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On a hybrid continuum-kinetic model for complex fluids

A. Chertock∗ P. Degond† G. Dimarco‡ M. Lukáčová-Medvid’ová§

A. Ruhi¶

Abstract

In the present work, we first introduce a general framework for modelling complex multiscale
fluids and then focus on the derivation and analysis of a new hybrid continuum-kinetic model. In
particular, we combine conservation of mass and momentum for an isentropic macroscopic model
with a kinetic representation of the microscopic behavior. After introducing a small scale of interest,
we compute the complex stress tensor by means of the Irving–Kirkwood formula. The latter requires
an expansion of the kinetic distribution around an equilibrium state and a successive homogenization
over the fast in time and small in space scale dynamics. For a new hybrid continuum-kinetic model the
results of linear stability analysis indicate a conditional stability in the relevant low speed regimes and
linear instability for high speed regimes for higher modes. Extensive numerical experiments confirm
that the proposed multiscale model can reflect new phenomena of complex fluids not being present
in standard Newtonian fluids. Consequently, the proposed general technique can be successfully
used to derive new interesting systems combining the macro and micro structure of a given physical
problem.

Keywords: multiscale simulations; hybrid method; kinetic equations; homogenization; scale separation;
Newtonian and non-Newtonian flows; fluid dynamics; complex fluids
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1 Introduction

Many important fluid flow problems are entirely multiscale: microscopic processes strongly influence
macroscopic behavior of the fluid and need to be taken into account in order to accurately describe fluid
dynamics. Typical examples are granular [33] and high-speed rarefied flows [6], the plastic deformation
in materials [31], the viscoelastic [29] and biological type of fluids [37]. For this reason, in the last
few decades, there has been a huge interest in both modeling and numerical simulations of problems
associated with multilevel physical models, which are able to incorporate multiscale effects in different
ways.

For the Newtonian fluids there have been many rigorous theoretical studies of hydrodynamic limits
and the relationship between microscopic molecular dynamics and/or mesoscopic kinetic models of the
Boltzmann type with macroscopic models such as the compressible Euler or Navier-Stokes equations,
see, e.g., [2, 10, 21, 22, 28] and the references therein. On the other hand, for complex fluids theoretical
understanding is certainly less developed, and more research is needed. More precisely, compared to
standard fluids, the challenge associated with complex fluids lies in an accurate determination of rheo-
logical relations that are typically obtained from physical or computational experiments. Consequently,
in many situations, e.g., soft matters or colloid-polymer mixtures, their full analytical description is not
available.

In order to take small scale effects into account we can apply either mesoscopic kinetic models or
directly microscopic models, such as molecular dynamics or dissipative particle dynamics, to reconstruct
time evolution of macroscopic quantities. However, as is well known, an obvious drawback of meso- and
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microscopic descriptions, despite their higher accuracy, is sometimes prohibitively high computational
costs, which limit their direct application in many practical situations. To overcome this disadvantage
and make large-scale simulations possible the so-called hybrid multiscale methods have been developed
in the literature. The latter combine the advantages of both descriptions: the accuracy of microscopic
models to be able to consider complex rheological relationships with the efficiency of macroscopic models
based on using classical conservation laws.

A prototype of hybrid multiscale methods is the heterogeneous multiscale method proposed by E,
Enquist et al. [14–17, 19, 34], see also [8, 36, 38–40] for its application for complex polymeric fluids. In
this context let us also refer to triple-decker atomistic-mesoscopic-continuum method [20], the seamless
multiscale methods [18, 35], the equation-free multiscale methods [25, 26] or the internal-flow multiscale
method [4,5]. In [27] a overview of multiscale flow simulations using particles is presented. For classical
gas dynamics, similar ideas were employed, for instance, in [7, 9, 11,32].

However, such general methods can have several disadvantages: the precise definition of the area in
which the microscopic model should be applied is problem-dependent and needs to be specified. If the
microscopic description is applied (almost) everywhere, the computational cost may become even larger
than the cost required to numerically solve a micro- or mesoscale model. Clearly, bridging the large
range of dynamically coupled scales is a fundamental challenge that was and still is a driving force in
the development of new mathematical algorithms.

The goal of the present paper is to derive and analyse a new hybrid continuum-kinetic model for
complex fluids. We start first by introducing a general methodological approach, which allows us to
derive a class of new multiscale models. The basic idea is based on two simple ingredients. First,
we assume that the problems we are studying have fast and slow scale dynamics. In addition, we
assume a scale separation between the microscopic (fast) and macroscopic (slow) dynamics and thus, the
phenomena may be imagined to act at different domain scales. Second, we assume that the effects of the
fast scale dynamics on microscopic scale can be captured at the macroscopic level, at least approximately,
by homogenization of the microscopic properties of the fluid over a finite size domain. In this work, we
consider a prototype situation of isentropic flows governed by the conservation of mass and momentum
at the continuum level. In order to model rheology of a complex fluid, the non-Newtonian stress tensor
is obtained by an upscaling homogenizing procedure using the kinetic relaxation type equations. We will
study properties of the derived hybrid multiscale model using a linear stability analysis and successively
conduct several numerical experiments to illustrate the accuracy and efficiency of the proposed hybrid
model.

The rest of the paper is organized in the following way. In Section 2, we derive the hybrid continuum-
kinetic model including the non-Newtonian stress tensor. The latter is obtained by the Irving-Kirkwood
formula which represents upscale microscopic effects. In Section 3, we perform a linear stability analysis
which shows that for the regimes of interest, the low speed flows, the model is linearly stable. In
Section 4, several numerical examples are conducted that demonstrate the validity of the proposed
model for different prototype situations arising in complex flows. Finally, Section 5 is dedicated to the
discussion of the obtained results and future developments.

2 The hybrid model approach

In this section, we first detail the general framework which will be used to derive a class of hybrid mul-
tiscale models. We then focus on the derivation and analysis of a prototype case, a hybrid continuum-
kinetic model for complex fluids. This is realized by homogenization over a fixed size cell of the mi-
croscopic domains composed by the fluid molecules. The latter process leads to the Irving-Kirkwood
formula for complex macroscopic stress tensor.

We start by considering the following general setting. We assume that a microscopic process used
to describe time evolution of the state of the system of interest is known. For instance, molecular
dynamics or kinetic mesoscopic equations are able to provide such information accurately enough. We
also assume that we have at our disposal a macroscopic model in which a missing information will
be provided by means of a microscopic model. These two models, micro/meso and macro, can be
related through a reconstruction (upscaling) and a projection (downscaling) operator which permits
to commute from one system to the other. The upscaling operator averages the micro properties of
the fluid up to a coarser description, while the downscaling operator uses the coarser description to
obtain the unknown variables at the microscopic level. A classical example of the above operators
are downscaling/upscaling operators between kinetic and macroscopic description. In this case, the
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upscaling procedure is obtained by the integration of the distribution function multiplied by the so-
called collision invariants over the velocity space while the downscaling operator is recovered from the
knowledge of the macroscopic variable defining a so-called equilibrium distribution. In such a setting,
our aim is to be able to give a description of the state of the system by working on a given macroscopic
grid, defined a-priori, and through the use of a macroscopic model bringing some information from the
microscopic/mesoscopic dynamics. Schematically, the proposed method works as depicted in Figure 2.1.
We upscale the microsolver information, which is determined by time evolution of the unknown u, through
a homogenization on a box of fixed size [−α, α]d with d the spatial dimension and α the characteristic
length of the microscopic variation. The size of the box depends on the problem under consideration.
This micro information is successively used into the macroscopic solver, with unknown U , over the
macroscopic grid to update the solution of the complex flow.

