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Motivated by scenarios where the communication or the computation resources are limited, eventtriggered control consists of transmitting data between the plant and the controller according to the actual system needs, and not the elapsed time since the last transmission instant as in traditional sampled-data control, so that the desired control objective is achieved. A range of techniques are nowadays available to design event-triggered controllers. However, we generally have only very little information about the actual behaviour of the transmission instants and thus about the amount of transmissions being actually generated, though this is a key feature of the design. In this paper, we analyse the inter-event times, i.e., the times between two successive transmission instants, when the plant is modeled as a two-dimensional linear timeinvariant system. The controller is a state-feedback law and the triggering rule is the relative threshold policy, which is allowed to be time-regularized. One of the main results in this paper is the explanation of the oscillatory behaviour of the inter-event times when the constant used to define the threshold is small relative to 1, a phenomenon commonly observed in simulations but never explained so far. More generally, the presented results help to understand the behaviour of the inter-event times, instead of solely relying on numerical simulations, and thereby can be exploited to rigorously evaluate the performance of the considered triggering condition in terms of (average) inter-transmission times.

I. INTRODUCTION

Event-triggered control is a transmission paradigm, which consists in generating communications between the plant and the controller using a state-dependent criterion that is continuously monitored [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF]. The basic idea is to adapt plantcontroller communication based on the current system needs, and not the time elapsed since the last transmission as in traditional time-triggered control. Event-triggered control is relevant in scenarios where the control system is subject to communication or computation constraints, as in networked control systems or embedded systems see, e.g., [START_REF] Heemels | Stability and stabilization of networked control systems[END_REF], [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF], [START_REF] Zhang | Stability of networked control systems with time-varying transmission period[END_REF].

While various event-triggered control techniques are available in the literature, very little is known about the actual behaviour of the inter-event times, i.e., the time between two successive transmission instants. This is problematic as the inter-event times directly relate to the amount of transmissions generated and is therefore of primary importance in view of the raison d'être of event-triggered control. In most cases, the analysis of the inter-event times only ensures the existence of a dwell-time also sometimes called "minimum inter-event time", that is a (uniform) strictly positive amount of time between any two successive transmissions. This property allows avoiding the Zeno phenomenon and is required by practical hardware limitations. Besides the existence of a dwell-time, we generally do not know how the inter-event times behave. Numerical simulations are thus often carried out to get an idea of it. Exceptions exist though. The work in [START_REF] Velasco | Equilibrium sampling interval sequences for event-driven controllers[END_REF] provides conditions under which the inter-event times approximately converge to a constant value when the triggering rule satisfies a homogeneity property and when zero-order hold devices are used to implement the controller. This reference also analyses stability properties of the inter-event times assuming it exhibits a periodic pattern. Similarly, conditions for the inter-event times function to exhibit continuity and periodicity properties have been very recently proposed in [START_REF] Rajan | Analysis of inter-event times for planar linear systems under a general class of event triggering rules[END_REF] for twodimensional linear time-invariant systems. The works on/based on discrete-time systems in, e.g., [START_REF] Antunes | Rollout event-triggered control: Beyond periodic control performance[END_REF], [START_REF] Brunner | Robust selftriggered MPC for constrained linear systems: A tube-based approach[END_REF], [START_REF] Brunner | Robust eventtriggered MPC with guaranteed asymptotic bound and average sampling rate[END_REF], which rely on model predictive control techniques, provide analytical guarantees regarding the average inter-event times. When the plant dynamics evolve in continuous-time and smart actuators are available, properties on the inter-event times can be derived when using model-based holding functions [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], as advocated in [START_REF] Antunes | Consistent dynamic event-triggered policies for linear quadratic control[END_REF], [START_REF] Khashooei | A consistent threshold-based policy for event-triggered control[END_REF] for fixed threshold policies, even in the presence of stochastic disturbances. Interestingly, in the absence of disturbances, model-based implementations [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] can lead to a single transmission to stabilize the system in the ideal statefeedback control case. Also, some schemes ensure that interevent times grow larger or converge to a constant as the solution converges to the origin [START_REF] Henriksson | Selftriggered model predictive control for network scheduling and control[END_REF], [START_REF] Li | Efficiently attentive event-triggered systems with limited bandwidth[END_REF], and [37, Section V.B], or as time grows [START_REF] Mitra | A communication-efficient algorithm for exponentially fast non-bayesian learning in networks[END_REF]. Another recent relevant line of research is based on symbolic abstractions see, e.g., [START_REF] Gleizer | Towards traffic bisimulation of linear periodic event-triggered controllers[END_REF], [START_REF] Gleizer | Computing the sampling performance of event-triggered control[END_REF], [START_REF] Kolarijani | Formal traffic characterization of LTI event-triggered control systems[END_REF]. The general idea is to partition either the state space or the inter-event times and then to construct an automaton that schedules transmissions with guaranteed properties on (the long term behaviour of) the inter-event times. Lastly, it has to be noted that several works on event-triggered control under bit-rate constraints and also on event-triggered stochastic estimation analyse the inter-event times, see, e.g., [START_REF] Khojasteh | The value of timing information in event-triggered control[END_REF], [START_REF] Li | Stabilizing bit-rates in quantized event triggered control systems[END_REF], [START_REF] Ling | Necessary and sufficient bit rate conditions to stabilize a scalar continuous-time LTI system based on event triggering[END_REF] and, e.g., [START_REF] Han | Stochastic event-triggered sensor schedule for remote state estimation[END_REF], [START_REF] Leong | Sensor scheduling in variance based event triggered estimation with packet drops[END_REF], [START_REF] Trimpe | Event-based state estimation with variance-based triggering[END_REF], [START_REF] Wu | Event-based sensor data scheduling: Trade-off between communication rate and estimation quality[END_REF], respectively.

Besides the aforementioned works, our understanding of the inter-event times remains limited, while it is a key characteristic of the event-triggered controlled system. Phenomena such as when the inter-event time describes a periodic-like pattern, which is often seen in simulations (see, e.g., [6, Figure 3], [8, Figure 3], [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF]Figure 4], [44, Figure 1], [START_REF] Zhang | Absolute stabilization of Lur'e systems under event-triggered feedback[END_REF]Figure 4]), remain unexplained. Interestingly, inter-event times oscillations were observed in one of the earliest works in the field: more than twenty years ago in [START_REF] Årzén | A simple event-based PID controller[END_REF] it was stated that "Several interesting phenomena have been observed during the simulations. One example is limit cycles in the actual sampling interval", which is still not elucidated as far as we know. More generally, understanding the behaviour of the inter-event times is essential to appreciate the features of the considered triggering technique and to evaluate its performance in terms of transmissions.

There is a simple reason for our limited understanding of the inter-event times: the question is notoriously challenging technically. In this paper, we focus on plant dynamics given by two-dimensional continuous-time linear time-invariant systems and we will see that the problem becomes quickly technically involved. The controller is a static state-feedback law implemented using zero-order hold devices. The triggering rule is the one in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], which is one of the pillars of the literature that has been used and extended in various contexts see, e.g., [START_REF] Abdelrahim | Robust eventtriggered output feedback controllers for nonlinear systems[END_REF], [START_REF] Dimarogonas | Distributed event-triggered control for multi-agent systems[END_REF], [START_REF] Donkers | Output-based event-triggered control with guaranteed L8-gain and improved and decentralized eventtriggering[END_REF], [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. This triggering law relies on the condition |x ´x| ě σ|x|, where x is the current plant state, x is the plant state at the last transmission instant and σ P R ą0 is a tunable parameter. Our results also apply for a time-regularized version of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], in the sense that a given minimum time is enforced between any two transmissions, see, e.g., [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Borgers | Time-regularized and periodic event-triggered control for linear systems[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF], [START_REF] Selivanov | Event-triggered H8 control: A switching approach[END_REF], [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF], [START_REF] Tallapragada | Decentralized event-triggering for control of nonlinear systems[END_REF]. This is relevant when we want to have a direct control on the minimum inter-event time as well as for robustness reasons, see [START_REF] Abdelrahim | Robust eventtriggered output feedback controllers for nonlinear systems[END_REF], [START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF], [START_REF] Borgers | Time-regularized and periodic event-triggered control for linear systems[END_REF], [START_REF] Chai | Analysis and design of eventtriggered control algorithms using hybrid systems tools[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. The idea of including time-regularization is to check the condition above once T ě 0 units of times have elapsed since the last transmission instant: if it is satisfied, a transmission between the plant and the controller is triggered. We only talk of time-regularization when T ą 0, as, for T " 0, the "classical" relative triggering law of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] is obtained.

Our results require σ to be small relative to 1, which is typically the case to ensure the stability of the origin of the closed-loop system, see, e.g., [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. We will see that accurate results are obtained on examples even when σ is taken close to its maximum admissible value ensuring stability. We first establish key properties of the inter-event times functions, which apply to system of any dimension, not only two-dimensional ones. In particular, we provide an expression of the inter-event time, which allows to derive new lower and upper bounds; this result has its own interest and could be exploited for scheduling purposes for instance. We then specialize to two-dimensional systems and distinguish different cases depending on the nature of the eigenvalues λ 1 and λ 2 of the state matrix of the continuous-time closedloop system in the absence of sampling. In summary, when λ 1 and λ 2 are complex conjugates, we show that the interevent times oscillate with a period close to π β , where β is the absolute value of the imaginary parts of λ 1 and λ 2 . This provides for the first time, as far as we know, an explanation of the oscillatory nature of the inter-event times. In addition, we demonstrate that the values taken by the inter-event times over any time interval of length longer than π β are almost insensitive to the considered initial condition. This result has important implications: not only the periodicity of inter-event times is explained and analysed, but this means that a single simulation over a time interval of length π β is enough to rigorously know the behaviour of the inter-event times for all initial conditions and all times. Compared to [START_REF] Velasco | Equilibrium sampling interval sequences for event-driven controllers[END_REF]Section IV] where periodic patterns of the inter-transmission times are mentioned, (i) we do prove the existence of such patterns, instead of assuming it, (ii) we provide an easy-to-compute expression of the period and (iii) we analyse the impact of the initial conditions on the inter-event times, while [START_REF] Velasco | Equilibrium sampling interval sequences for event-driven controllers[END_REF] assumes exact periodicity, which cannot occur in general as we show, and studies the stability properties of the inter-event times. On the other hand, when λ 1 and λ 2 are real, the inter-event times either converge to a neighborhood of max

! σ |λ1| , T )
as time tends to infinity or lies in a neighborhood of max

! σ |λ2| , T
) for all positive times. The only case that we do not treat is when λ 1 " λ 2 and the corresponding geometric multiplicity is equal to one because significant technical difficulties arise in this case as we explain. We conjecture that the interevent times converge to max

! σ |λ1| , T
) in this case, which is confirmed by simulations. These results are consistent with [START_REF] Velasco | Equilibrium sampling interval sequences for event-driven controllers[END_REF]Proposition 1] where non-time-regularized homogeneous triggering rules are discussed. We go further here as (i) we carefully analyse the impact of σ (and T ) on the inter-event times, (ii) we prove that the inter-event times are close to given values for all positive times in some cases, instead of providing asymptotic properties only, (iii) we address timeregularization. Compared to [START_REF] Rajan | Analysis of inter-event times for planar linear systems under a general class of event triggering rules[END_REF], we provide constructive and easy-to-compute estimates on the behaviour of the inter-event times, we reveal the relationship between these properties and the eigenvalues of the closed-loop state matrix and we analyse the impact of the initial conditions on the inter-event times. The provided simulation results confirm and show the strength of the obtained theoretical guarantees.

Compared to preliminary version of this work [START_REF] Postoyan | Inter-event times analysis for planar linear event-triggered controlled systems[END_REF], the main novelty is the time regularization of the triggering law of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], which is important as the relative threshold strategy of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] is known to be non-robust [START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF] as mentioned above. We also present several new results, including new lower and upperbounds on the inter-event times (see Lemma 1), discussions about the application or the extension of the results to other classes of systems (see Section V), as well as new examples including a nonlinear one (Section VI).

The remainder of the paper is organized as follows. The problem is formally stated in Section II. Then, key properties of the inter-event time function are established in Section III. The main results are given in Section IV. Discussions on the extension of the results are proposed in Section V. The results are confronted to numerical simulations in Section VI. Section VII provides conclusions. Finally, lengthy proofs are presented in the appendix.

