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Abstract: Because stopping a service to apply updates raises issues, Dynamic Software Updating stud-
ies the application of updates on programs without disrupting the services they provide. This is acheived
using specific mechanisms operating updating tasks such as the modification of the program state. To
acheive transparency, Dynamic Software Updating systems use pre-selected and pre-configured mecha-
nisms. Developers provide patches that are transparently converted to dynamic updates. The cost of such
transparency is often that applied patches cannot modify the general semantic of the updated program.
Allowing dynamic modification of the general semantic of a running program is rarely considered.
In the context of protection of communications between moving vehicles and uncontrolled infrastructure,
SoREn (Security REconfigurable Engine) is designed to be dynamically reconfigurable. Its semantics
can transparently be modified at runtime to change the security policy it enforces. Administrators can
supply new policies to trigger a reconfiguration, without developing new components. This paper details
and discusses the design of SoREn, its meta-model linked to cybersecurity business concepts and its
automatic reconfiguration calculator allowing transparent application of reconfigurations.
Key Words: dynamic software updating, dynamic reconfiguration, quiescence, security
Category: D.2.7, D.2.10

1 Introduction

Today’s world expects software systems to be available at every moment, whether the system
provides critical services like airport traffic control management or whether its downtime would
cause user discomfort like a computer operating system forcing a reboot for updating. Updat-
ing running software systems becomes a critical issue as it requires the system to be restarted,
causing downtime and loss of state as well as financiary losses. As a consequence, fixing errors
and patching vulnerabilities is often postponed, leaving software unprotected. Dealing with ser-
vice disruption induced by regular updating processes requires cautious planning of maintenance
operations. They are often planned during known periods of low usage, imply the duplication
of services and rotation of the services to be patched and rebooted. Dynamic Software Updat-
ing (DSU) addresses this issue and focuses on methods for applying updates without disrupting
provided services. DSU systems embed mechanisms for updating running applications (e.g. trans-
form their state, replace obsolete code with its newest version) [Giuffrida and Tanenbaum, 2010].
Many of these mechanisms are detailed in the literature, each having specific needs and prop-
erties. A given mechanism may be well suited for a specific type of application or update while
being incompatible with other types of application or update. Each DSU system embeds a few
mechanisms well suited to its targets (i.e. programming language, type of application, type of
update) and use them for every update. This approach allows transparent usage of dynamic
updating as little developer interaction is required to apply dynamic patches. However it usu-
ally restricts possibilities for updates, often to the point that updates can only fix errors and



security flaws without modifying the general semantic of the original program. When discussing
dynamic updates, transparency usually means that a patch developed through usual software
maintenance processes is applied to a running program without requiring specific adaptation of
the patch. When using dynamic updates mainly to fix errors and security flaws, this definition
of transparency is pertinent since fixing a security flaw requires developer intervention. When
using dynamic updating to make the semantic of a program evolve, not requiring the systematic
intervention of developers and allowing administrators with a more general knowledge of the
program to specify its modifications using only business concepts would simplify the evolution
of the program. The amount of work necessary to dynamically update the program would be
significantly reduced and the adaptability of the program would increase significantly.

In the context of the SECOURT [LAMIH, 2020] project addressing the security of commu-
nications between vehicles and ground stations, this paper presents SoREn (Security REcon-
figurable Engine), a meta-model based platform which semantic can be dynamically modified
through high level specification, with little developer intervention. Vehicles move in an uncon-
trolled environment communicating using wireless uncontrolled infrastructure. Their communi-
cations need to be protected from attacks and to adapt to their changing environment (e.g. use
the available communication medium). SoREn is designed for such embedded systems. It detects
attacks or changing conditions and reacts according to policies specified by administrators. To
respond to the needs of the vehicle, the policies enforced by the platform should be dynamically
modifiable, allowing change of policy while vehicles are moving, and their specification should
be possible by administrators without requiring the intervention of developers. Note that be-
cause vehicles are not expected to be in perpetual communication with a ground control station,
the decision module of the platform cannot be centralized in a ground station, regulating the
decisions of each vehicle. The decision module needs to be embedded in the vehicle itself. As
a result, several vehicles using the same security policy could behave differently according to
their environment. SoREn is designed to be flexible and transparently modifiable. It should be
possible to implement enforced policies with as little restrictions as possible and it should be
possible to reconfigure the platform so that it enforces these new policies with as little developer
intervention as possible. Developers should only be required for the development of new software
components.