In what follows, we describe the details of such procedure in the case, where the macroscopic model
is represented by the isentropic fluid equations for complex fluids while the microscopic model is the
BGK kinetic equation [3]. From the depicted scenario, it is possible to imagine alternative types of
combination of micro and macro dynamics which will be discussed in future investigations.

Figure 2.1: Sketch of the hybrid multiscale approach.

2.1 A prototype case and derivation of the model

In this section, we consider a fluid which, by hypothesis, can be described at the macroscopic level by the
compressible isentropic fluid equations. In this case, the system is governed by two equations describing
the conservation of mass and momentum. This system reads

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) = ∇x · T,
(2.1)

where ρ and u stand for the fluid density and velocity, respectively. The so-called Cauchy stress tensor
T describes specific rheological fluid properties. All unknowns are functions of space x ∈ Rd and time
t > 0. For inviscid fluids, T = −pI, where I is the identity tensor. This expression leads to the Euler
equations. Considering isentropic fluids, pressure p = p(ρ) is a given function of density ρ.

If viscous effects are taken into account, the Cauchy stress tensor reads

T = −pI + S,

where S stands for the viscous stress. For Newtonian fluids, the latter is given by the Newton rheological
rule (NRR)

S = µ

(
∇xu+∇xu

T − 2

d
∇x · uI

)
+ λ∇x · uI,

with µ > 0 and λ ≥ 0 being the constant shear and bulk viscosity coefficients, respectively. This relation
leads to the compressible Navier-Stokes equations. In complex fluids, however, the rheological relation for
the Cauchy stress tensor is more general and typically obtained by computational or physical experiments.
Here, we propose instead that the Cauchy stress tensor takes into account microscopic effects in a
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homogenized way. This new model is derived from considering the kinetic equations underpinning fluid
models of the type (2.1) as a microscopic model.

More specifically, we make the hypothesis that the so-called BGK (Bhatnagar-Gross-Krook) equation
is a suitable microscopic model which can be upscaled to yield a missing information on a complex Cauchy
stress tensor at the macroscopic level. The considered BGK equation reads [3]

∂tf + v · ∇xf = Q(f), (2.2)

where f is the probability density function of fluid molecules at position x having velocity v ∈ Rd at
time t and Q(f) is a collision operator (modelling the molecular interactions) to be described later on.
This hypothesis can be relaxed giving rise to similar models with, however, different coefficients.

We assume now as depicted in Figure 2.1 that f has slow variations at the domain scale D and fast
variations at scale α� D. Given that hypothesis, we consequently set f = f̃(x, xα ,v, t) where f̃(x,y,v, t)
is 2-periodic with respect to y, with unit cell [−1, 1]d. We also suppose that the collision operator has
magnitude 1/α, i.e. that the microscopic spatial effect are balanced by the collision dynamics among
molecules. Substituting this representation into (2.2), yields the following microscopic model

∂tf̃ + v · ∇xf̃ +
1

α
v · ∇y f̃ =

1

α
Q(f̃). (2.3)

Now, we introduce two new functions, one for the density ρ̃ = ρ̃(x,y, t) and one for the vector velocity
ũ = ũ(x,y, t) to be precisely defined later on. Q(f̃) is the BGK operator, i.e. a relaxation operator
towards a given Maxwellian distribution M(ρ̃,ũ) of parameter ρ̃ and ũ. We observe at this stage that the
way in which ρ̃ and ũ will be defined will permit to close the resulting system of macroscopic equations.
Denoting by T the (constant) temperature and R the universal gas constant, M(ρ̃,ũ) is given by

M(ρ̃,ũ)(v) =
ρ̃

(2πRT )d/2
exp

(
−|v − ũ|

2

2RT

)
, (2.4)

and the BGK operator is given by

Q(f̃) = −1

τ̃
(f̃ −M(ρ̃,ũ)), (2.5)

where τ̃ is a relaxation time. Finally, (2.3) takes the form

α
(
∂tf̃ + v · ∇xf̃

)
+ v · ∇y f̃ = −1

τ̃
(f̃ −M(ρ̃,ũ)). (2.6)

The microscopic model (2.6) can be used to provide a missing detailed information for the macroscopic
model (2.1). To this end, the Cauchy stress tensor T can be reconstructed from f̃ by an upscaling
homogenization procedure through the Irving-Kirkwood (or Kramer) formula [23]:

T(x, t) = − 1

2d

∫
[−1,1]d

∫
Rd

(v − ũ(x,y, t))⊗ (v − ũ(x,y, t))f̃(x,y,v, t)dvdy (2.7)

with f̃ being the solution of (2.6). In other words, we measure the microscopic effects by homogenization
of the kinetic model over the microscopic box of size [−α, α]d. Problem (2.6) can be viewed as a cell

problem for y in the unit cell [−1, 1]
d

and v ∈ Rd. The size of this box is left as a free parameter,
which may depend on the system under consideration. An interesting setting, which will be numerically
explored in Section 4, consists of considering the size of the box into relation with the macroscopic
description of the flow at the numerical level. This can be done, for instance, by fixing a ratio between
the box where the microscopic effects are measured and the size of the mesh employed at the macroscopic
level.

In order to have a well posed problem, we finally supplement (2.6) with the periodic boundary
conditions for the probability density function:

f̃(x,y + n,v, t) = f̃(x,y,v, t), ∀n ∈ (2Z)d.

Our aim now is to find an approximate solution of the cell problem by means of the Chapman-Enskog
expansion [6] for small relaxation times τ̃ . This will allow us to upscale the microscopic effects at the
macroscopic level without resorting to the numerical resolution of the microscopic model which would
lead to an expensive computation. This step is performed in the next section.
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2.2 Chapman-Enskog expansion for the prototype hybrid model

In this part, we present a perturbation analysis of the distribution function f̃ over the box [−1, 1]d. We
assume in the rest of the paper that τ̃ = O(ε), where ε � 1 is the Knudsen number, i.e. the ratio of
the relaxation parameter τ̃ to a characteristic hydrodynamic temporal scale. The latter represents the
macroscopic scale of interest in our analysis. More precisely, we write τ̃ = ετ̂ , where τ̂ = O(1) when
ε → 0 in the following. We proceed by introducing the Chapman-Enskog expansion [6] that will be
truncated at the first-order terms

f̃ε = f̃ (0) + εf̃ (1) +O(ε2), (2.8)

where f̃ε is the solution of (2.6) when τ̃ is replaced by ετ̂ . The so-called cell problem (2.3) is then
rewritten, using the Einstein summation convention under the above scaling as(

α
(
∂tf̃

ε + vi∂xi f̃
ε
)

+ vi∂yi f̃
ε
)

(x,y,v, t) = − 1

ετ̂

[
f̃ε(x,y,v, t)−M(ρ̃ε(x,y,t),ũε(x,y,t))(v)

]
. (2.9)

Substituting (2.8) into (2.9) and equating the same powers of ε yields

f̃ (0) = M(ρ̃,ũ), f̃ (1) = −τ̂
(
α
(
∂tf̃

(0) + vi∂xi
f̃ (0)

)
+ vi∂yi f̃

(0)
)
.