Notation. Let R be the set of real numbers, R ě0 :" r0, 8q, R ą0 :" p0, 8q, R ă0 :" p´8, 0q, Z be the set of integers, Z ě0 :" t0, 1, 2, . . .u and Z ą0 :" t1, 2, . . .u. Given a set E Ď R n with n P Z ą0 , we use E ‹ to denote Ezt0u. We denote the set of unit norm vectors of R n with n P Z ą0 , as S n , i.e., S n :" tx P R n : |x| " 1u where | ¨| stands for the Euclidean norm. The notation px, yq stands for rx J , y J s J , where x P R n and y P R m . For f : R ě0 Ñ R n right continuous and t ě 0, we write f pt `q to denote lim t 1 Ót f pt 1 q. We use I to denote the identity matrix of appropriate dimension according to the context. For a matrix A P R nˆn with n P Z ą0 , we respectively denote its maximum and minimum singular values as ς max pAq :" a λ max pA J Aq and ς min pAq :" a λ min pA J Aq, where λ max pA J Aq and λ min pA J Aq are the maximal and the minimal eigenvalues of A J A, respectively. The argument 1 of x " px 1 , x 2 q P R2,‹ is defined as

arg : R 2,‹ Ñ r´π, πs x Þ Ñ argpxq :" $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % arctanp x2 x1 q, when x 1 ą 0 arctanp x2
x1 q `π, when x 1 ă 0 and x 2 ě 0 arctanp x2 x1 q ´π, when x 1 ă 0 and x 2 ă 0 π 2 , when x 1 " 0 and x 2 ą 0 ´π 2 , when x 1 " 0 and x 2 ă 0 By argument, we mean here the angle of the two-dimensional vector x, which, without loss of generality, is treated as a complex number.

II. PROBLEM STATEMENT

Consider the plant model

9 x " Ax `Bu, (1) 
where x P R n is the state with n P Z ą0 , u P R m is the control input with m P Z ą0 , and pA, Bq is stabilizable. We restrict n to be equal to 2 later, in Section IV. The control input u is given by the feedback law

u " Kx, (2) 
where the matrix K P R mˆn is such that A `BK is Hurwitz; such a matrix does exist since pA, Bq is stabilizable.

We study the scenario where controller ( 2) is implemented on a digital platform and communicates with system (1) at time instants t i , i P I with I :" t1, 2, . . . , N u X Z ě0 with N P Z ą0 Y t8u; this will be clarified in Section III. Between two successive transmission instants, the control input is held 1 Often, the argument is defined as argpxq " arctanp x 2

x 1 q, but this is only true when x 1 ą 0. constant using a zero-order hold device, and it is updated at every t i , i P I, which leads to

u " K x (3) 
with x being given by the solution to 9 xptq " 0 for all t P pt i , t i`1 q xpt ì q " xpt i q.

(4)

We also introduce the clock variable δ P R ě0 to measure the time elapsed since the last transmission instant. This variable is needed when the triggering law is time-regularized. Its dynamics are given by 9 δptq " 1 for all t P pt i , t i`1 q δpt ì q " 0.

(5)

The overall system is

9 xptq " Axptq `BK xptq 9 xptq " 0 9 δptq " 1
, .

for all t P pt i , t i`1 q xpt ì q " xpt i q xpt ì q " xpt i q δpt ì q " 0 , .

for all i P I.

(6) To obtain a solution to [START_REF] Aranda-Escolástico | Design of periodic event-triggered control for polynomial systems: A delay system approach[END_REF] in the Carathéodory sense, for each i P I, the latter flows on rt i , t i`1 q and experiences a jump at t i`1 , and so on. Also, by a solution, we mean a maximal solution, i.e., one that cannot be extended.

The sequence of transmission instants t i , i P I, is defined implicitly by a state-dependent triggering rule. In particular, we consider the law in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], possibly time-regularized, to define these instants as proposed in, e.g., [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF]. Hence, a transmission occurs whenever |xptq ´xptq| ě σ|xptq| and δptq ě T,

where σ ą 0 and T ě 0 are design parameters. We only talk of time-regularization when T ą 0 as mentioned in Section I, and we note that, when T " 0, the second condition in [START_REF] Årzén | A simple event-based PID controller[END_REF] is always verified. The first inequality in [START_REF] Årzén | A simple event-based PID controller[END_REF] guarantees that the error |x ´x| induced by sampling is smaller than σ|x| as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], after T units of times have elapsed since the last transmission; otherwise a transmission is triggered. On the other hand, the inequality δptq ě T in [START_REF] Årzén | A simple event-based PID controller[END_REF] enforces a minimum time between successive transmissions of at least T units of time, which we design, whenever T ą 0. Constants σ and T are selected to ensure that the origin of system (6)-( 7) is uniformly globally exponentially stable, as formalized next.

Standing Assumption 1 (SA1): There exist d 1 ě 1, d 2 , σ ‹ , T ‹ ą 0 such that for all pσ, T q P p0, σ ‹ q ˆr0, T ‹ q, for all solutions px, x, δq to (6)- [START_REF] Årzén | A simple event-based PID controller[END_REF] and t ě 0, |pxptq, xptqq| ď d 1 e ´d2t |pxp0q, xp0qq|. l Various techniques are available in the literature to compute the bounds σ ‹ and T ‹ to ensure SA1, see 2 , e.g., [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF], [START_REF] Selivanov | Event-triggered H8 control: A switching approach[END_REF], [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Tallapragada | Decentralized event-triggering for control of nonlinear systems[END_REF].

We assume that t 0 " 0, which means that the initial time t " 0 is a sampling time. We therefore concentrate on solutions to (6)- [START_REF] Årzén | A simple event-based PID controller[END_REF] initialized at time 0 with initial state of the form px 0 , x 0 , 0q where x 0 P R n , since after a sampling instant x is equal to x and δ to 0. The first inter-transmission time is the time, greater than or equal to T , such that |x ´x| is larger than or equal to σ|x|. Since t 0 " 0, and xp0q " xp0q " x 0 , this time only depends on x 0 , and is parameterized by σ and T , we therefore denote it τ σ,T px 0 q. The first inter-transmission time is defined as, given x 0 , τ σ,T px 0 q :" inf tη ě T : |x 0 ´φpη; x 0 q| ě σ|φpη; x 0 q|u , (8) where φpη; x 0 q denotes the solution3 to 9

x " Ax `BKx 0 at time η ě 0, initialized at time zero at state x 0 . By induction, we denote the i th inter-transmission time, with i P I, as τ σ,T pxpt i qq, which only depends on xpt i q, as xpt ì q " xpt ì q " xpt i q and δpt ì q " 0. The mathematical definition of τ σ,T pxpt i qq is given by ( 8) by simply replacing x 0 by4 xpt i q. Noting that xptq " xpt i q for t P pt i , t i`1 q in view of (6), we can write τ σ,T pxpt i qq " τ σ,T pxptqq.

Problem Statement: The objective is to analyse the properties of τ σ,T pxp¨qq along solutions to the hybrid system ( 6)-( 7) initialized at px 0 , x 0 , 0q for some x 0 P R n when n " 2 and for σ small relative to 1.

l The only guarantee on the inter-event times we find in the literature for the triggering condition [START_REF] Årzén | A simple event-based PID controller[END_REF] is the existence of a minimum inter-event time. More precisely, when T " 0, we know from [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] that there exists ε ą 0 such that τ σ,T px 0 q ě ε for any x 0 P R n,‹ , and, when T ą 0, τ σ,T px 0 q ě T for any x 0 P R n , which directly follows from [START_REF] Årzén | A simple event-based PID controller[END_REF]. We aim at going further in the analysis of the function τ σ,T : we want to provide analytical characterizations of the behaviour of t Þ Ñ τ σ,T pxptqq along the solutions to (6)- [START_REF] Årzén | A simple event-based PID controller[END_REF]. In that way, we would be able to rigorously quantify the amount of transmissions generated by the triggering rule.

For this purpose, we view system (6)-( 7) as a family of systems parameterized by σ and T , and the presented results apply for small σ in [START_REF] Årzén | A simple event-based PID controller[END_REF], which we justify as follows. First, σ typically needs to be small for the closed-loop system in ( 6)- [START_REF] Årzén | A simple event-based PID controller[END_REF] to exhibit stability properties, see SA1. Second, our line of analysis exploits properties of the limit case when σ Ñ 0. This allows us to derive simple and accurate properties on the interevent times, which are corroborated by numerical simulations in Section VI even when σ is taken close to σ ‹ defined in SA1.

The next section establishes preliminary instrumental properties of the map τ σ,T .

III. PROPERTIES OF THE MAP τ σ,T

We first need to make sure that τ σ,T cannot be equal to 8. In other words, we want to guarantee that τ σ,T pR n q Ď r0, 8q. This is ensured by the next proposition.

Proposition 1: For any x 0 P R n , σ P p0, σ ‹ q and T P r0, T ‹ q where σ ‹ and T ‹ come from SA1, τ σ,T px 0 q P r0, 8q. l Proof: Let σ P p0, σ ‹ q and T P r0, T ‹ q. We first note that τ σ,T p0q " T in view of ( 6), [START_REF] Årzén | A simple event-based PID controller[END_REF] and [START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF]. To prove that τ σ,T takes finite values on R n,‹ , we proceed by contradiction and we suppose that there exists x 0 P R n,‹ such that τ σ,T px 0 q " 8. This means that the solution px, x, δq to system (6)- [START_REF] Årzén | A simple event-based PID controller[END_REF] initialized at px 0 , x 0 , 0q never jumps. By SA1, xptq is defined for all positive times and converges to zero as t tends to infinity. On the other hand, |xptq ´xptq| " |x 0 ´xptq| ă σ|xptq| for any t ě T since no jump occurs. By taking the limit as t Ñ 8 on both sides of the latter inequality, we obtain |x 0 | ď 0, which is impossible since x 0 ‰ 0. This proves the desired result.

Proposition 1 implies that I " Z ě0 as introduced in Section II, for any x 0 P R n and any pair pσ, T q, which satisfies SA1.

Second, we state a homogeneity property of τ σ,T , which is established in [START_REF] Anta | To sample or not to sample: self-triggered control for nonlinear systems[END_REF]Theorem 4.11 and Remark 4.12] for the case where T " 0. The proof directly follows when T ą 0, and is therefore omitted.

Proposition 2: For any x 0 P R n,‹ , µ P R ‹ , σ P p0, σ ‹ q and T P r0, T ‹ q, τ σ,T px 0 q " τ σ,T pµx 0 q. l Proposition 2 states that τ σ,T is constant along lines passing through the origin, excluding the origin.

Third, we derive an approximate expression of τ σ,T on R n,‹ for small σ. We distinguish two cases for this purpose whether, given m ą 0, the pairs pσ, T q belong to the set S m pσ ‹ , T ‹ q :" ! pσ, T q : σ P p0, σ ‹ q, T P r0, min tmσ, T ‹ uq ) (9) or not. While the set S m imposes no extra condition on σ compared to SA1, it requires that, when σ is small, so is T (which implies that T depends on σ). Note that, when no timeregularization mechanism is implemented, T " 0 and any pair pσ, 0q belongs to S m pσ ‹ , T ‹ q. The next proposition provides approximate expressions of τ σ,T on R n,‹ for small σ in the general case first, and then provides additional expressions when the pairs pσ, T q belong to S m pσ ‹ , T ‹ q for a given m ą 0.

Proposition 3: There exist r 1 : R n ˆp0, 1q Ñ R, c 1 r ą 0 and σ ‹ 1 1 P p0, mint1, σ ‹ uq such that for any σ P p0, σ ‹ 1 1 q, T P r0, T ‹ q and any x 0 P R n,‹ , τ σ,T px 0 q " T `r1 px 0 , σq and |r 1 px 0 , σq| ď c 1 r σ. Moreover, for any fixed m ą 0, there exist r : R n ˆp0, 1q Ñ R, c r ą 0 and σ ‹ 1 P p0, mint1, σ ‹ uq such that for any pσ,

T q P S m pσ ‹ 1 , T ‹ q, τ σ,T px 0 q " max ! σ |x0| |Acx0| `rpx 0 , σq, T
) and |rpx 0 , σq| ď c r σ 2 , where A c :" A `BK. l Proposition 3 states that τ σ,T px 0 q can be written as T plus a term of the order of σ when pσ, T q is selected as in SA1 and σ is small compared to 1. This result implies that when T is "big" compared to σ, we essentially have periodic sampling as τ σ,T px 0 q is then well approximated by T for all x 0 in this case, since r 1 px 0 , σq, which is of the order of σ, is negligible compared to T . Because of that, we concentrate on the case where the pairs pσ, T q belong to S m pσ ‹ 1 , T ‹ q for a given fixed m ą 0 in the remainder of the paper. In this case, Proposition 3 states that τ σ,T px 0 q is well approximated by max

! σ |x0| |Acx0| , T
) for small σ ą 0, for any x 0 P R n,‹ , which is of the order of σ, while the error term rpx 0 , σq is of the order of σ 2 . The fact that the constant c r , which appears in the upper-bound of the norm rpx 0 , σq, is independent of x 0 and pσ, T q (but does depend on m), is crucial in the following. We will see via examples in Section VI that the forthcoming analytical guarantees on the inter-event times may provide accurate estimations even when σ and T are taken close to their respective maximal admissible values σ ‹ and T ‹ according to SA1.

