance. Hence, varying k_{FEPGF}, we estimate the reciprocal of the 1-norm condition number (“rcond”) of $[Z(\mathbf{k}_{\text{FEPGF}})]$ in order to find its minimum that corresponds to badly conditioned $[Z(\mathbf{k}_{\text{FEPGF}})]$. To search the minimum of the function “rcond”, we will use the root finder algorithm developed in [9]. This algorithm needs three initial guesses for rcond$[Z(\mathbf{k}_{\text{FEPGF}})]$, with $i = 1, 2, 3$; these three initial guesses can be chosen around the k_{FEPGF} found for a previous frequency analysis. Each iteration n requires only one evaluation of rcond$[Z(\mathbf{k}_{\text{FEPGF}})]$.

A schematic description of the described procedure is shown in Fig. 1. Figure 1.(a) reports the geometrical description of a fully metallic unit cell that is infinitely replicated along xy-plane. To analyze it with the MoM-SIEs procedure, we dismiss all the metallic surfaces orthogonal to the propagation (where there is zero field) and not present in the periodic structure, as shown in Fig. 1.(b). Then, the remaining surfaces are meshed with triangular cells with dimensions of at least one tenth of the working wavelength [see Fig. 1.(c)]. In order to guarantee the current continuity at the unit cell borders, during the meshing of the geometry, we have to ensure a conformal mesh at the unit cell borders and to add fictitious triangular cells in both axes of the periodicity, as shown in Fig. 1.(d). The RWG basis functions defined at the unit cell borders allow to properly model the current continuity.
shows clearly a minimum close to i.e., the equivalent refractive index. The reported “rcond” for zeros and we run the simulations for different along \(k \) for 5 GHz and we assume a propagation evaluated as shown in Fig. 2 for different values of \(g \) parameters are shown here for completeness in Fig. 1.(a). The used design analyze the unit cell with a glide symmetry described in [10], [41x137] system matrix range that include the expected value of \(k \) only. In this work, we simplify the search for zeros and we run the simulations for different \(k_x \) in a range that include the expected value of \(k_x \) for which the system matrix \([Z(k_x)] \) is singular. In all cases the “rcond” is evaluated as shown in Fig. 2 for different values of \(n \), where

\[
n = \frac{k_x}{k_0},
\]

i.e., the equivalent refractive index. The reported “rcond” shows clearly a minimum close to 1.3 according to [10].

III. PRELIMINARY NUMERICAL RESULTS

In order to show the validity of the proposed method, we analyze the unit cell with a glide symmetry described in [10], shown here for completeness in Fig. 1(a). The used design parameters are \(g = 0.3 \) mm, \(p = 3.2 \) mm, and \(h = 0.8 \) mm; the considered frequency is 5 GHz and we assume a propagation along \(k \) only. In this work, we simplify the search for zeros and we run the simulations for different \(k_x \) in a range that include the expected value of \(k_x \).

REFERENCE