We proceed now, using the first order expansion (2.9), to the computation of the Cauchy stress tensor
appearing in equation (2.1) in the above described setting. To this end, we denote

Tij =

∫
Rd

(vj − ũj)(vi − ũi)f̃ (0)dv + ε

∫
Rd

(vj − ũj)(vi − ũi)f̃ (1)dv +O(ε2) (2.10)

=: T (0)
ij + T (1)

ij +O(ε2),

the contribution to the stress tensor coming from the Chapmann-Enskog expansion and we consider in
the following computations each term separately.

First, using the equation of state for perfect gases p̃ = RTρ̃, we obtain that the leading term in (2.10)
can be written as

T (0)
ij =

∫
Rd

(vj − ũj)(vi − ũi)f̃ (0)dv

=

∫
Rd

(vj − ũj)(vi − ũi)
ρ̃

(2πRT )d/2
exp

(
−|v − ũ|

2

2RT

)
dv = ρ̃RTδij = p̃δij

(2.11a)

or in the matrix form as
T (0) = p̃I. (2.11b)

The second term in (2.10) reads:

T (1)
ij = ε

∫
Rd

(vj − ũj)(vi − ũi)f̃ (1)dv

= −τ̂ ε
∫

Rd

(vj − ũj)(vi − ũi)
(
α
(
∂tf̃

(0) + v`∂x`
f̃ (0)

)
+ v`∂y` f̃

(0)
)
dv. (2.12)

We analyze now each term of equation (2.12) separately. We start by applying the chain rule first to

∂y` f̃
(0) = ∂ρ̃f̃

(0)∂y` ρ̃+ ∂ũm f̃
(0)∂y` ũm. (2.13)

We then observe that we can write the following relation

v`
∂f̃ (0)

∂y`
= v`

∂f̃ (0)

∂ρ̃

∂ρ̃

∂y`
+ v`

∂f̃ (0)

∂ũm

∂ũm
∂y`

= v`
f̃ (0)

ρ̃

∂ρ̃

∂y`
+
v`(vm − ũm)

RT
f̃ (0) ∂ũm

∂y`
=: A1 +A2,

(2.14)

to separate different contributions to the stress tensor, i.e. the one, denoted by A1, is due to the mass
variation and the other one, denoted by A2, is due to the variation of the mean velocity in the cell
[−1, 1]d. Now, by introducing the notation 〈·〉 ≡

∫
Rd ·dv to indicate integration over the velocity space,

one can compute the moments for the terms A1 and A2 defined in (2.14) separately. To that aim, with
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the notation Ãk = 〈(vj − ũj)(vi − ũi)Ak〉, with k = 1, 2, for the second order moments of A1 and A2 we
obtain:

Ã1 :=
1

ρ̃

∂ρ̃

∂y`
〈(vj − ũj)(vi − ũi)v`f̃ (0)〉

=
1

ρ̃

∂ρ̃

∂y`
〈(vj − ũj)(vi − ũi)(v` − ũ`)f̃ (0)〉+

1

ρ̃

∂ρ̃

∂y`
ũ`〈(vj − ũj)(vi − ũi)f̃ (0)〉

=
∂ρ̃

∂y`
ũ`RTδij ,

Ã2 :=
1

RT

∂ũm
∂y`
〈(vj − ũj)(vi − ũi)(vm − ũm)v`f̃

(0)〉

=
1

RT

∂ũm
∂y`
〈(vj − ũj)(vi − ũi)(vm − ũm)(v` − ũ`)f̃ (0)〉+

ũm
RT

∂ũm
∂y`
〈(vj − ũj)(vi − ũi)(vm − ũm)f̃ (0)〉

=
∂ũm
∂y`

ρ̃RT
(
δijδm` + δimδj` + δi`δjm

)
.

We now analyze the term involving the time derivative ∂f̃(0)

∂t in (2.12). Similarly to (2.13) we have

∂f̃ (0)

∂t
=
f̃ (0)

ρ̃

∂ρ̃

∂t
+
vm − ũm
RT

f̃ (0) ∂ũm
∂t

,

and analogously to (2.14) with y replaced by x we have

v`
∂f̃ (0)

∂x`
= v`

f̃ (0)

ρ̃

∂ρ̃

∂x`
+
v`(vm − ũm)

RT
f̃ (0) ∂ũm

∂x`
.

This leads to the following contribution for what concerns the time derivative of the distribution f̃0

Ã3 :=
〈

(vj − ũj)(vi − ũi)
∂f̃ (0)

∂t

〉
=
〈

(vj − ũj)(vi − ũi)

(
f̃ (0)

ρ̃

∂ρ̃

∂t
+
vm − ũm
RT

f̃ (0) ∂ũm
∂t

)〉
=

=
〈

(vj − ũj)(vi − ũi)
f̃ (0)

ρ̃

∂ρ̃

∂t

〉
+
〈

(vj − ũj)(vi − ũi)
vm − ũm
RT

f̃ (0) ∂ũm
∂t

〉
= RT

∂ρ̃

∂t
δij =

∂p̃

∂t
δij ,

while the contribution to the stress tensor coming from the space variation of the quantities ρ̃, ũm at
the macroscopic scale x is

Ã4 :=
〈

(vj − ũj)(vi − ũi)v`
∂f̃ (0)

∂x`

〉
=

∂ρ̃

∂x`
ũ`RTδij +

∂ũm
∂x`

ρ̃RT
(
δijδm` + δimδj` + δi`δjm

)
.

Collecting all these terms, we obtain the following form of T (1)
ij = −τ̂ ε

(
Ã1 + Ã2 + α(Ã3 + Ã4)

)
:

T (1)
ij = −ετ̂RT ρ̃

[∂ũm
∂y`

(δijδm` + δimδj` + δi`δjm) + δij
ũ`
ρ̃

∂ρ̃

∂y`

]
−εατ̂

[∂p̃
∂t
δij +RTρ̃

(∂ũm
∂x`

(δijδm` + δimδj` + δi`δjm) + δij
ũ`
ρ̃

∂ρ̃

∂x`

)]
. (2.15)

In the matrix form, the contribution to the stress tensor given by the truncated Chapmann-Enskog
expansion can be written as

T (1) = −ετ̂RT ρ̃
[
∇yũ+∇yũ

T +
(
∇y · ũ+

( ũ
ρ̃
· ∇y

)
ρ̃
)

I
]

−εατ̂
[
∂tp̃ I +RTρ̃

[
∇xũ+∇xũ

T +
(
∇x · ũ+

( ũ
ρ̃
· ∇x

)
ρ̃
)

I
]

=

=: T (1,1) + T (1,2). (2.16)

Combining now (2.7), (2.11b), (2.16), and discarding the terms O(ε2), yields

T(x, t) = − 1

2d

∫
[−1,1]d

(
T (0) + T (1)

)
dy
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and after substituting plugging this into (2.1) we finally obtain

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) =

∇x ·
[ 1

2d

∫
[−1,1]d

{
− p̃I + ετ̂RT ρ̃

(
∇yũ+∇yũ

T +
[
∇y · ũ+

( ũ
ρ̃
· ∇y

)
ρ̃
]
I
)

ετ̂α
{
∂tp̃ I +RTρ̃

(
∇xũ+∇xũ

T +
[
∇x · ũ+

( ũ
ρ̃
· ∇x

)
ρ̃
]
I
)}}

dy
]
.