Interestingly, Proposition 3 can be used to derive a new lower bound as well as an upper bound on τ σ,T px 0 q, which have their own interest.

Lemma 1: Given m ą 0, for any pσ, T q P S m pσ ‹ 1 , T ‹ q with T ‹ from SA1 and σ ‹ 1 from Proposition 3, and any

x 0 P R n,‹ , τ σ,T ď τ σ,T px 0 q ď τ σ,T
where τ σ,T :" max

! σ ςmaxpAcq ´cr σ 2 , T ) , τ σ,T :" max ! σ ςminpAcq `cr σ 2 , T
) and c r as in Proposition 3. l Proof: Let m ą 0, x 0 P R n,‹ and pσ, T q P S m pσ ‹ 1 , T ‹ q. In view of Proposition 3, τ σ,T px 0 q " max

! σ |x0| |Acx0| `rpx 0 , σq, T u. On the other hand, |x0| |Acx0| ď max x 1 0 ‰0 |x 1 0 | |Acx 1 0 | " max x 1 0 s.t. |x 1 0 |"1 |x 1 0 | |Acx 1 0 | in view of Propo- sition 2,

and thus |x0|

|Acx0| ď 1 ςminpAcq . Consequently, since rpx 0 , σq ď c r σ 2 , τ σ,T px 0 q ď τ σ,T with τ σ,T defined in Lemma 1. We follow similar lines to derive the lower bound inequality on τ σ,T px 0 q in Lemma 1.

Lemma 1 provides a global lower-bound on the intertransmission times when σ is small. Compared to the exact expression of the (global) minimum inter-event time we find in [15, Theorem IV.1], which addresses non-time regularized triggering conditions, i.e., T " 0, the bound in Lemma 1 is more conservative a priori but easier to compute. Indeed, we can simply take it as max

! σ ςmaxpAcq , T )
as the term c r σ 2 is negligible compared to it for small σ. Lemma 1 also gives a global upper-bound on the inter-event times, for the first time as far as we know, which is similarly well-approximated by max

! σ ςminpAcq , T
)

. Both bounds of Lemma 1 may be very accurate and even exact, as illustrated in Section VI-A.

Remark 1: To know lower and upper-bounds on the interevent times may be precious in practice, as it provides guarantees on the window of time at which the transmissions occur, which can be used for scheduling purposes when the plant and the controller communicate over a shared digital network for instance.

l On the other hand, Proposition 3 and Lemma 1 apply for x 0 P R n,‹ . The case where x 0 " 0 was ignored as some of the above expressions above are not well-defined in this case. Now, when x 0 " 0 and T " 0, τ σ,0 p0q " 0, which means that an infinite number of jumps occurs in finite time at the origin 5 . This potential issue is clarified when writing the overall system using the hybrid formalism [START_REF] Goebel | Hybrid dynamical systems[END_REF], see [START_REF] Donkers | Output-based event-triggered control with guaranteed L8-gain and improved and decentralized eventtriggering[END_REF] and [37, Section IV.B] for more details. On other hand, when T ą 0, τ σ,0 p0q " T and this implies that τ σ,0 pxptqq " T for all t ě 0 in view of ( 6)- [START_REF] Årzén | A simple event-based PID controller[END_REF]. In other words, a solution initialized at state p0, 0, 0q at time 0 experiences jumps every T units of time: we have periodic sampling. These singularities invite us to discard the case where x 0 is equal to 0 in the sequel. This is fine according to the next proposition, which ensures the px, xq-component of any solution to system ( 6)-( 7) initialized at px 0 , x 0 q with x 0 ‰ 0 will never reach p0, 0q. We can therefore indeed exclusively consider x and x on R n,‹ in the rest of this study.

Proposition 4: Given m ą 0, for any pσ, T q P S m pσ ‹ 1 , T ‹ q, any solution px, x, δq to system ( 6)-( 7) initialized at px 0 , x 0 , 0q with x 0 P R n,‹ verifies xptq ‰ 0 and xptq ‰ 0 for all t ě 0. l Proof: The proof relies on the next claims, whose proofs are given in the appendix.

Claim 1: Given m ą 0, there exists ρ ą 0 such that for any pσ, T q P S m pσ ‹ 1 , T ‹ q, any solution px, x, δq to system ( 6)-( 7) initialized at px 0 , x 0 , 0q with x 0 P R n,‹ verifies |xptq´xptq| ď σρ|xptq| for all t ě 0. l Claim 2: Given m ą 0, for any x 0 P R n,‹ , the solution x to 9

x " Ax `BKx 0 initialized at x 0 satisfies xptq ‰ 0 for all t P r0, τ σ,T px 0 qs. l The desired result follows by applying Claim 2 on each inter-transmission interval, since x is not affected by jumps in view of ( 6)-( 7) and xptq " xpt i q ‰ 0 for any t P rt i , t i`1 q and any i P I.

Remark 2: We recall that Proposition 4 applies in the absence of exogenous perturbations; otherwise it may not be true, see, e.g., [START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF], [START_REF] Chai | Analysis and design of eventtriggered control algorithms using hybrid systems tools[END_REF]. l We end this section with a continuity-like property with respect to time of τ σ,T along the x-component of solutions to (6)- [START_REF] Årzén | A simple event-based PID controller[END_REF].

Lemma 2: Given m ą 0, there exist c cont,1 , c cont,2 ě 0 such that for any pσ, T q P S m pσ ‹ 1 , T ‹ q with σ ‹ 1 from Proposition 3, any x 0 P R n,‹ , the x-component of the solution to ( 6)-( 7) initialized at px 0 , x 0 , 0q verifies for any t, t 1 ě 0, ˇˇτ σ,T pxptqq ´τσ,T pxpt 1 qq ˇˇď σc cont,1 |t ´t1 | `σ2 c cont,2 . l Lemma 2 implies that for close times, τ σ,T pxq takes close values. This result plays a key role in some of the forthcoming proofs.

Remark 3: In Proposition 3 (and Lemmas 1 and 2) as well as in the forthcoming statements, the results rely on the existence of some upper-bound on σ (σ ‹ 1 in Proposition 3). Estimates of these bounds can be derived from the proofs. However, these estimates are typically subject to some conservatism and may not be easy to compute, which is the reason why these are not provided explicitly. l

IV. MAIN RESULTS

From now on n " 2. We distinguish different cases according to the type of eigenvalues of A c " A `BK, which are denoted by λ 1 and λ 2 , under SA1. Note that the real parts of λ 1 and λ 2 are strictly negative, otherwise SA1 would not hold.

A. When λ 1 and λ 2 are complex conjugates and non-real

We write λ 1 " λ `iβ and λ 2 " λ ´iβ where λ ă 0 and β ą 0.

The next theorem explains the oscillatory behaviour of the inter-event times often observed in simulations, see Section I for references.

Theorem 1: Given m ą 0, when λ 1 and λ 2 are non-real, complex conjugates, there exist σ ‹ complex P p0, 1s, ĉr ą 0, ĉcomplex ě 0 such that for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , and any pσ, T q P S m pσ ‹ complex , T ‹ q, the corresponding solution px, x, δq to ( 6)-( 7) verifies the next property. For any t ě 0, there exist θptq P " π β ´ĉ complex σ, π β `ĉ complex σ  and r complex pt, x 0 , σq such that τ σ,T pxptqq " τ σ,T pxpt `θptqqq `rcomplex pt, x 0 , σq, (10) and |r complex pt, x 0 , σq| ď ĉr σ 2 . l Theorem 1 implies that the inter-event time function t Þ Ñ τ σ,T pxptqq describes an "almost" periodic pattern of period π β for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , for small enough σ ą 0 and T ą 0. Note that ĉcomplex σ, which is the order of σ, is negligible with respect to π β , as σ is taken small. Also, r complex pt, x 0 , σq is of the order of σ 2 and is therefore negligible with respect to τ σ,T pxptq `θptqq, which is of the order of σ according to Proposition 3. Theorem 1 thus explains why periodic patterns can arise when plotting the time evolution of the inter-event times: because the eigenvalues of A c are complex, non-real, conjugates.

The next natural question is whether the values taken by the inter-event times depend on the value x 0 . The next theorem ensures that this is not the case, more precisely that x 0 has a negligible impact of the inter-event times.

Theorem 2: Given m ą 0, when λ 1 and λ 2 are nonreal, complex conjugates, for any x 0 , x 1 0 P R 2,‹ , there exist c r,1 , c r,2 ą 0 such that for any pσ, T q P S m pσ ‹ complex , T ‹ q with σ ‹ complex from Theorem 1, the solutions px, x, δq and px 1 , x1 , δ 1 q to (6)-( 7) initialized at px 0 , x 0 , 0q and px 1 0 , x 1 0 , 0q, respectively, are such that for any t P r0, π β `ĉ complex σs, there exists rcomplex pt, x 0 , x 1 0 , σq such that τ σ,T pxptqq " τ σ,T px 1 pt `cr,1 qq `r complex pt, x 0 , x 1 0 , σq, [START_REF] Brunner | Robust eventtriggered MPC with guaranteed asymptotic bound and average sampling rate[END_REF] and |r complex pt, x 0 , x 1 0 , σq| ď c r,2 σ 2 . l Only the time interval r0, π β `ĉ complex σs is considered in Theorem 2 as this suffices to study the values taken by the interevent times over any time interval of length π β `ĉ complex σ in view of Theorem 1. Hence, Theorem 2 implies that changing the initial condition x 0 essentially leads to a phase shift c r,1 of the inter-event times. As a result, different initial conditions essentially gives the same inter-event times over any interval of length of the order of π β , for small enough σ ą 0 and T ą 0 as c r,1 is of the order of σ, and thus for all positive times in view of Theorem 1. As a consequence, the amount of transmissions is almost the same for any x 0 P R 2,‹ .

We derive from the above results that a single simulation for a single value of x 0 P R 2,‹ over π β units of time can be run to accurately determine the inter-event times for all initial conditions and all future times, and thus to estimate the average inter-transmission time. This average inter-transmission time is defined as the limit of time t over the number of triggering instants, which have occurred on the interval r0, ts, as t goes to infinity, like in [START_REF] Gleizer | Computing the sampling performance of event-triggered control[END_REF], [START_REF] Khashooei | A consistent threshold-based policy for event-triggered control[END_REF]. This corresponds, for a given solution px, x, δq to ( 6)-( 7) initialized at px 0 , x 0 , 0q with x 0 P R 2,‹ , to τ avg σ,T px 0 q :" lim

tÑ8 t N pt, x 0 q , ( 12 
)
where the number of triggering instants in the time window r0, ts for t ě 0 is given by N pt, x 0 q :" maxti P Z ě0 : t ě t i u with t 0 " 0 the initial time, and t k " t k´1 `τσ,T pxpt k´1 qq, for any k P Z ą0 , the k th inter-event time.

We thus have a rigorous, numerical way to estimate the amount of transmissions generated by the event-triggered controller in this case as τ avg σ,T px 0 q is well approximated by

π β 1 N pπ{β,x0q
in view of Theorem 1, and this value is essentially the same for all initial conditions according to Theorem 2, which can thus be evaluated by performing a single simulation as illustrated in Section VI-B.

B. When λ 1 and λ 2 are real and distinct

We assume without loss of generality that λ 1 ą λ 2 . Proposition 2 reveals an important feature of the inter-event time function: it only depends on which line passing through the origin the state x lies and not on its actual value. To analyse τ σ,T pxptqq along the solutions to ( 6)-( 7), we can therefore study the argument of xptq and then exploit the results of Section III. The next proposition characterizes the (asymptotic) behaviour of the argument of x along the solutions to ( 6)- [START_REF] Årzén | A simple event-based PID controller[END_REF].