This papers presents SoREn, focusing on two contributions of the platform : a meta-model
based design providing flexibility for the implementation of new policies and an automatic recon-
figuration calculation system providing transparency for dynamic updates. Both contributions
are interlinked. The meta-model defines general constraints on the possible configurations, al-
lowing the selection of DSU mechanisms suited for every update and simplifying the calculation
of reconfigurations. Section 2 presents related work in the field of security systems and dynamic
updating platforms. Section 3 presents the meta-model of SoREn. It details the links between
the meta-model and cyber-security business concepts and how it facilitates high-level specifi-
cation of configurations. Section 4 discusses the issues of dynamic updating and how they are
addressed in SoREn. It discusses the DSU mechanisms used in the platform. Section 5 presents
an operational semantic designed for the specification of the automatic reconfiguration calcula-
tor of SoREn. Section 6 discusses the implementation of SoREn and presents an experiment,
validating the pertinence of the design of SoREn. Section 7 discusses the contributions of the
paper and section 8 concludes the paper.



2 Related works

SoREn is a dynamically reconfigurable platform detecting attacks and triggering responses to
them. It combines several features of Security Information and Event Management (SIEM) sys-
tems, Intrusion Detection Systems (IDS) and DSU platforms.

In a general cybersecurity framework like [Malatji et al., 2019], two parts are present: the so-
cial dimension and the technical dimension. In this context, SoREn is the technical element. How-
ever, we introduce also the social dimension in our work with business concepts into a meta-model.
So SoREn can be integrated into a general cybersecurity framework. [Buccafurri et al., 2015]
proposes a processing approach to achieve cybersecurity compliance assessment. This approach
is one step before the content of this paper where we discuss the technical achievement of our
system.

Initially, SIEM systems were designed to collect event logs from a variety of sources and per-
form real-time aggregation and correlation to detect attacks or confirm alerts from sensors such
as IDS[Sourcefire, 2020, OISF, 2020, Zeek, 2020]. SIEM alerts are technical sets of information,
including targeted or compromised systems, as well as attacking sources. Alerts define a level
that may be either the technical impact or the priority or both. Then information shared by
SIEM systems mostly targets cyber security experts.

A host-based intrusion detection system (HIDS) is a software application that monitors a
single host and the events occurring within that host for malicious activities. It analyses data
such as log files, system calls, file accesses, user or application behaviour on the host on which
it is operating, and generates alerts once an intrusion has been detected. Being restricted to one
host provides a reliable and precise analysis to determine what processes and users are involved
in a particular intrusion.

A network-based intrusion detection system (NIDS) is a standalone hardware device that
monitors network traffic for particular network segments or devices to identify malicious activities
such as denial of service attacks, port-scans or even attempts to crack into computers. It consists
of a set of single-purpose sensors placed at various points in a network to inspect the data
packets from all devices that reside inside its local area network, management server, console,
and optionally database server. There are two primary data sources for a network-based intrusion
detection: network packets and flows.

SoREn provides interfaces for sensors and detection, following the general principle of an
IDS, while embedding information management of threats and watched system status, as SIEM
systems. To allow dynamic reconfiguration, SoREn uses dynamic software updating mechanisms
as other DSU platforms.

Dynamic Correspondence Proxyfication [Gregersen and Jørgensen, 2009] (DCP) is a frame-
work using in place proxies to handle relinking of Java classes when updating components. When
a component is updated, the classes it shares with other components are replaced by proxies to
their newer version. DCP lazily migrates the state of components : the state of a component is
migrated at the moment it is used.