(2.17)

We proceed in the next section by proposing a closing strategy for the system (2.17). This will
be established by relating the perturbations ũ, ρ̃, p̃ to the mean velocity u and density ρ of the fluid
at the macroscopic scale. With this aim, we will assume that ũ and ρ̃ have approximate polynomial
variations w.r.t. y in the unit cell. More precisely, we assume that ρ̃(x,y, t) ≈ ρ(x+αy, t) and similarly
for ũ ≈ u(x + αy, t). We will use the Taylor expansion and successive truncation with respect to the
parameter α.

2.3 System closure

In order to get a closed system of equations we proceed with inserting our assumption on a linear variation
of the perturbed quantities ũ and ρ̃ into (2.17). We assume that both ρ and u are sufficiently regular to
be Taylor-expanded from the center of the box. In our expansion, we keep the terms up to order O(α2).
Thus, ρ(y, t),u(y, t) can be written as:

ρ̃(x,y, t) = ρ(x, t) + α(y · ∇x)ρ(x, t) +
α2

2
(y · ∇x)2ρ(x, t) +O(α3),

ũ(x,y, t) = u(x, t) + α(y · ∇x)u(x, t) +
α2

2
(y · ∇x)2u(x, t) +O(α3).

(2.18)

Substituting (2.18) into (2.11a) and (2.15), integrating over the microscopic box with respect to y and
noting that odd terms with respect to y cancel by antisymmetry, we obtain:

− 1

2d

∫
[−1,1]d

T (0) dy = − 1

2d

∫
[−1,1]d

ρ̃(x,y, t)RT I dy

= − 1

2d

∫
[−1,1]d

[
ρ+ α(y · ∇x)ρ+

α2

2
(y · ∇x)2ρ

]
RT I dy +O(α3)

= −
(
ρ+

α2

6
∆xρ

)
RT I +O(α3).

(2.19)

Now taking the y-derivative of the second equation in (2.18) relative to the expansion of the velocity ũ,
we have

∇yũ = α (∇xu+ α(y · ∇x)∇xu) +O(α3),

with similar relations holding true for (∇yũ)T , (∇y · ũ), and (∇yρ̃). Using again that odd terms in y
cancel by antisymmetry, we get

− 1

2d

∫
[−1,1]d

T (1,1) dy =
ετ̂RT

2d

∫
[−1,1]d

ρ̃
(
∇yũ+ (∇yũ)T + (∇y · ũ) I

)
dy +

ετ̂RT

2d

∫
[−1,1]d

(ũ · ∇y)ρ̃ I dy

=
ετ̂RTα

2d

∫
[−1,1]d

[
ρ+ α(y · ∇x)ρ

]
×

[
∇xu+ (∇xu)T + (∇x · u) I + α(y · ∇x)

(
∇xu+ (∇xu)T + (∇x · u)I

)]
dy

+
ετ̂RTα

2d

∫
[−1,1]d

[
u+ α(y · ∇x)u

]
·
[
∇xρ+ α(y · ∇x)(∇xρ)

]
Idy +O(α3)

= ετ̂RTα
{
ρ
[
∇xu+ (∇xu)T + (∇x · u) I

]
+ u · ∇xρ I

}
+O(α3).
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Using similar computations for the term T (1,2) in (2.16), we have

− 1

2d

∫
[−1,1]d

T (1,2) dy =
1

2d
ετ̂RTα

∫
[−1,1]d

{
∂tρ̃ I + ρ̃

(
∇xũ+ (∇xũ)T + (∇x · ũ) I

)
+ (ũ · ∇x)ρ̃ I

}
dy

=
1

2d
ετ̂RTα

∫
[−1,1]d

{(
∂tρ+ α(y · ∇x)

∂ρ

∂t

)
I +
[
ρ+ α(y · ∇x)ρ

] [
∇xu+ (∇xu)T

+ (∇x · u) I + α(y · ∇x)
(
∇xu+ (∇xu)T + (∇x · u)I

)]
+
[
u+ α(y · ∇x)u

]
·
[
∇xρ+ α(y · ∇x)(∇xρ)

]
I
}
dy +O(α3)

= ετ̂RTα
{
∂tρ I + ρ

[
∇xu+ (∇xu)T + (∇x · u) I

]
+ u · ∇xρ I

}
+O(α3).

We finally assume that ε =
√
α. This means that the spatial inhomogeneity due to the microscopic

interactions of order α are much smaller and specifically equal to the square of the relaxation length, i.e.
the mean free-path which is of order ε as stated at the beginning of Section 2.2. Thus, we drop all terms
of order α2 in front of terms of order εα. This is the case of the term involving ∆xρ in (2.19). With this
closure and using that ∂tρ = −∇x · (ρu) the system (2.1) is written:

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xp

= α3/2τ̂RT ∇x ·
{

2ρ
(
∇xu+ (∇xu)T

)
+∇x · (ρu) I

}
,

(2.20)

with p = ρRT. We note that when terms of order α3/2 are neglected, we recover the standard Euler
equations.

Remark 1.

• Using alternative closure relations with respect to the one defined in (2.18) leads to alternative sys-
tems of balance laws which may be used to describe different phenomena related to the microscopic
dynamics.

• Keeping additional terms in the Taylor expansion (2.18)/considering a different scaling relation
with respect to

ε =
√
α

leads also to a different balance laws of dispersive type: third order terms appears.

• Different kinetic models can be applied instead of the BGK relaxation equation (2.5). For example,
molecular dynamics interacting through short range potential can be used giving rise, for instance,
to alternative Piola-Kirchhoff stress tensors.

3 Linear stability analysis

In this section, we study the linear stability of system (2.20). Let us assume ρ = ρ0 + βρ1 + · · · , and
u = u0 + βu1 + · · · with β � 1, where (ρ0,u0) represents a uniform steady state and (ρ− ρ0,u−u0) is
a small perturbation from this equilibrium state. We then substitute the above expressions into (2.20)
and, dropping terms of order β2 or more, we obtain a system of linearized equations for ρ1(x, t) and
u1(x, t). The scope of this section is to investigate the stability properties of the resulting linear system.
The corresponding equations for (ρ1,u1) are

∂tρ1 + ρ0∇x · u1 + u0 · ∇xρ1 = 0,

ρ0 (∂tu1 + (u0 · ∇x)u1) +RT∇xρ1

= α3/2τ̂RT ∇x ·
{

2ρ0

(
∇xu1 + (∇xu1)T

)
+
(
ρ0∇x · u1 + u0 · ∇xρ1

)
I
}
.