Proposition 5: Given m ą 0, when λ 1 ą λ 2 , there exist c distinct ą 0 and σ ‹ distinct P p0, 1s such that for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , and any pσ, T q P S m pσ ‹ distinct , T ‹ q, the corresponding solution px, x, δq to ( 6)-( 7) verifies one of the following properties.

(i) There exists v 1 , a non-zero eigenvector of A c associated with λ 1 , such that lim sup tÑ8 | argpxptqq ´argpv 1 q| ď c distinct σ. (ii) There exists v 2 , a non-zero eigenvector of A c associated with λ 2 , such that | argpxptqq ´argpv 2 q| ď c distinct σ for all t ě 0. l Proposition 5 approximately recovers the properties of the argument of the solutions for the continuous-time closed-loop system in the absence of sampling 9

x c " A c x c and x c p0q ‰ 0, see [START_REF] Khalil | Nonlinear systems[END_REF]Chapter 2.1]. Indeed, when λ 1 and λ 2 are real and distinct, the argument of x c converges to argpv 1 q for v 1 some non-zero eigenvector of A c associated with λ 1 when x 0 is not in the eigenspace associated to λ 2 . Otherwise, it is constant and equal to argpv 2 q at all times, with v 2 some nonzero eigenvector of A c associated with λ 2 . Similar results are recovered in Proposition 5 up to a perturbation of the order of σ due to sampling.

Properties of τ σ,T pxq along solutions to ( 6)-( 7) are established in the next theorem.

Theorem 3: Given m ą 0, when λ 1 ą λ 2 , there exist c 1 , c 2 ą 0 and σ ‹ distinct P p0, 1s such that for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , and any pσ, T q P S m pσ ‹ distinct , T ‹ q, the corresponding solution px, x, δq to ( 6)-( 7) verifies one of the following properties.

(i) lim sup tÑ8 ˇˇˇτ σ,T pxptqq ´max " σ |λ 1 | , T *ˇˇˇˇď c 1 σ 2 .
(ii) ˇˇˇτ σ,T pxptqq ´max

" σ |λ 2 | , T
*ˇˇˇˇď c 2 σ 2 for all t ě 0. l Theorem 3 means that, when the eigenvalues of A c are real and distinct, the inter-event time of system ( 6)-( 7) either tends to max

! σ |λ1| , T )
or it takes values close to max

! σ |λ2| , T
) for all positive times, up to a perturbation of the order of σ 2 in both cases, which is negligible for small σ ą 0 (and T ą 0) as, again, the inter-event time is of the order of σ according to Proposition 3. As a result, τ avg σ,T in ( 12) is well approximated either by max

! σ |λ1| , T ) or max ! σ |λ2| , T
) .

C. When λ 1 and λ 2 are real, equal and of geometric multiplicity two

The next theorem follows from Proposition 3 and the properties of λ 1 and λ 2 . Note that in this case A c " λ 1 I.

Theorem 4: Given m ą 0, when λ 1 " λ 2 and their geometric multiplicity is two, there exist c r ą 0 and σ ‹ 1 P p0, 1s such that for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , and any pσ, T q P S m pσ ‹ 1 , T ‹ q, the corresponding solution px, x, δq to ( 6)-( 7) verifies τ σ,T pxptqq " max

" σ |λ 1 | `rpxptq, σq, T * with |rpxptq, σq| ď c r σ 2 .
l Proof: Let m ą 0, x 0 P R 2,‹ , pσ, T q P S m pσ ‹ 1 , T ‹ q, px, x, δq be the solution to ( 6)-( 7) initialized at px 0 , x 0 , 0q, and t ě 0. In view of Proposition 3, τ σ,T pxptqq " max ! σ |xptq| |Ac xptq| `rpxptq, σq, T

) . Since λ 1 " λ 2 and their geometric multiplicity is two, the associated eigenspace is R 2 , consequently A c xptq " λ 1 xptq. Hence, τ σ,T pxptqq " max

! σ |λ1| `rpxptq, σq, T )
, which corresponds to the desired result as r satisfies the properties stated in Theorem 4 in view of Proposition 3.

Theorem 4 ensures that, for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , the inter-event times are close to

max " σ |λ 1 | , T
* for all positive times when λ 1 " λ 2 and their geometric multiplicity is two for small σ ą 0 and T ą 0.

Hence, the considered event-triggering rule essentially leads to periodic sampling, when σ is small, and τ avg σ,T in ( 12) is well approximated by max

! σ |λ1| , T )
for all x 0 P R 2,‹ . The proof of Theorem 4 does not exploit the fact that the state x is of dimension two: the results apply to systems of any dimension. Hence, when x is of dimension n P Z ą0 and the eigenvalues λ 1 , . . . , λ n of A c are equal and of geometric multiplicity n, A ´BK " λ 1 I and the same conclusions as in Theorem 4 apply. Also, function r and constants c r , σ ‹ 1 are the same as in Proposition 3, which explains why the same notation is used.

When the geometric multiplicity of λ 1 " λ 2 is one, the arguments used in the proof of Theorem 4 no longer apply and significant technical difficulties arise, as explained in more detail next.

V. DISCUSSIONS

A. When λ 1 and λ 2 are real, equal and of geometric multiplicity one

The results of Section IV eludes the case where λ 1 " λ 2 and their geometric multiplicity is one. The reason is that the argument of x along the solutions to ( 6)- [START_REF] Årzén | A simple event-based PID controller[END_REF] only exhibits an attractivity property in this case. As a result, the proof techniques used for the other cases, which rely on robustness arguments, do not apply. To see this, consider a non-zero solution z to 9

z " Jz with J :" ˆλ1 1 0 λ 1 ˙like in the proof of Proposition 5, see Section H. The argument of z either converges to 0 or to π, see [START_REF] Khalil | Nonlinear systems[END_REF]Chapter 2.1]. This property is not an asymptotic stability property, as in the case where λ 1 ‰ λ 2 , see the proof of Proposition 5, but only a global attractivity property. If z 2 p0q ą 0 is very small and z 1 p0q ą 0 for instance, then the argument of the corresponding solution will monotonically converge to zero. However, if we change z 2 p0q so that it is very small but negative, the argument will converge to π. As a result, a small perturbation may destroy this convergence property, which explains the difficulty encountered in this case.

We conjecture that the inter-event times approximately converge to max

! σ |λ1| , T )
in this case, for any x 0 P R 2,‹ , and pσ, T q P S m pσ ‹ 1 , T ‹ q, consistently with Theorem 3, and as also seen in simulations in Section VI-A.

B. Nonlinear systems

The results of Section IV apply mutatis mutandis to nonlinear event-triggered control systems, whose linearization around the origin is given by the considered linear model and triggering rules. More precisely, the analytical guarantees of Section IV apply asymptotically in time for such nonlinear systems assuming its origin is globally asymptotically stable and its linearization around the origin verifies SA1 and the considered pairs pσ, T q belong to S m pσ ‹ , T ‹ q for some given m ą 0. In particular, the properties of the average intertransmission times [START_REF] Chai | Analysis and design of eventtriggered control algorithms using hybrid systems tools[END_REF] presented in Section IV do apply in this case, as this quantity is related to the asymptotic behaviour of the inter-event times. An illustration is provided in Section VI-B.

C. Other system dimension

When the system is scalar, it is commonly known that the triggering rule in [START_REF] Årzén | A simple event-based PID controller[END_REF] leads to periodic sampling due to homogeneity (see Proposition 2). As we could not find this result formally stated in the literature, we formalize it in the next proposition.

Proposition 6: When n " 1, for any σ P p0, σ ‹ q, T P r0, T ‹ q, and

x 0 P R ‹ τ σ,T px 0 q " max ! T, 1 A ln ´A 1`σ `BK A`BK ¯)
when A ‰ 0, and τ σ,T px 0 q " max ! T, σ |BK| p1 `σq ) when A " 0. l Note that pσ, T q does not need to belong to S m pσ ‹ , T ‹ q for some given m ą 0 in Proposition 6. When the system dimension is larger than 2, the situation becomes much more complicated and the proofs in Section IV need to undergo major changes, unless A c has a single eigenvalue of geometric multiplicity equal to the state dimension, in which case Theorem 4 applies as already mentioned. Still, we expect the key properties of the inter-event times established in Section III, which apply to systems of any dimension, to play an important role in future extensions of the present results.

VI. NUMERICAL EXAMPLES

A. Linear example in [42, Section V]

To illustrate the obtained theoretical results, we consider the same linear system as in [42, Section V], namely

9 x " ˆ0 1 ´2 3 ˙x `ˆ0 1 
˙. ( 13 
)
The matrix K is designed such that the corresponding matrix A `BK is Hurwitz, and three cases are considered depending on the eigenvalues λ 1 , λ 2 of A `BK being (i) non-real, complex conjugates, (ii) real and distinct, (iii) real and equal. To design the triggering rule, we apply Proposition 1 in [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF]. As a result, SA1 is satisfied6 with

σ ‹ " 1 ? µ b min λ min `AJ 2 A 2 `pε 1 `ε2 qI ˘and 7 T ‹ " 1 Lr arctanprq, where A 2 :" ´Ac , L :" |B 2 |, r :" c µ L 2 ´1
and ε 1 , ε 2 , µ ą 0 are obtained by solving [1, ( 16)] with A 1 :" A c , B 1 " BK, B 2 " ´BK and C p " I.

For each of these cases, we have studied numerically the impact of σ, T and of the initial conditions on the inter-event times 8 . We first present a comparison of the estimated lower and upper-bounds on the inter-event times established in Lemma 1 with the actual minimum and maximum values of the inter-event times obtained in simulations, which we denote τ min and τ max , respectively. The estimated bounds are taken as τ σ,T :" max

! σ ςmaxpAcq , T )
and τ σ,T :" max

! σ ςminpAcq , T
) , respectively, as explained after Lemma 1. The values of τ min and τ max were computed in simulations by taking 10 initial conditions on the unit circle and extracting the minimum and the maximum values of the inter-event times over the 10 runs. The results are summarized in Table I. We observe that both the estimated lower and the upper bounds are tight, actually exact for the former, even when σ is close to the maximum allowed value σ ‹ , which is specified in the following for each case. We now study the results of Section IV on simulations for each case.

Case (i): K " r´3 ´7s, λ 1 " ´2 `j and λ 2 " ´2 ´j. Then σ ‹ " 0.0844 and T ‹ " 0.1153. We have selected different values of σ, namely σ P t0.01, 0.04, 0.084u, T " σ 2 so that pσ, T q P S m pσ ‹ , T ‹ q with m " 1{2, with initial condition px 0 , x 0 , 0q and x 0 " p1, 1q. The obtained Fig. 1. Inter-event times for different values of σ for the example of Section VI-A when pλ 1 , λ 2 q " p´2 `j, ´2 ´jq: 0.0845 (blue), 0.04 (green), 0.01 (yellow). The dotted lines represent the value of T for each selection of σ. The mismatch is the error percentage between π and the observed period. Fig. 2. Inter-event times for the example of Section VI-A for different values of x 0 when pλ 1 , λ 2 q " p´2 `j, ´2 ´jq : p1, 1q (yellow), p1, ´2q (green), p1, ´1q (blue).

inter-event times are depicted in Figure 1. We observe a periodic-like behaviour in each case and that the "pseudo" period is getting closer to π β " π as σ decreases, in agreement with Theorem 1.

We have then selected σ " 0.03 and studied the interevent times for different initial conditions px 0 , x 0 q with x 0 P tp1, 1q, p1, ´2q, p1, ´1qu, see Figure 2. The inter-event times describe similar though slightly different patterns of very similar periods, in agreement with Theorem 2. Case (ii): K " r0 ´6s, λ 1 " ´1 and λ 2 " ´2. Then σ ‹ " 0.0761 and T ‹ " 0.1486. Figure 3 shows the inter-event times for σ P t0.01, 0.03, 0.076u and T " σ 2 , and the initial condition px 0 , x 0 , 0q with x 0 " p1, 1q. According to Theorem 3, the inter-event times converge to a value close to max tσ, T u " σ as the time tends to infinity or is close to max σ 2 , T ( " σ 2 for all positive times. We see that the interevent times indeed converge to a constant close to σ in all the cases considered in Figure 3, and that the mismatch between the limit value and σ is getting smaller as we decrease σ, which is in agreement with the conclusions of Theorem 3.

We might wonder whether there are solutions for which the inter-event times are close to σ 2 for all positive times, which is allowed by Item (ii) of Theorem 3. We have not been able to find such solutions for this example, even when taking x 0 in the eigenspace associated to λ 2 . Case (iii): K " r´2 ´7s, λ 1 " λ 2 " ´2. Then σ ‹ " 0.0818 and T ‹ " 0.1228. Note that this case is not covered by our analysis as the geometric multiplicity of the double eigenvalue is one, see Section V-A. We have considered the initial pλ 1 , λ 2 q " p´2 `j, ´2 ´jq pλ 1 , λ 2 q " p´1, ´2q pλ 1 , λ 2 q " p´2, ´2q ) and the limit value of the inter-event times. condition px 0 , x 0 , 0q and x 0 " p1, 1q and different values of σ, namely σ P t0.01, 0.04, 0.081u, T " σ 3 , see Figure 4. We observe that the inter-event times converge in all cases to a constant, which is in a neighborhood of σ as conjectured in Section V-A, and that the mismatch reduces with σ like in case (ii).

We have also varied the initial conditions for σ " 0.01. In particular, we have taken x 0 " p1, ´2q, which is in the eigenspace associated with λ 1 , and x 0 " p1, ´1.9q and x 0 " p1, ´2.1q, which are, loosely speaking, on both sides of the eigenspace of λ 1 . Again, in all cases the inter-event times converge to a constant close to σ, see Figure 5.

B. Nonlinear single-link robot arm in [1, Example 3]

We revisit [1, Example 3], which is nonlinear, in the light of Sections IV and V-B. We thus consider a single-link robot arm modeled as 9

x " Ax `φpxq `Bu where x " px 1 , x 2 q P Fig. 5. Inter-event times for the example of Section VI-A for different values of x 0 when λ 1 " λ 2 " ´2: p1, ´2q (blue), p1, ´2.1q (green), p1, ´1.9q (yellow). The dashed line corresponds to the value max

! σ |λ 1 | , T
)

, and the dotted line to T .

R 2 , x 1 is the angle, x 2 is the rotational velocity, u P R is the input torque, A " ˆ0 1 0 0 ˙, B " ˆ0 1 ˙and φpxq " p0, ´sinpx 1 qq. The designed state-feedback controller is given by u " sinpx 1 q`Kx where K " p´2 ´2q. We synthesize the triggering rule as in [1, Section VI], which can be written in the form of [START_REF] Årzén | A simple event-based PID controller[END_REF] in view [1, Example 3]. As a consequence SA1 is satisfied in view of [1, Corollary 1] with σ ‹ " 0.1929 and T ‹ " 0.0898; note that the stability property is exponential for the considered system. The state matrix of the linearized continuous-time closedloop model around the origin is given by A `BK, whose eigenvalues are λ 1 " ´1 `j and λ 2 " ´1 ´j. We have selected σ " 0.19 and T " 0.089. We have performed simulations for three initial conditions of the form px 0 , x 0 , 0q with x 0 P tp10, 0q, p10, 10q, p0, 10qu. The obtained intertransmission times are depicted in Figure 6. We observe that these all exhibit a periodic-like behaviour and that the values taken over a "period" are very similar for the different initial conditions in agreement with Section IV-A. In particular, we obtain for the estimated values of τ avg σ,T in (12) 0.1208, 0.1206, 0.1199 for x 0 " p10, 0q, p10, 10q and p0, 10q, respectively. These values are similar, in agreement with the statements in Section V-B. The observed period in simulation is around 2.9 in all cases, while the theory predicts π: we thus have a mismatch of only 7.7%. Note that these results have been obtained for σ and T close to their maximum value σ ‹ and T ‹ , respectively, even though the theory has been developed for small σ and T compared to 1.

VII. CONCLUSIONS

We have analysed the inter-event times for two-dimensional linear event-triggered control based on the relative threshold technique of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] with and without time regularization for small parameter σ. We have shown that these times (approximately): (i) describe a periodic pattern, which is essentially independent of the considered initial condition, when these eigenvalues are non-real, complex conjugates, and an estimation of the period is provided; (ii) converge to or lie for all positive times in a neighborhood of given constants when the eigenvalues of the state matrix of the closed-loop system in absence of sampling are real and distinct, or real, equal and of geometric multiplicity two.

It would be interesting, in future work, to adapt and extend the presented methodology to address other classes of control systems and triggering rules, and to go beyond the twodimensional case.
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APPENDIX

A. Technical results

We first state the next claim, which essentially says that, given m ą 0, τ σ,T is of the order of σ when pσ, T q P S m pσ ‹ 1 , T ‹ q, and which plays an instrumental role in the proof of Proposition 3.

Claim 3: m ą 0, there exists c 2 P R ě0 such that for any x 0 P S n , and any pσ, T q P S m pσ ‹ 1 , T ‹ q, τ σ,T px 0 q ě T implies that τ σ,T px 0 q ď c 2 σ. l Proof: Let m ą 0, x 0 P S n and pσ, T q P S m pσ ‹ 1 , T ‹ q. We first consider the case where τ σ,T px 0 q ą T . As a consequence, |xpT q ´x0 | ă σ|xpT q|, otherwise we would have τ σ,T px 0 q " T in view of [START_REF] Årzén | A simple event-based PID controller[END_REF], which is excluded here. On the other hand, by the triangle inequality, |xptq| ď |x 0 | `|xptq ´x0 |. Thus, as |x 0 | " 1, |xptq ´x0 | ă σ|xptq| ď σ|x 0 | `σ|xptq ´x0 | " σ `σ|xptq ´x0 |, from which we deduce |xptq ´x0 | ď σ 1´σ for t P rT, τ σ,T px 0 qs since σ P p0, 1q. Therefore, τ σ,T px 0 q is less than T plus the time it takes for |xptq ´x0 | to grow from |xpT q ´x0 | to σ 1 ´σ , which we denote r τ σ,T px 0 q. We now study r τ σ,T px 0 q. Let e :" x ´x0 . In view of ( 6), 9 e " Ax `BKx 0 " Apx ´x0 q `Ax 0 `BKx 0 " Ae `Ac x 0 on rT, τ σ,T px 0 qq. By integration, for t P rT, τ σ,T px 0 qq, eptq "

epT q `ż t T Aepsqds `ż t T A c x 0 ds " epT q `ż t T
Aepsqds `pt ´T qA c x 0 . We deduce from the last equality and the fact that c as σ P p0, σ ‹ 1 q. Thus,

|eptq| ě pt ´T q 1 2 c ´σ 1´σ . ( 16 
)
The lower-bound in ( 16) is equal to σ 1 ´σ when t ´T " 4c

´1 σ 1 ´σ and this quantity upper-bounds r τ σ,T px 0 q in view of ( 16). Hence, r τ σ,T px 0 q ď 4c ´1 σ 1 ´σ . We deduce that τ σ,T px 0 q ď T `4c

´1 σ 1 ´σ , hence, since T ď mσ as pσ, T q P S m pσ ‹ 1 , T ‹ q, there exists c 2 P R ě0 such that τ σ,T px 0 q ď c 2 σ for σ ‹ 1 sufficiently small, as σ P p0, σ ‹ 1 q. When τ σ,T px 0 q " T , τ σ,T px 0 q ď mσ as pσ, T q P S m pσ ‹ 1 , T ‹ q, and the desired result holds with c 2 " m. The next lemma will also be used in the sequel. Lemma 3: For any a, b, c P R ě0 , | maxta, cu ḿaxtb, cu| ď |a ´b|. l Proof: Let a, b, c P R ě0 . We distinguish several cases. If maxta, cu " c and maxtb, cu " c, then maxta, cu ḿaxtb, cu " 0. If maxta, cu " a and maxtb, cu " b, then | maxta, cu ´maxtb, cu| " |a ´b|. If maxta, cu " a and maxtb, cu " c, then | maxta, cu ´maxtb, cu| " a ´c ď a ´b. If maxta, cu " c and maxtb, cu " b, then | maxta, cu ḿaxtb, cu| " b ´c ď b ´a.

B. Proof of Proposition 3

Let m ą 0, x 0 P R n,‹ and m ą 0. In view of Proposition 2, it suffices to prove the desired result for |x 0 | " 1. Hence, consider x 0 P R n with |x 0 | " 1, i.e., x 0 P S n , σ P p0, σ ‹ 1 q with σ ‹ 1 P p0, 1s specified in the following and T P r0, T ‹ q. We start by proving the result for pσ, T q P S m pσ ‹ 1 , T ‹ q. The Taylor expansion of the solution t Þ Ñ xptq to 9

x " Ax `BKx 0 initialized at x 0 at t " 0 and evaluated at t " τ σ,T px 0 q is xpτ σ,T px 0 qq " x 0 `τσ,T px 0 q pAx 0 `BKx 0 q τσ,T px 0 qr x px 0 , σq, where r x : R n ˆp0, 1q Ñ R is such that9 |r x px 0 , σq| ď c x τ σ,T px 0 q with c x ą 0 independent of x 0 and σ. Since A c " A `BK, xpτ σ,T px 0 qq"x 0 `τσ,T px 0 qA c x 0 `τσ,T px 0 qr x px 0 , σq. [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] Consider the case where τ σ,T px 0 q ą T . Hence, by definition of τ σ,T px 0 q, |xpτ σ,T px 0 qq ´x0 | " σ|xpτ σ,T px 0 qq|. Consequently, in view of [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], |τ σ,T px 0 q pA c x 0 `rx px 0 , σqq| " σ |x 0 `τσ,T px 0 qA c x 0 `τσ,T px 0 qr x px 0 , σq| .

(18) We have |A c x 0 `rx px 0 , σq| ‰ 0. Indeed, otherwise we would have from (18) that 0 " σ|x 0 |, and thus x 0 " 0, which is excluded here as x 0 P S n . Hence, in view of [START_REF] Gleizer | Towards traffic bisimulation of linear periodic event-triggered controllers[END_REF], we can write τ σ,T px 0 q "

σ ˇˇˇx 0 |A c x 0 `rx px 0 , σq| `τσ,T px 0 q A c x 0 `rx px 0 , σq |A c x 0 `rx px 0 , σq| ˇˇˇ.
This implies that

$ ' ' & ' ' % τ σ,T px 0 q ď σ |x 0 | |A c x 0 `rx px 0 , σq| `στ σ,T px 0 q τ σ,T px 0 q ě σ |x 0 | |A c x 0 `rx px 0 , σq| ´στ σ,T px 0 q. (19) 
Since σ P p0, 1q as σ P p0, σ ‹ 1 q and σ ‹ 1 ď 1, these inequalities are equivalent to 10

$ ' ' & ' ' % τ σ,T px 0 q ď σ 1 ´σ |x 0 | |A c x 0 `rx px 0 , σq| τ σ,T px 0 q ě σ 1 `σ |x 0 | |A c x 0 `rx px 0 , σq| . (20) 
To obtain the desired result, we are going to exploit the fact that τ σ,T px 0 q is of the order of σ. This is not obvious from (20) because of the term r x px 0 , σq, which depends on τ σ,T px 0 q, in the denominator of the right hand-sides.

Returning to [START_REF] Goebel | Hybrid dynamical systems[END_REF], we temporarily concentrate on the first inequality, which gives

|A c x 0 `rx px 0 , σq| τ σ,T px 0 q ď σ 1 ´σ |x 0 |. (21) 
As p|A c x 0 | ´|r x px 0 , σq|q τ σ,T px 0 q ď ˇˇAcx0 `rx px 0 , σq ˇτ

σ,T px 0 q, p|A c x 0 | ´|r x px 0 , σq|q τ σ,T px 0 q ď σ 1 ´σ |x 0 |. (22) 
Since |r x px 0 , σq| ď c x τ σ px 0 q and τ σ,T px 0 q ď c 2 σ according to Claim 3, ( 22) implies that

|A c x 0 |τ σ,T px 0 q ´cx c 2 2 σ 2 ď σ 1 ´σ |x 0 | |A c x 0 |τ σ,T px 0 q ď σ 1 ´σ |x 0 | `cx c 2 2 σ 2 . ( 23 
)
In view of the Taylor expansion of σ Þ Ñ σ 1´σ around the origin and since |A c x 0 | ‰ 0 as x 0 ‰ 0 and A c is invertible, we deduce from the above inequality that, for σ ‹ 1 sufficiently small as σ P p0, σ ‹ 1 q,

τ σ,T px 0 q ď σ |x 0 | |A c x 0 | `cσ 2 , (24) 
with c ě 0 independent of σ and x 0 .

10 We could replace |x 0 | by 1 in ( 20), but we do not do so to obtain a, what we believe, simpler and clearer expression in Proposition 3.