(3.1)

Using the Fourier transform in both space and time, we can write[
ρ1

u1

]
(x, t) =

[
ρ̄1

ū1

]
ei(k·x−ωt) (3.2)
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with ρ̄1 and ū1 being the Fourier coefficients and k ∈ R3, ω ∈ C. Using such transformation, one can
infer that the system is stable about the stationary solution (ρ0,u0) if and only if the imaginary part
of ω is nonpositive for all non-trivial solution (3.2). Moreover, one can state that the system is stable if
and only if it is stable for all (ρ0,u0) ∈ [0,∞)× Rd.

For simplicity, before proceeding with the computations, we redefine the following quantities RT ≡ T ,
α3/2τ̂ ≡ τ and (ρ̄1, ū1) ≡ (ρ,u). Substituting now (3.2) in (3.1) and using these redefined quantities, we
get

− iωρ+ ρ0i(k · u) + i(k · u0)ρ = 0,

ρ0

(
− iωu+ i(k · u0)u

)
+ Tikρ

= τT ikT
{

2ρ0

(
ik ⊗ u+ iu⊗ k

)
+
(
ρ0i(k · u) + i(k · u0)ρ

)
I
}
.

Simplifying the above expressions, we obtain(
− ω + k · u0

)
ρ+ ρ0k · u = 0,(

− ω + k · u0

)
u+

T

ρ0

(
1− iτ(k · u0)

)
kρ− 2iτT

(
|k|2u+ (k · u)k

)
= 0.

(3.3)

Now, we want to analyze equation (3.3). To this aim, let us first assume that k = 0. This choice directly
implies ω 6= 0 otherwise, the perturbed solution is just like the unperturbed equation: constant in time
and spatially uniform. From the above hypothesis, we immediately obtain −ωρ = 0 and −ωu = 0. This
means ρ = 0 and u = 0 and thus, the perturbed solution is again constant in time and space, i.e. there
does not exist any non-trivial solution to the system (3.3) in this setting. Thus, in the sequel, we assume
that k 6= 0.

Let thus, under the hypothesis k 6= 0, the orthogonal projection onto {k}⊥ be denoted as Pk⊥ .
Applying Pk⊥ to the second equation in (3.3), yields(

− ω + k · u0 − 2iτT |k|2
)
Pk⊥u = 0. (3.4)

It should be observed that the expression inside the parentheses in (3.4) can not be zero, otherwise, by
taking the imaginary part, one concludes that k = 0, which is a contradiction. Hence, the perturbed
velocity is in the direction of k and thus Pk⊥u = 0. As a consequence, we can write

u = v
k

|k|
, (3.5)

where v ∈ R. After substituting (3.5) into equation (3.3), the system for (ρ, v) reads(
− ω + k · u0

)
ρ+ ρ0|k|v = 0,(

− ω + k · u0

)
v +

T

ρ0

(
1− iτ(k · u0)

)
|k|ρ− 4iτT |k|2v = 0.

We introduce now the angle θ between u0 and k, hence k · u0 = ku0 cos θ, where we denote k = |k| and
u0 = |u0|. This leads to(

− ω + ku0 cos θ
)
ρ+ ρ0kv = 0,

T

ρ0

(
1− iτku0 cos θ

)
kρ+

(
− ω + ku0 cos θ − 4iτTk2

)
v = 0,

or, in matrix form: [
−ω + ku0 cos θ ρ0k

T
ρ0

(
1− iτku0 cos θ

)
k −ω + ku0 cos θ − 4iτTk2

] [
ρ
v

]
= 0

Thus, there exists a non trivial solution if and only if the determinant of the above system is equal to
zero. This gives ∣∣∣∣∣ −ω + ku0cosθ ρ0k

T
ρ0

(
1− iτku0cosθ

)
k −ω + ku0cosθ − 4iτTk2

∣∣∣∣∣ = 0.
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Letting X = −ω + ku0 cos θ, the previous equation leads to the following characteristic equation

X2 − 4iτTk2X − Tk2(1− iτku0 cos θ) = 0. (3.6)

Let us consider the set of solutions of (3.6). We want to guarantee that the imaginary part of ω remains
non-positive such that the linear stability holds true. To analyse (3.6), we refer to the Routh-Hurwitz
criterion [24]. This criterion is summarized as follows: let a polynomial equation be of the form

(a0 + ib0)µn + (a1 + ib1)µn−1 + · · ·+ (an + ibn) = 0. (3.7)

Then, all solutions of the above equation satisfy Re(iµ) < 0 if and only if

(−1)∆2 = −
∣∣∣∣ a0 a1

b0 b1

∣∣∣∣ > 0,

(−1)2∆4 =

∣∣∣∣∣∣∣∣
a0 a1 a2 a3

b0 b1 b2 b3
0 a0 a1 a2

0 b0 b1 b2

∣∣∣∣∣∣∣∣ > 0,

...

(−1)n∆2n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 an 0 · · · · · · 0
b0 b1 · · · bn−1 bn 0 · · · · · · 0
0 a0 · · · an−2 an−1 an 0 · · · 0
0 b0 · · · bn−2 bn−1 bn 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · a0 a1 a2 a3 · · · an
0 0 · · · b0 b1 b2 b2 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Now, observing that Re(iX) = Im(ω), the stability conditions follow immediately. We then apply the
Routh-Hurwitz criterion directly to (3.6). To this aim, we compare the coefficients of (3.6) with those
of (3.7). This gives

a0 = 1, b0 = 0
a1 = 0, b1 = −4τTk2

a2 = −Tk2, b2 = τTk3u0 cos θ.
(3.8)

Using the above quantities in the Routh-Hurwitz criterion we get

−∆2 = 4τTk2 > 0

and
∆4 = τ2T 2k6(16T − u2

0 cos2 θ).

Thus, we can conclude that if u2
0 ≥ 16T , then, ∆4 ≥ 0, i.e. the model is stable for all values of θ. On

the other hand, if u2
0 > 16T , then, there is a threshold cos θc defined by

cos2 θc =
16T

u2
0

,

such that the model is stable if | cos θ| ≤ cos θc and unstable if | cos θ| > cos θc. In this case, the model
is unstable for waves propagating in directions close to the direction of the unperturbed velocity.

To summarize the above stability analysis we have showed that when the flow is subsonic the system
is certainly linearly stable. Moreover, even for supersonic flows the system remains stable, in fact for
the model considered the sound speed corresponds to c = T . Only for hypersonic flows (Mach number
M > 4) we have the appearance of linearly unstable modes. However, for the applications we have in
mind, we always consider regimes where the fluid velocity is small compared with the thermal velocity,
and so, the stability criterion is always verified.