By following similar lines, we derive from the second inequality in [START_REF] Goebel | Hybrid dynamical systems[END_REF] that

τ σ,T px 0 q ě σ |x 0 | |A c x 0 | ´cσ 2 , (25) 
with c ě 0 independent of σ and x 0 . Consequently, in view of ( 24) and ( 25), τ σ,T px 0 q " σ |x 0 | |A c x 0 | `rpx 0 , σq with |rpx 0 , σq| ď c r σ 2 and c r ą 0 independent of x 0 and σ. Since

τ σ,T px 0 q ą T , τ σ,T px 0 q " max " σ |x 0 | |A c x 0 | `rpx 0 , σq, T * .
So far, we have been addressing the case where τ σ,T px 0 q ą T . Note that this case covers the scenario where T " 0, as τ σ,T px 0 q ą 0 " T according to [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. We now focus on the case where τ σ,T px 0 q " T and |xpT q ´x0 | ě σ|xpT q|. Let t ‹ ď T be the first time instant in r0, T s such that |xpt ‹ q x0 | " σ|xpt ‹ q|. We derive from the above developments that

t ‹ " σ |x 0 | |A c x 0 |
`rpx 0 , σq for all σ P p0, σ ‹ 1 q and small enough

σ ‹ 1 . Since t ‹ ď T , σ |x 0 | |A c x 0 | `rpx 0 , σq ď T and τ σ,T px 0 q " max " σ |x 0 | |A c x 0 | `rpx 0 , σq, T * , which completes the proof of Proposition 3.
For general pairs pσ, T q P p0, σ ‹ 1 1 q ˆr0, T ‹ q (not necessarily in S m pσ ‹ 1 , T ‹ q), either τ σ,T px 0 q " T , or, in view of the the proof of Claim 3, τ σ,T px 0 q P pT, T `c´1 σ 1 ´σ q. Therefore, τ σ,T px 0 q " T `r1 px 0 , σq for some r 1 : R n ˆp0, 1q Ñ R satisfying |r 1 px 0 , σq| ď c 1 r σ with c 1 r ą 0 independent of x 0 and σ, for small enough σ ‹ 1 1 .

C. Proof of Claim 1

Let m ą 0, x 0 P R n,‹ , pσ, T q P S m pσ ‹ 1 , T ‹ q and t ě 0. We either have |xptq ´xptq| ď σ|xptq| or δptq ď T in view of [START_REF] Årzén | A simple event-based PID controller[END_REF]. When |xptq ´xptq| ď σ|xptq|, the desired result holds. On the other hand, by following similar arguments as in the proof of [42, Theorem III.1] (p. 1682), we derive that 11|xptq´xptq| ď Lt 1´Lt |xptq| where L :" max t|A c |, |BK|u. The map s Þ Ñ Ls 1´Ls is increasing and well-defined on r0, T s Ă r0, 1 L q for σ ‹ 1 sufficiently small, as σ P p0, σ ‹ 1 q, L ą 0 as A c is Hurwitz and is independent of σ, and T of the order of σ as pσ, T q P S m pσ ‹ 1 , T ‹ q so that T ă

1 L . Hence, as σ P p0, σ ‹ 1 q, there exists ρ 1 ą 0 independent of σ such that |xptq xptq| ď LT 1 ´LT |xptq| ď Lmσ 1 ´Lmσ |xptq| ď ρ 1 σ|xptq|.
The desired result holds by taking ρ :" maxt1, ρ 1 u.

D. Proof of Claim 2

Let m ą 0. We proceed by contradiction and suppose that there exist x 0 P R n,‹ and t P r0, τ σ,T px 0 qs such that the solution x to 9

x " Ax `BKx 0 initialized at x 0 satisfies xp tq " 0. In view of Claim 1, |x 0 ´xp tq| ď ρσ|xp tq| " 0 since t P r0, τ σ,T px 0 qs. Hence, xp tq " x 0 , but xp tq " 0 while x 0 ‰ 0. We have obtained a contradiction, which proves the claim.

E. Proof of Lemma 2

Let m ą 0, pσ, T q P S m pσ ‹ 1 , T ‹ q with σ ‹ 1 from Proposition 3, x 0 P R n,‹ , and px, x, δq be the solution to ( 6)-( 7) initialized at px 0 , x 0 , 0q. Let t, t 

`|A J c A c | 3 1 ˙p|A c | `ρ|BK|q ": c cont,1 . (29) 
Notice that c cont,1 is independent of t, x 0 and σ. This implies, by application of the mean value theorem, that, in view of [START_REF] Khalil | Nonlinear systems[END_REF], ˇˇτ σ,T pxptqq ´τσ,T pxpt 1 qq ˇˇď σc cont,1 |t ´t1 | `ccont,2 σ 2 with c cont,2 :" 2ĉ r .

F. Proof of Theorem 1

We first derive properties of τ σ,T pxq, which differs from the inter-event time function τ σ,T pxq, along solutions to (6)- [START_REF] Årzén | A simple event-based PID controller[END_REF]. We then exploit these properties to derive the desired result on τ σ,T pxq in Theorem 1.

Proposition 7: Given m ą 0, when λ 1 and λ 2 are non-real, complex conjugates, there exist c complex ą 0 and σ ‹ complex P p0, 1s such that for any initial condition px 0 , x 0 , 0q with x 0 P R 2,‹ , and any pσ, T q P S m pσ ‹ complex , T ‹ q, the corresponding solution px, x, δq to ( 6)- [START_REF] Årzén | A simple event-based PID controller[END_REF] verifies the next property. For any t ě 0, there exists θptq P

" π β ´ccomplex σ, π β `ccomplex σ  such that τ σ,T pxptqq " τ σ,T pxpt `θptqqq. l
The proof of Proposition 7 is given in Appendix K. Let m ą 0, x 0 P R 2,‹ , pσ, T q P S m pσ ‹ complex , T ‹ q and px, x, δq be the solution to ( 6)-( 7) initialized at px 0 , x 0 , 0q, and t ě 0. There exists i P Z ě0 such that t P rt i , t i`1 q. Hence, xptq " xpt i q in view of ( 6)-( 7) and τ σ,T pxptqq " τ σ,T pxpt i qq.

(30)

According to Proposition 7, there exists θpt i q P " π β ´ccomplex σ, π β `ccomplex σ  such that τ σ pxpt i qq " τ σ pxpt i q `θpt i qq. Therefore, τ σ,T pxptqq " τ σ,T pxpt i `θpt i qqq.

Let θptq :" t i ´t `θpt i q so that t `θptq " t i `θpt i q and thus τ σ,T pxptqq " τ σ,T pxpt `θptqqq.

By adding and subtracting τ σ,T pxpt `θptqqq, we obtain τ σ,T pxptqq " τ σ,T pxpt `θptqqq `τσ,T pxpt `θptqqq ´τσ,T pxpt `θptqqq.

(33) We note that θptq ď θpt i q as t i ď t. Hence, θptq ď π β ccomplex σ as θpt i q ď π β `ccomplex σ. On the other hand, as 

t
Returning to [START_REF] Ling | Necessary and sufficient bit rate conditions to stabilize a scalar continuous-time LTI system based on event triggering[END_REF], we now concentrate on the term τ σ,T pxpt `θptqqq ´τσ,T pxpt `θptqqq. Denoting i 1 the element of Z ě0 such that t `θptq P rt i 1 , t i 1 `1q, we have τ σ,T pxpt `θptqqq ´τσ,T pxpt `θptqqq " τ σ,T pxpt `θptqqq τσ,T pxpt i 1 qq. By application of Lemma 2, we derive that |τ σ,T pxpt `θptqqq ´τσ,T pxpt i 1 qq| ď σc cont,1 |t `θptq ´t1 i | σ2 c cont,2 . By definition of θptq, t `θptq ´t1

i " t i `θpt i q ´ti 1 and, since t i `θpt i q ď t i 1 `1, |t `θptq ´t1 i | ď t i 1 `1 ´ti 1 " τ σ,T pxpt 1 i qq. By following similar lines as above, we derive that τ σ pxpt i 1 qq ď υσ with υ ą 0 independent of t, σ, x 0 . As a result, |τ σ,T pxpt `θptqqq ´τσ,T pxpt `θptqq|ďσ 2 c cont,1 υ `σ2 c cont,2 "ĉ r σ 2 , (35) with ĉr :" c cont,1 υ `ccont,2 . Therefore τ σ,T pxpt `θptqqq τσ,T pxpt `θptqq " r complex pt, x 0 , σq with |r complex pt, x 0 , σq| ď ĉr σ 2 . As a consequence, in view of [START_REF] Ling | Necessary and sufficient bit rate conditions to stabilize a scalar continuous-time LTI system based on event triggering[END_REF], τ σ,T pxptqq " τ σ,T pxpt`θptqqq`r complex pt, x 0 , σq. The last equation together with [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] ensures that the desired result holds.

G. Proof of Theorem 2

Let m ą 0, x 0 , x 1 0 P R 2,‹ and pσ, T q P S m pσ ‹ complex , T ‹ q. We denote by px, x, δq and px 1 , x1 , δ 1 q the solutions to ( 6)-( 7) initialized at px 0 , x 0 , 0q and px 1 0 , x 1 0 , 0q, respectively. We define for any t ě 0, zptq " M ´1xptq and z 1 ptq " M ´1x 1 ptq as in the proof of Proposition 7 given in Appendix K. Let c r,1 :" 1 β pargpz 1 p0qq ´argpzp0qq and t P r0, π β `ĉ complex σs. We first show that there exists cr,2 pt, x 0 , x 1 0 , σq, cr,2 ptq for short, such that " τ σ,T pxptqq " τ σ,T px 1 pt `cr,1 `c r,2 ptqqq |c r,2 ptq| ď 2 β p π β `ĉ complex σqc complex σ,

where c complex comes from the proof of Proposition 7. In view of (the proof of) Proposition 7, the range of τ σ,T pxp¨qq is equal to the range of τ σ,T px 1 p¨qq and there exists cr,2 ptq such that the first inequality in [START_REF] Postoyan | Inter-event times analysis for planar linear event-triggered controlled systems[END_REF] holds. We now need to prove that |c r,2 ptq| ď 2 β p π β `ĉ complex σqc complex σ. We exploit for this purpose the fact that ( 36) is equivalent to

argpzptqq " argpz 1 pt `cr,1 `c r,2 ptqqq, (37) 
by Proposition 2. In view of [START_REF] Velasco | Equilibrium sampling interval sequences for event-driven controllers[END_REF] in Appendix K, argpzptqq " argpzp0qq ´βt `νptqc complex σ where |νptq| ď π β `ĉ complex σ. Consequently, argpzptqq " argpzp0qq ´βpt `cr,1 `c r,2 ptqq νptqc complex σ `βpc r,1 `c r,2 ptqq. By definition of c r,1 and the fact that argpz 1 pt `cr,1 `c r,2 ptqqq " argpz 1 p0qq ´βpt `cr,1 cr,2 ptqq `ν1 pt `cr,1 `c r,2 ptqqc complex σ with |ν 1 pt `cr,1 cr,2 ptqq| ď π β `ĉ complex σ, argpzptqq " argpz 1 pt `cr,1 `c r,2 ptqq `βc r,2 ptq `pνptq ´ν1 pt `cr,1 `c r,2 ptqqqc complex σ. (38) Since argpzptqq " argpz 1 pt `cr,1 `c r,2 ptqq and by the properties of νptq and ν 1 pt `cr,1 `cr,2 ptqq, we derive that |c r,2 ptq| ď 2 β p π β `ĉ complex σqc complex σ. We have thus proved [START_REF] Postoyan | Inter-event times analysis for planar linear event-triggered controlled systems[END_REF].

Second, τ σ,T pxptqq " τ σ,T pxpt i qq with i P I such that t P rt i , t i`1 q. We derive from (36) that τ σ,T pxptqq " τ σ,T px 1 pt i `cr,1 `c r,2 pt i qqq. Let j P I be such that t i cr,1 `c r,2 pt i q P rt 1 j , t 1 j`1 q, τ σ,T pxptqq " τ σ,T px 1 pt i `cr,1 cr,2 pt i qqq `τσ,T px 1 pt 1 j qq ´τσ,T px 1 pt 1 j qq " τ σ,T px 1 pt i `cr,1 cr,2 pt i qqq `τσ,T px 1 pt i `cr,1 `c r,2 pt i qqq ´τσ,T px 1 pt 1 j qq. We derive, by proceeding like in the end of the proof of Theorem 1, that |τ σ,T px 1 pt i `cr,1 `c r,2 pt i qqq ´τσ,T px 1 pt 1 j qq| ď ĉr σ 2 . Consequently, |τ σ,T pxptqq ´τσ,T px 1 pt i `cr,1 `c r,2 pt i qqq| ď ĉr σ 2 .