4 Numerical methods and experiments

In this section, we study the behavior of the hybrid continuum-kinetic model (2.20) derived in Section 2
by comparing it with the isentropic Euler equations, the isentropic Navier-Stokes equations, and the
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BGK model. In what follows, we shall refer to our hybrid multiscale model (2.20) as HMM. We expect
the HMM to improve the results of the standard macroscopic model and to approach the behavior of the
BGK equation, at least in specific regimes that have been used in its derivation.

In the rest of this section we first describe the numerical methods used for computations and then
illustrate the performance of the derived hybrid continuum-kinetic model in a number of experiments
that clearly illustrate that the HMM is capable to better describe the physics of complex fluids in several
regimes.

4.1 The BGK model and its numerical discretization

The HMM has been derived using the Chapmann-Enskog expansion starting from a steady state BGK
model, cf. Section 2.2. It is therefore natural to expect the HMM to be close to the underlying kinetic
equation in several regimes of the relaxation parameter τ . Consequently, we consider the following time
dependent BGK equation

∂tf + v · ∇xf =
1

τ
(M(ρ,u) − f), (4.1)

where as assumed in the derivation of the HMM, the Maxwellian distribution (2.4) has constant tem-
perature. In particular, we consider T = 1 and also fix the gas constant R = 1. The shape of this
equilibrium distribution is given in equation (2.4). Now, the mean velocity u and the density ρ are those
obtained from integration of the distribution f in velocity space:

ρ =

∫
Rd

fdv, u =

∫
Rd

vfdv.

For the sake of comparison with the other macroscopic models, we choose and fix the dimension of
the velocity space as d = 2 both for the BGK as well as for the HMM. Then, in order to numerically
approximate (4.1) (see [13] for details), we first replace the unbounded velocity space with a suitable
sufficiently large bounded set. This implies the truncation of the tails of the distribution function, which
normally lives in a non-compactly supported set. Successively, we replace our continuous model by a
so-called Discrete Velocity Model (DVM) by discretizing this new bounded space by means of a finite
number of discrete points representing the discrete velocities that the particles can assume. The result
of this procedure is that the continuous BGK model is replaced by N linear transport equations coupled
through a suitable discretization of the relaxation operator (M(ρ,u) − f). We now introduce the method
and the notations, taking inspiration from [30]. We work on a Cartesian grid V with

V =
{
vk = k∆v + a, k = (k(1), k(2)), a = (a1, a2)

}
,

where a is an arbitrary vector, ∆v is a constant mesh size in velocity and where the components of the
index k have some given bounds K(1),K(2). In this setting, the continuous distribution function f is
replaced by the vector fK(x, t) of size N , where N is chosen as a compromise between accuracy and
computational cost. Each component of this vector is assumed to be an approximation of the distribution
function f at location vk:

fK(x, t) = (fk(x, t))x, fk(x, t) ≈ f(x,vk, t).

Thus, the discrete ordinate kinetic model consists of the following system of ODEs to be solved

∂tfk + vk · ∇xfk =
1

τ
(Mk − fk), (4.2)

with Mk ≈M(x,vk, t) being a suitable approximation of Mρ,u(x,vk, t).
The system (4.2) is discretized in space using standard WENO approaches of order three and we do

not detail them here. With respect to the time discretization, it should be observed, that the Maxwellian
distribution in (4.2) depends on the distribution function f through its moments, cf. (2.4), and hence
the time integration of this ODE system is implemented using an implicit-explicit (IMEX) Runge-Kutta
method; see, e.g., [12] and references therein. A general formulation of the IMEX Runge-Kutta method
for (4.2) can be written as

F
(i)
k = fnk −∆t

i−1∑
j=1

ãijvk · ∇xF
(j)
k + ∆t

ν∑
j=1

aij
1

τ

(
M

(j)
k − F (j)

k

)
,

fn+1
k = fnk −∆t

ν∑
i=1

w̃ivk · ∇xF
(i)
k + ∆t

ν∑
i=1

wi
1

τ

(
M

(i)
k − F

(i)
k

)
,

(4.3)
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where the matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices such that the resulting
scheme is explicit in vk · ∇xf , and implicit in (Mρ,u − f). Here, we use the so-called second order in
time ARS(2,2,2) scheme [1], for which the coefficient vectors w̃ = (w̃1, .., w̃ν)T , w = (w1, .., wν)T are
determined by the following double Butcher tableau:

0 0 0 0
γ1 γ1 0 0
1 γ2 1− γ2 0

γ2 1− γ2 0

0 0 0 0
γ1 0 γ1 0
1 0 1− γ1 γ1

0 1− γ1 γ1

with γ1 = 1 − 1/
√

2 and γ2 = 1 − 1/(2γ1). The above scheme belongs to a particular class of IMEX
methods for which the implicit tableau is simply diagonally implicit, i.e. it is such that aij = 0 if j > i.
This permits a direct evaluation of the implicit terms without resorting to the inversion of non linear
systems despite the nonlinearity of the function which defines the equilibrium state Mρ,u. Indeed, let us
remark that the stage evaluation (4.3) can be rewritten as

F
(i)
k = fnk −∆t

i−1∑
j=1

ãijvk · ∇xF
(j)
k + ∆t

i−1∑
j=1

aij
1

τ

(
M

(j)
k − F (j)

k

)
+ ∆t

aii
τ

(
M

(i)
k − F

(i)
k

)
, (4.4)

where the only implicit term is the diagonal factor aii
τ

(
M

(i)
k − F

(i)
k

)
, in which M

(i)
k depends on the

density and momentum of the distribution function (ρ,u). These macroscopic quantities can be obtained
from equation (4.4) by discrete integration in velocity space against φk = (1,vk):

(ρ(i)(x),u(i)(x)) =
∑
k

(1,vk)F
(i)
k (x) ∆v := 〈φkF

(i)
k 〉K

= 〈φkf
n
k 〉K −∆t

i−1∑
j=1

ãij〈φkvk · ∇x(F
(j)
k )〉K.

(4.5)

As a consequence from the calculation performed in (4.5), (ρ(i)(x),u(i)(x)), and thus M
(i)
k , can be

explicitly evaluated and then the scheme (4.3)-(4.4) is, in fact, explicitly solvable.

The choice of this specific IMEX Runge-Kutta ODE solver reflects the facts that we need to compare
different model acting at different scales and the scheme should allow to handle consistently the passage
from the kinetic to the fluid equations. In particular, when the scaling parameter τ → 0, the scheme is
formally equivalent to a discretization of the inviscid equation (2.1). For small but non zero values of τ ,
one can also expect the scheme to be close to the new HMM. An analysis of the above scheme can be
performed showing that indeed it possesses the property of being consistent with the limit macroscopic
inviscid model (2.1) when τ → 0; see, e.g., [12].