Finally, by Lemma 2, we derive that |τ σ,T pxptqq τσ,T px 1 pt i `cr,1 qq| ď ĉr σ 2 `|τ σ,T px 1 pt i `cr,1 `c r,2 pt i qqq τσ,T px 1 pt i `cr,1 qq| ď ĉr σ 2 `σc cont,1 |c r,2 pt i q| `σ2 c cont,2 ď ĉr σ 2 `σ2 c cont,1 2 β p π β `ĉ complex σqc complex `σ2 c cont,2 as |c r,2 ptq| ď 2 β p π β `ĉ complex σqc complex σ, from which we obtain the desired result.

H. Proof of Proposition 5

Let m ą 0, x 0 P R 2,‹ , pσ, T q P S m pσ ‹ distinct , T ‹ q with σ ‹ distinct P p0, σ ‹ 1 s specified in the following. We write matrix A c in a Jordan form. Let M " rw 1 , w 2 s, where w 1 , w 2 are non-zero eigenvectors of A c associated with λ 1 and λ 2 , respectively, z " pz 1 , z 2 q :" M ´1x and ẑ :" M ´1 x. Hence, on flows 9

z " Jz `ε where J :" ˆλ1 0 0 λ 2 ˙and ε " pε 1 , ε 2 q :" M ´1BK M pẑ ´zq. Equivalently, 9 z 1 " λ 1 z 1 `ε1 and 9 z 2 " λ 2 z 2 `ε2 . Note that |ε| ď σρ|z| for some ρ ą 0 independent of σ, whenever |x ´x| ď ρσ|x|, which holds along solutions to ( 6)-( 7) in view of Claim 1.

We are going to study the variation of ∆ 1 pzq :" z 2 2 |z| 2 for any z " pz 1 , z 2 q P R 2,‹ , which is equal to sinpargpzqq 2 , along the solutions to 9

z " Jz`ε; recall that z ‰ 0 so that ∆ 1 pzq is welldefined. The obtained properties will allow us to derive that Items (i)-(ii) of Proposition 5 hold. Let z P R 2,‹ and ε P R 2 be such that |ε| ď σρ|z|. It holds that x∇∆ 1 pzq, Jz `εy "

1 |z| 4 `2z 2 pλ 2 z 2 `ε2 q|z| 2 ´2z 2 2 pλ 1 z 2 1 `z1 ε 1 `λ2 z 2 2 `z2 ε 2 q ˘.
We obtain by adding and subtracting λ 2 z 2 1 in the second term inside the brackets above x∇∆ 1 pzq, Jz `εy "

1 |z| 4 ´2z 2 pλ 2 z 2 `ε2 q|z| 2 ´2z 2 2 pλ 1 z 2 1 ´λ2 z 2 1 `λ2 z 2 1 z1 ε 1 `λ2 z 2 2 `z2 ε 2 q ¯" 1 |z| 4 `´2pλ 1 ´λ2 qz 2 1 z 2 2 ´2ε 1 z 1 z 2 2 `ε2 p2z 2 |z| 2 ´2z 3 2 q ˘. Since |ε| ď ρσ|z|, there exists ρ 1 ą 0 independent of σ such that ˇˇ1 |z| 4 `´2ε 1 z 1 z 2 2 `ε2 p2z 2 |z| 2 ´2z 3 2 q ˘ˇˇď ρ 1 σ. Consequently, x∇∆ 1 pzq, Jz `εy ď ´2pλ 1 ´λ2 qz 2 1 z 2 2 |z| 4 `ρ1 σ. (39) 
We have z 2 1 z 2 2 |z| 4 " cospargpzqq 2 sinpargpzqq 2 " p1 śinpargpzqq 2 q sinpargpzqq 2 " p1 ´∆1 pzqq∆ 1 pzq. Therefore, x∇∆ 1 pzq, Jz `εy ď ´2pλ 1 ´λ2 qp1 ´∆1 pzqq∆ 1 pzq `ρ1 σ.

(40) Let ζpσq :" 1 ´2σ ρ 1 λ 1 ´λ2

. We note that ζpσq ă 1 as λ 1 ą λ 2 . Also ζpσq ą 1 2 for σ ‹ distinct small enough, as σ P p0, σ ‹ distinct q . Hence ζpσq P ˆ1 2 , 1 ˙. Furthermore, 6)-( 7) in the coordinates pz, ẑ, δq becomes p 9 z, 9 ẑ, 9 δq " pJz `ε, 0, 1q for all t P pt i , t i`1 q and pzpt ì q, ẑpt ì q, δpt ì qq " pzpt i q, zpt i q, 0q. Consider a solution pz, ẑ, δq initialized at pz 0 , z 0 , 0q P R 2,‹ , where z 0 " M ´1x 0 .

ρ 1 σ pλ 1 ´λ2 qp1 ´ζpσqq " 1 
If ∆ 1 pzqp0q ď ζpσq, we derive from (41) using standard Lyapunov techniques and the fact that ∆ 1 pzq is not affected by jumps that lim sup | argpzptqq `π| ď c z,arg σ for some constant c z,arg ą 0 independent of σ and z 0 , since ∆ 1 pzq " sinpargpzqq 2 . This implies that, in the original coordinates px, xq, there exists a non-zero eigenvector v 1 (˘w 1 ) associated with λ 1 such that lim sup tÑ8 | argpxptqq ´argpv 1 q| ď c arg σ for some c arg ą 0 independent of σ and x 0 . On the other hand, if ∆ 1 pzp0qq P pζpσq, 1s there are two options: (a) there exists t ą 0 such that ∆ 1 pzptqq ď ζpσq; (b) ∆ 1 pzptqq P pζpσq, 1s for all t ě 0. In case (a), we deduce from the reasoning above that there exists a non-zero eigenvector v 1 associated with λ 1 such that lim sup tÑ8 | argpxptqq ´argpv 1 q| ď c arg σ.

In case (b), ∆ 1 pzptqq P pζpσq, 1s " ´1 ´2σ ρ1 λ1´λ2 , 1 ı for all t ě 0, which means that | argpzptqq ˘π 2 | ď c 1 distinct σ for all t ě 0 with c 1 distinct ą 0 independent of σ and x 0 . Returning to the original coordinates, this means that there exists a non-zero eigenvector v 2 (˘w 2 ) associated with λ 2 such that | argpxptqq ´argpv 2 q| ď c distinct σ for all t ě 0. Since xptq " xpt i q for any t P rt i , t i`1 q and the sequence t i , i P Z ě0 , is unbounded according to Propositions 1 and 3, we deduce from the properties established in this paragraph that the desired result holds.

I. Proof of Theorem 3

Let m ą 0, x 0 P R 2,‹ and pσ, T q P S m pσ ‹ distinct , T ‹ q. Let t ě 0 and consider px, x, δq the solution to system ( 6)-( 7) initialized at px 0 , x 0 , 0q. In view of Proposition 3, τ σ,T pxptqq " max . Suppose Item (i) of Proposition 5 holds, and let v 1 be the corresponding unit eigenvector of A c associated with λ 1 . Consider the case where τ σ,T pxptqq " σ ˇˇAc ´cospargpxptqqq, sinpargpxptqqq ¯ˇˇ´1 `rpxptq, σq. It holds that (44) we conclude that Item (i) of Theorem 3 holds with c 1 " 2 c distinct `cr in this case.

|v 1 | |A c v 1 | " ˇˇAc ´cospargpv 1 qq, sinpargpv 1 qq ¯ˇˇ´1 , (42) 
Similar arguments apply when Item (ii) of Proposition 5 is verified, which leads to the satisfaction of Item (ii) of Theorem 3.

J. Proof of Proposition 6

Let x 0 P R ‹ , σ P p0, σ ‹ q, and T P r0, T ‹ q. We first assume that A ‰ 0. Consider the case where τ σ,T px 0 q ą T . Hence, |xpτ σ,T px 0 qq ´x0 | " σ|xpτ σ,T px 0 qq| in view of [START_REF] Årzén | A simple event-based PID controller[END_REF]. Since xpτ σ,T px 0 qq " e Aτ σ,T px0q x 0 ż τ σ,T px0q 0 e Apτ σ,T px0q´sq BKx 0 ds " e Aτ σ,T px0q x 0 Á´1 p1 ´eAτ σ,T px0q qBKx 0 and x 0 P R ‹ , we have at t " τ σ,T px 0 q, ˇˇe Aτ σ,T px0q ´A´1 p1 ´eAτ σ,T px0q qBK ´1ˇˇ" σ ˇˇe Aτ σ,T px0q ´A´1 p1 ´eAτ σ,T px0q qBK ˇˇ. By squaring the last inequality and introducing ψ :" e Aτ σ,T px0q ´A´1 p1 éAτ σ,T px0q qBK, we obtain a second order polynomial in ψ, namely p1´σ 2 qψ 2 ´2ψ`1 " 0. This equation has two strictly positive roots, denoted ψ ´:" 1 1 `σ ă ψ `:" 1 1 ´σ . Since |xpT q´x 0 | ă σ|xpτ σ,T pT qq|, necessarily ψ " ψ ´. By solving ψ " ψ ´, i.e., e Aτ σ,T px0q ´A´1 p1 ´eAτ σ,T px0q qBK " 1 1 `σ , we derive that τ σ,T px 0 q " 1 A ln ´A 1`σ `BK A`BK ¯, which is strictly greater than T this is the case here.

When τ σ,T px 0 q " T , this means that |xpT q ´x0 | ě σ|xpT q|, which implies that ψ ě ψ ´, which is equivalent to τ σ,T px 0 q ě 1 A ln ´A 1`σ `BK 1`BK ¯. Hence τ σ,T px 0 q " max ! T, 1 A ln ´A 1`σ `BK A`BK ¯). We follow similar lines as above when A " 0 to obtain the expression of the inter-event time in Proposition 6.

K. Proof of Proposition 7

Let m ą 0, x 0 P R 2,‹ and pσ, T q P S m pσ ‹ complex , T ‹ q with σ ‹ complex P p0, σ ‹ 1 s specified in the following. We write matrix A c in the real Jordan form. Let M " rw 1 , w 2 s where w 1 ȋw 2 are non-zero eigenvectors of A c associated with the pair of complex conjugates eigenvalues λ ˘iβ, respectively, z " pz 1 , z 2 q :" M ´1x and ẑ :" M ´1 x. Hence, system (6)-( 7) becomes

9 z " Jz `ε 9 ẑ " 0 9 δ " 1 , .
for all t P pt i , t i`1 q, $ & % zpt ì q " zpt i q ẑpt ì q " zpt i q δpt ì q " 0 (45) where J :" ˆλ β ´β λ ˙and ε " pε 1 , ε 2 q " M ´1BK M pẑ źq as in the proof of Proposition 5. The inter-event time function at time t becomes in these coordinates r τ σ,T pẑptqq with r τ σ,T pz 0 q :" inf ! η ě T : |M z 0 ´M r φpη, z 0 q| ě σ|M r φpη, z 0 q| ) , where r φpη; z 0 q is the solution to 9 z " Jz `M ´1BK M pz 0 ´zq at time η ě 0, initialized at z 0 . Hence, for the solutions px, x, δq and pz, ẑ, δq to ( 6)-( 7) and ( 45) initialized at px 0 , x 0 , 0q and pz 0 , z 0 , 0q, respectively, τ σ,T pxptqq " r τ σ,T pzptqq for all t ě 0. Moreover, there exists ρ 3 ą 0, independent of σ, such that |εptq| ď σρ 3 |zptq| in view of Claim 1 and the definition of z.