4.2 A numerical method for the hybrid continuum-kinetic model (HMM)

We continue by introducing the numerical method for the HMM. We give the details of the two-
dimensional discretization since the following numerical experiments will be restricted to two space
dimensions. Let us fix, as for the BGK case, the gas constant R = 1 as well as the temperature T = 1,
set also α3/2τ̂ ≡ τHMM . HMM equations (2.20) rewritten in the vector form read

Qt + Fx +Gy = S, (4.6)

where the vectors of conservative variables Q, the fluxes (F (Q),G(Q) and the source terms S(Q) are

Q =

 ρ
ρux
ρuy

 , F (Q) =

 ρux
ρu2

x + p
ρuxuy

 , G(Q) =

 ρuy
ρuyux
ρu2

y + p

 ,
S(Q) = τHMM

 0
(ξxx)x + (ξyx)y
(ξxy)x + (ξyy)y

 .
(4.7)
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Here, u = (ux, uy) is the macroscopic velocity and

ξxx = 4ρ
∂ux
∂x

+
∂(ρux)

∂x
+
∂(ρuy)

∂y
, ξyy = 4ρ

∂uy
∂y

+
∂(ρuy)

∂y
+
∂(ρux)

∂x
,

ξxy = ξyx = 2ρ

(
∂ux
∂y

+
∂uy
∂x

)
,

(4.8)

We also use the notation x = (x, y) ∈ Ω, where Ω is the computational domain. We assume that
Ω = [xmin, xmax] × [ymin, ymax] is paved with Nx ×Ny uniform cells of size ∆x ×∆y. A cell is labelled
by two indices i, j, one for each direction, while when referring to an interface between the cells we use
respectively (i+ 1

2 , j) or (i, j + 1
2 ). Using this notation, the cell center is located at point xi,j = (xi, yj)

while a face center lies at point

xi+ 1
2 ,j

=

(
1

2
(xi + xi+1), yj

)
, xi,j+ 1

2
=

(
xi,

1

2
(yj + yj+1)

)
.

We denote any generic cell-centered quantity mi,j , i.e. in the following density, momentum, pressure and
mean velocity. A conservative finite volume scheme is adopted along with the first order explicit Euler
scheme for time integration, and we define the generic explicit operator F [mn

i,j ] applied to mn
i,j as

F [mn
i,j ] = mn

i,j −
∆t

∆x

(
fmi+ 1

2 ,j
− fmi− 1

2 ,j

)
− ∆t

∆y

(
gmi,j+ 1

2
− gmi,j− 1

2

)
,

where the numerical fluxes fm
i+ 1

2 ,j
and gm

i,j+ 1
2

are of Rusanov type:

fmi+ 1
2 ,j

=
1

2

(
f(mn

i+1,j) + f(mn
i,j)
)
− 1

2
|λx,max
i+1/2,j |

(
mn
i+1,j −mn

i,j

)
, (4.9)

gmi,j+ 1
2

=
1

2

(
g(mn

i,j+1) + g(mn
i,j)
)
− 1

2
|λy,max
i,j+1/2|

(
mn
i,j+1 −mn

i,j

)
(4.10)

with the eigenvalues at the interfaces given by

|λx,max

i+ 1
2 ,j
| = max

(
|λx,ni+1,j |, |λ

x,n
i,j |
)
, |λy,max

i,j+ 1
2

| = max
(
|λy,ni,j+1|, |λ

y,n
i,j |
)
.

In this setting, the density ρni,j can be directly computed as

ρn+1
i,j = F [ρni,j ],

and the components of the momentum equations satisfy

(ρu)n+1
i,j = F [(ρu)ni,j ] + ∆t

∆x

(
(ξxx)n

i+ 1
2 ,j
− (ξxx)n

i− 1
2 ,j

)
+ ∆t

∆y

(
(ξyx)n

i,j+ 1
2

− (ξyx)n
i,j− 1

2

)
,

(ρv)
n+1
i,j = F [(ρv)ni,j ] + ∆t

∆x

(
(ξxy)n

i+ 1
2 ,j
− (ξxy)n

i− 1
2 ,j

)
+ ∆t

∆y

(
(ξyy)n

i,j+ 1
2

− (ξyy)n
i,j− 1

2

)
.

According to the definitions (4.8) the computation of the stress components (ξxx, ξxy, ξyx, ξyy) requires
the knowledge of the discrete velocity gradients. Here, they are computed on each boundary face of the
control volume using a trapezoidal quadrature rule, that is,

∇xui+ 1
2 ,j

=
1

4

(
∇xui+ 1

2 ,j−
1
2

+∇xui+ 1
2 ,j+

1
2

+∇xui+ 1
2 ,j−

1
2

+∇xui+ 1
2 ,j+

1
2

)
, (4.11)

where the two-dimensional gradient of the velocity field u(t,x) is obtained at each corner defined by
subscript index (i+ 1

2 , j + 1
2 ) as follows:

∇xui+ 1
2 ,j+

1
2

=
1

2

 ui+1,j−ui,j

∆x +
ui+1,j+1−ui,j+1

∆x

ui,j+1−ui,j

∆y +
ui+1,j+1−ui+1,j

∆y

 .
Finally, to increase the accuracy in space, the cell-centred quantities mi,j used in the definition of the
numerical fluxes (4.9)-(4.10) are replaced by a high order polynomial interpolation through the so-called
WENO reconstruction of order three.
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4.2.1 A numerical method for the Navier-Stokes model

We briefly recall here the Navier-Stokes (NS) model which can obtained from the standard Chapmann-
Enskog expansion [6] in the case of isentropic flows and is used for comparison purposes in the rest of
the section. The NS model reads

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xp = εRT ∇x ·
(
ρ
(
∇xu+ (∇xu)T

))
.

(4.12)

The numerical method follows the path of the discretization of the HMM model. Thus, rewriting the
system (4.12) as (4.6), where Q,F ,G have the same meaning of (4.7) while the source term becomes

S(Q) = εRT

 0
(ξNSxx )x + (ξNSyx )y
(ξNSxy )x + (ξNSyy )y

 .
with

ξNSxx = 2ρ
∂ux
∂x

, ξNSyy = 2ρ
∂uy
∂y

, ξNSxy = ξNSyx = ρ

(
∂ux
∂y

+
∂uy
∂x

)
.

We then proceed, as done previously, using a first order explicit Euler scheme in time and the same
Rusanov flux with WENO reconstruction for the hyperbolic fluxes and the same second order discrete
velocity gradients (4.11) are used for the viscous terms. This ends the description of the model and of
the numerical scheme.

4.3 Highly oscillating fluid

We start by considering a highly oscillating initial condition for a flow in the computational domain
Ω = [0, 1] × [0, 2] and assume the periodic boundary conditions to be imposed in both directions. The
temperature T as well as the constant R are set to one. The domain is paved with Nx ×Ny = 64× 128
cells in the physical space while for what concerns the BGK model we discretize the velocity space with
20 × 20 cells with vx,max = vy,max = 5 and vx,min = vy,min = −5, where v = (vx, vy). The initial
distribution function is assumed to be at local equilibrium, i.e. f(x,v, 0) = Mρ,u(x,v, 0). The initial
density and velocities are

ρ(x, y, 0) = 1 + 0.2 cos(10πx) sin(12πy), u(x, y, 0) = (ux, uy) = (1, 0).