We investigate the argument of the z-component of the solution to (45) initialized at pz 0 , z 0 , 0q, where z 0 " M ´1x 0 . In view of its definition in Section I, the argument function is differentiable everywhere except on R ă0 ˆt0u, which is of Lebesgue measure zero. On the other hand, the set tt ě 0 : zptq P R ă0 ˆt0uu is also of Lebesgue measure zero. Indeed, suppose there exists t ˚ě 0 such that z 1 pt ˚q ă 0 and z 2 pt ˚q " 0. Then 9 z 2 pt ˚q " λz 2 pt ˚q ´βz 1 pt ˚q ὲ2 pt ˚q " ´βz 1 pt ˚q `ε2 pt ˚q. Suppose 9 z 2 pt ˚q " 0 to obtain a contradiction. This means that βz 1 pt ˚q " ε 2 pt ˚q, which implies that β|z 1 pt ˚q| " |ε 2 pt ˚q|, but |ε 2 pt ˚q| ď ρ 3 σ|zpt ˚q| " ρ 3 σ|z 1 pt ˚q|. Hence, we derive β|z 1 pt ˚q| ď ρ 3 σ|z 1 pt ˚q|, which is impossible as z 1 pt ˚q ‰ 0, in view of Proposition 4, when taking σ ‹ complex and thus σ small enough. We conclude that the set tt ě 0 : zptq P R ă0 ˆt0uu is of Lebesgue measure zero. Consequently, for almost all t ě 0, d dt argpzptqq " 

where r complex pz, εq :" 1 |z| 2 pz 1 ε 2 ´z2 ε 1 q. Since |ε| ď σρ 3 |z|, by Cauchy-Schwarz inequality, there exists c complex ą 0 such that |r complex pzptq, εptqq| ď c complex σ for any t ě 0.

Equation ( 46) and the properties of r complex imply that z describes spirals "converging" to the origin in the phase portrait and that it spends at most π β´ccomplexσ and at least π β`ccomplexσ units of time to successively intersect twice any given line passing through the origin. The inter-event time function r τ σ,T satisfies the same homogeneity 12 as τ σ,T stated in Proposition 2. Consequently, for any t ě 0, there exists θptq P " π β`ccomplexσ , π β´ccomplexσ ı such that r τ σ,T pzptqq " r τ σ,T pzpt θptqqq. In view of the Taylor series of σ Þ Ñ π β`ccomplexσ and σ Þ Ñ π β´ccomplexσ , as σ P p0, σ ‹ complex q and σ ‹ complex is taken small, there exists c complex ą 0 independent of pσ, x 0 q such that " π β`ccomplexσ , π β´ccomplexσ ı Ď " π β ´ccomplex σ, π β `ccomplex σ ı . Therefore, since τ σ pxptqq " r τ σ,T pzptqq for any t ě 0, where z and x are components of the solutions to [START_REF] Trimpe | Event-based state estimation with variance-based triggering[END_REF] and ( 6)-( 7) initialized at pM ´1x 0 , M ´1x 0 , 0q and px 0 , x 0 , 0q, respectively, the desired result follows.
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 34 Fig. 3. Inter-event times (solid lines) and value of σ |λ 1 | (dashed line)for the example of Section VI-A when pλ 1 , λ 2 q " p´1, ´2q for different values of σ : 0.076 (blue), 0.03 (green), 0.01 (yellow). The dotted lines represent the value of T for each selection of σ. The mismatch is the error percentage between the limit value of the inter-event times and max! σ |λ 1 | , T
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 6 Fig. 6. Inter-event times for the example of Section VI-B for different values of x 0 : p10, 10q (blue), p10, 0q (green), p0, 10q (yellow). The dotted line corresponds to T .

  |a ´b| ě |a| ´|b| for any a, b P R n that |eptq| ě pt ´T q|A c x 0 | ´ˇˇe pT q `şt T Aepsqds ˇě pt ´T q|A c x 0 | ´|epT q| ´şt T |A||epsq|ds (14)Noting that |eptq| ď σ 1 ´σ for t P rT, T `r τ σ,T px 0 qs, we derive that|eptq| ě pt ´T q|A c x 0 | ´σ 1´σ ´şt T |A| σ 1´σ ds " pt ´T q ´|A c x 0 | ´|A| σ 1´σ ¯´σ 1´σ .(15)Let c :" min t|A c x 1 0 | : |x 1 0 | " 1u. Since A c is invertible (being Hurwitz), c ą 0. We derive from (15) |eptq| ě pt ´T q ˆc ´|A| σ

tÑ8∆ 1

 1 pzptqq ď ρ 1 σ pλ 1 ´λ2 qp1 ´ζpσqq . This means that either lim sup tÑ8 | argpzptqq| ď c z,arg σ or lim sup tÑ8

  , σq, T + , recall that we have xptq ‰ 0 according to Proposition 4. In polar coordinates, the above equation becomes τ σ,T pxptqq " max ! σ ˇˇAc ´cospargpxptqqq, sinpargpxptqqq ¯ˇˇ´1 `rpxptq, σq, T )

TABLE I GUARANTEED

 I AND ESTIMATED MINIMUM AND MAXIMUM VALUES OF THE INTER-EVENT TIMES FOR THE EXAMPLE OF SECTION VI-A.

	σ	0.01	0.04	0.084	0.01	0.03	0.076	0.01	0.04	0.081
	τ σ,T	T	T	T	T	T	T	T	T	T
	τ min	T	T	T	T	T	T	T	T	T
	τ σ,T	0.0129 0.0515	0.1081	0.0185 0.0555 0.1407 0.0143 0.0570 0.1155
	τmax	0.0128 0.0504	0.1033	0.0184 0.0545 0.1340 0.0142 0.0556 0.1095

  1 ě 0, according to Proposition 3, τ σ,T pxptqq τσ,T The function t Þ Ñ |xptq| |Acxptq| is continuously differentiable on R ě0 as x never cancels according to Proposition 4 and A c is invertible, being Hurwitz. Hence, Since A c is invertible, there exist 1 , 2 ą 0 independent of t, x 0 , σ such that 1 |xptq| ď |A c xptq| ď 2 |xptq|. Therefore, A c xptq`BKpxpt i q´xptqq and |xpt i q´xptq| ď σρ|xptq| in view of Claim 1 where t i is such that t P rt i , t i`1 q, hence | 9 xptq| ď p|A c |`ρσ|BK|q|xptq| ď p|A c |`ρ|BK|q|xptq| as σ P p0, 1q. Consequently,

	pxpt 1 qq " σ |xpt 1 q| " |A c xpt 1 q| properties of r stated in Proposition 3 and using Lemma max " σ * |xptq| `rpxptqq, σq, T ḿax |A c xptq| * `rpxpt 1 q, σq, T . In view of the
	3 given in Appendix A with a " σ |xptq| |Acxptq| `rpxptq, σq, b " σ |xpt 1 q| |Acxpt 1 q| `rpxpt 1 q and c " T , we derive
	|τ σ,T pxptqq ´τσ,T pxpt 1 qq| ď σ ˇˇˇ| xptq| |A c xptq| c r σ 2 ,	´|xpt 1 q| |A c xpt 1 q|	ˇˇ2
							(26)
	where c r ą 0. d dt |xptq| |A c xptq|	"		9 xptq J xptq |xptq| |A c xptq| ´|xptq| |A c xptq| 2	9 xptq J A J c Acxptq |Acxptq| (27)
	ˇˇˇd	|xptq|	ˇˇˇď	| 9 xptq||xptq| |xptq|	2 |xptq| `|xptq|	| 9 xptq||A J c Ac||xptq| 1|xptq|
	dt	|A c xptq|	"	2 | 9 xptq| 2 1 |xptq|	2 1 |xptq| 2 c A c || 9 `|A J xptq| 3 . 1 |xptq|	(28)
	We have 9 xptq " ˇˇˇd |xptq|	ˇˇˇď	ˆ	2
		dt	|A c xptq|			2 1

  ď t i`1 and θpt i q ě , σq| ď c r σ 2 . Since σ ă 1, maxtυ, muσ `cr σ 2 ď ccomplex σ with ccomplex " maxtυ, mu `cr ą 0. As a result,

					π β	´ccomplex σ, θptq ě t i ´ti`1	`π β	ćcomplex
		σ " ´τσ,T pxpt i qq`π β	´ccomplex σ. According to Propo-
	sition 3, τ σ,T pxpt i qq " max	"	σ	|xpt i q| |A c xpt i q|	`rpx 0 , σq, T	*	ď
	maxtυ, muσ `cr σ 2 where υ :" max zPS2	|z| |A c z|	ą 0, as
	|rpx 0 θptq ě	π β	´ccomplex σ´c complex σ. Denoting ĉcomplex :" c complex	ccomplex
		, we have proved that	
			θptq P	"	π β	´ĉ complex σ,	π β	`ĉ complex σ		.

  sinpargpxptqqq ¯ˇˇ´1 ´σ ˇˇAc ´cospargpv 1 qq, sinpargpv 1 qq ¯ˇ´1 . Noting that z Þ Ñ |A c z| ´1 is Lipschitz with some constant ě 0 on the compact set S 2 , and since |rpz, σq| ď c r σ 2 for any z P R 2 according to Proposition 3, we deduce that ˇˇˇτ σ,T pxptqq ´σ |v 1 | |A c v 1 | ˇˇˇď σ ˇˇ´cospargpxptqqq, sinpargpxptqqq cospargpv 1 qq, sinpargpv 1 qq ¯ˇˇ`c r σ 2 . Exploiting the global Lipschitz properties of the cosine and sine functions, we have ˇˇˇτ σ,T pxptqq ´σ |v 1 | |A c v 1 | ˇˇˇď 2σ |argpxptqq ´argpv 1 q| `cr σ 2 . (43) By applying Lemma 3 given in the appendix with a " σ ˇˇAc ´cospargpxptqqq, sinpargpxptqqq ¯ˇˇ´1 `rpxptq, σq, b " σ |v 1 | |A c v 1 | and c " T , we derive that, when τ σ,T pxptqq " max ! σ ˇˇA c ´cospargpxptqqq, sinpargpxptqqq ¯ˇˇ´1 `rpxptq, σq, T

								)
								,
					ˇˇˇτ σ,T pxptqq ´max `cr σ 2 . As a result, we obtain by invoking Item (i) of " σ *ˇˇˇˇď |v 1 | , T 2σ |argpxptqq´argpv 1 q| |A c v 1 |
					Proposition 5 and the fact that eigenvector for λ 1 ,	1 |λ 1 |	"	|v 1 | |A c v 1 |	as v 1 is an
					lim sup tÑ8	ˇˇˇτ σ,T pxptqq ´max	"	σ |λ 1 |	, T	*ˇˇˇˇď	2 c distinct σ 2 `cr σ 2 ,
	thus τ σ,T pxptqq´σ	|v 1 | |A c v 1 |	" rpxptq, σq	`σˇˇˇA	c ´cospargpxptqqq,		

1

  |zptq| 2 ´z1 ptqpλz 2 ptq´βz 1 ptq`ε 2 ptqq´z 2 ptqpλz 1 ptq`βz 2 ptqὲ 1 ptqq ¯" 1 |zptq| 2 ´´β|zptq| 2 `z1 ptqε 2 ptq ´z2 ptqε 1 ptq ¯, and

	d dt	argpzptqq " ´β `rcomplex pzptq, εptqq,

Although the work in[START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] does not consider time-regularized triggering laws, SA1 does hold by taking T ‹ " τ where τ is given in [42, Corollary IV.1].

We abandon in the following the notation φ to denote a solution, and use instead directly x (or x).

We can still consider the time from η " T in[START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF] in this case, and not from η " t i `T , as system (6)-(7) is time-invariant and satisfies the semi-group property.

We consider Carathéodory solutions in this work as mentioned in Section I, which leads to a slight inconsistency because the solution initialized at the origin is trivial, as it cannot flow. We nevertheless show in the following that we can exclude the origin in the forthcoming analysis.

Strictly speaking, Proposition 1 in[START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF] ensures that tpx, x, δq : x " x " 0u is uniformly globally asymptotically stable, but this property is actually exponential due to the linearity of the flow dynamics.

In this example, γ ą L in all cases with the notation of[START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], which explains the expression of T ‹ , see[1, (11)].

In all the cases T ą 0, simulation results for T " 0 are presented in [36, Section V].

The existence of such a function rx follows from the expression of the remainder of the Taylor expansion of xpτ σ,T px 0 qq, which can be upperbounded by a uniform constant cx times τ σ,T px 0 q as |x 0 | " 1 and |xptq| ď d 1 for any t ě 0 in view of SA1 and the fact that |x 0 | " 1.

There is a typo in the expression of φpτ, 0q in [42, p.1682], it should be φpτ, 0q " τ L 1´τ L and not ´τL 1´τ L .

It suffices to use the definition of r τ σ,T and to compute explicitly r φ to see that r τ σ,T pµz 1 0 q " r τ σ,T pz 1 0 q for any µ P R ‹ and any z 1 0 P R 2,‹ .
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