In Figure 4.1, we plot the highly oscillating density and the velocity profiles after 100 time iterations
when the isentropic Euler model is used. In Figure 4.2, we present the same result at a fixed value
of x = 0.5. In particular, we compare the results obtained for the isentropic Euler, the BGK and the
HMM models using different values of the scaling parameter τ . In the BGK model we choose τ = 0.001,
τ = 0.005 and τ = 0.01, while in the HMM we set τHMM = τ/3. In Figure 4.2 we can clearly see that
oscillations are damped as fast as the scaling parameter becomes larger. In these three tested situations,
the HMM seems to be able to describe a kinetic regime both for the case of the density as well as for
the case of the mean velocity ux(x, y, t). For sake of comparison, in Figure 4.3, we plot the same density
and velocity profiles at fixed x = 0.5 where we added the results of the Navier-Stokes model for ε = τ .
As one can see, for small values of the damping parameters both NS and HMM give results very close
to those of the BGK model, while for τ = 0.01 the NS model tends to overestimate the damping for
the density and fails in describing the velocity profile. Instead, the HMM model provides a very good
description of the density and while overdamping the velocity still is able to follow the behavior of the
BGK model.

4.4 Perturbed Couette flow

In this section, we consider a two-dimensional Couette-type flow in the domain Ω = [0, 1]×[0, 2] perturbed
by high frequency waves. The setup is the following. The boundary conditions in the x-direction are
periodic while in the y-direction we impose the so-called no-slip boundary conditions for which the normal
to the walls velocity is fixed to zero while the tangential velocity is set equal to the velocity of the walls.
The spatial domain is discretized as before with Nx × Ny = 64 × 128 cells, while the velocity space
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Figure 4.1: Highly oscillating fluid. Profiles of density (left) and first component of the velocity ux(x, y, t)
(right) at final time for the isentropic Euler equations.

is approximated by using 20 × 20 cells in the domain [−5, 5]2. Local equilibrium for the distribution
function is supposed at time t = 0. The initial density and velocities are

ρ(x, y, 0) = 1 + 0.2 cos(10πx) sin(12πy), u(x, y, 0) = (ux, uy) = (y(1 + 0.125 sin(8πx)), 0).

In other words, we simulate a steady state Couette flow with an added high frequency perturbations
both in the density and the velocity. In particular, to the top wall and in the y-direction it is imposed
an oscillatory velocity in the x-direction which reads

uy(x, 2, t) = 1 + 0.25 sin(8πx).

The temperature and the universal gas constant are set T = 1 and R = 1 as before. In Figure 4.4, we
show the density and the velocities profiles after 100 time iteration with a time step of ∆t = 6.25 10−4. At
this time, the perturbed waves have not been completely damped out: it is still possible to observe how
the oscillations in velocity and density modify the solution as the intensity of the relaxation parameter
grows. In particular, Figure 4.4 shows the solutions obtained with τ = 0, τ = 0.005 and τ = 0.01 for the
BGK model, while for the HMM we take τHMM = τ/3 as for the first test. In Figure 4.5, we present
the same results at x = 0.5 comparing the isentropic Euler, the BGK and the HMM solutions. In this
picture, we can clearly see that oscillations are damped when moving far from the regime of validity of
the isentropic Euler equations and that the HMM captures the BGK solution very well for all regimes,
considered at least for the density and the first component of the velocity field. Finally, in Figure 4.6, we
show a comparison between the HMM and the NS model using again the BGK model as reference, all
presented at x = 0.5. For the specific case of the NS model, we take ε = τ while all the others numerical
parameters are equal to the ones of the HMM model. From this figure we see that for small values of
τ both models capture very well the reference solution given by the BGK equation, while for larger τ ,
NS tends to overestimate the damping for what concerns the density profile. Both models is capable of
capturing the first component of the velocity field ux, while both fail in the description of the second
component uy when τ = 0.01. Let observe anyway that uy is affected by waves, which are at least one
order of magnitude smaller than the perturbation waves acting on the other macroscopic quantities and
thus the error introduced in the solution remains very small.

4.5 A vortex test problem

In this last section, we consider a Taylor-Green-type problem. The initial data are given by

ρ(x, y, 0) = 1 + 0.1 cos(8πx) sin(8πy), u(x, y, 0) = (ux, uy) = (cos(x) sin(y),− cos(y) sin(x)).

The temperature is T = 1, the universal gas constantR = 1, and the computational domain is Ω = [0, 2π]2

discretized with Nx = Ny = 128 points in each direction. The velocity space is discretized using the
same parameters as in the previous tests. We take a time step ∆t = 2 10−4 and set a final time of
Tf = 0.6. The initial data are represented in Figure 4.7 on the top left, while the final solution for the
isentropic Euler is reported in the same figure on the top right and illustrates the vortices formation.
The bottom image reports a three-dimensional view of the same solution for the density. In Figure 4.8,
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Figure 4.2: Highly oscillating fluid. Comparison of the density (left) and velocity ux(x, y, t) (right) profiles
for x = 0.5. The results for the Euler, the BGK and the HMM equations with respectively τ = 0.001, τ = 0.005
and τ = 0.01 are shown.

we present comparisons between the isentropic Euler, the BGK and our HMM at the final time for the
density and the velocities and for three different values of the relaxation parameter τ = 0.005, τ = 0.01
and τ = 0.025 with τHMM = τ/3. Once again, the obtained results indicate that the HMM is able to
capture microscopic structures with a sufficiently high accuracy for the regimes under considaration.

5 Conclusions

In this work, we have introduced a new hybrid multiscale model coupling the continuum and kinetic
descriptions. We have applied the Chapman-Enskog expansion on a suitably scaled stationary BGK
equation and then upscaled the kinetic contribution over a microscopic box. These microscopic regions
are located at each points where the fluid equation are solved. The probability density function used to
study the kinetic evolution is related to the unknown density and velocity of the system through truncated
Taylor expansions. Based on a scaling assumption, related to the problem under consideration, a new
multiscale continuum-kinetic model has been derived. A linear stability analysis shows that new hybrid
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Figure 4.3: Highly oscillating fluid. Comparison of the density (left) and velocity ux(x, y, t) (right) profiles
for x = 0.5. The results for the the BGK, the Navier-Stokes and the HMM equations with respectively τ = 0.001,
τ = 0.005 and τ = 0.01 are shown.

multiscale model is conditionally linearly stable in the strongly supersonic regime and unconditionally
stable in the subsonic and mildly supersonic one. Several numerical examples demonstrate that the
hybrid multiscale model is more accurate than standard fluid models and represents complex flows at
different regimes more precisely.

In future work we would like to derive different hybrid multiscale models following the same general
strategy outlined in this work: couple a microscopic description with a macroscopic one through an
upscaling of the microscopic information obtained by homogenization of the micro quantities over micro
sized boxes.
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Figure 4.4: Perturbed Couette flow. Profiles of density and velocity for the Euler and the BGK equations.
From top to bottom: Density, x-velocity and y-velocity profiles. Left τ = 0, middle τ = 0.005, right τ = 0.01.
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