Afpac [Buisson et al., 2006, Aldinucci et al., 2005] is a framework for distributed components.
They can dynamically change their algorithms when ordered by their internal decider enforcing
a specific policy and collecting data on the execution and its environment through monitors.
Afpac embeds a distributed protocol for determining a best suited update point in the execution
where all threads of the component can be updated without causing inconsistency.



In [Cavalcante et al., 2015], Cavalcante et al. provide support for dynamic updates in the
π-ADL language. π-ADL is an Architecture Description Language (ADL) allowing software ar-
chitects to define programmed reconfigurations, i.e. reconfigurations forseen at design time.
Reconfigurations are handled by decomposing the system, installing, uninstalling or swapping
the components and composing the system according to its new configuration. Cavalcante et
al. use π-ADL to define the architecture of a flood monitoring system and give a method for
transforming π-ADL architectures into Go [Meyerson, 2014] source code.

The K42 operating system [Appavoo et al., 2003, Baumann et al., 2005] uses dynamic recon-
figuration for updating its components and adapting its configuration to contextual needs. For
example, a component implementing an algorithm best suited for sequential accesses to a re-
source as a file can be replaced by another component best suited for parallel accesses when
more than one application need to access the resource. Appavoo et al. also describe how dynamic
reconfiguration can be used for monitoring security threats with little cost. The operating sys-
tem could embed broad-based monitoring components that would be replaced by more precise
components whenever an anomaly is detected.

Components of K42 handle transactions invoked by short-lived threads. Whenever a reconfig-
uration is requested, monitor components are attached to each replaced component and prevents
new threads to invoke new transactions. When all ongoing transactions are completed, the com-
ponent is replaced and the monitor allows new transactions.

Several platforms providing DSU capabilities for component based software can be found in
the literature. However, software reconfiguration specification using high-level concepts is one
originality of SoREn.

3 A meta-model suited for high-level specification of policies

To ensure simple dynamic updates ordered by high-level instructions, the updating process must
be transparent and the running platform, its code and its state must be expressible through
high-level concepts. Users wanting to dynamically modify the platform should be able to express
new security policies without needing to consider DSU issues and only using concepts as close
as possible to their business. That means that security policies should be expressed using, for
instance, the concepts of threat and detection rather than concepts specific to the implementation
of the platform. In the rest of this paper, underlined words refer to specific concepts of the
presented work. Words written in italics refer to concepts from the domains of security or dynamic
software updating. In both cases, the concepts are defined as they appear in the paper and are
only emphasised when clarification is needed in some sections.

To handle dynamic updates transparently, mechanisms should be pre-selected and installed
in the platform. They will be used for each update and as a consequence should be well suited
for any future update. But future updates cannot be predicted and no DSU mechanism is well
suited for every possible update. The platform and its updates should be subjected to constraints
ensuring that for any update respecting these constraints, the pre-selected mechanisms are well
suited. In SoREn, these constraints take the form of a meta-model specifying how every version
of the platform should be modeled. According to that meta-model, the platform architecture is
component oriented and key components are stateless. Component oriented architecture simplifies
the management of updates as any update can be designed as the installation, the removal or the
swapping of components. This architectural choice ensures a well defined update unit (i.e. the
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Figure 1: Relations between meta-model, platform model and running platform

Meta-types Generic Business concepts Example
Probe Raw data Measured Signal/Noise Ratio by a Wi-Fi card

Measure Information the source of an authentication attempt
Detector High level information processing an intrusion detection system
Situation Threat a deauthentication attack
Decider Decision or enforced rule a rule to switch between networks
Response Reaction a IP address block request
Actuator Modify the behavior of the system a firewall
Part Asset status the current protocol being used

Marker meta-type
Component meta-type

Table 1: Business concepts and meta-types in SoREn

most basic modifiable element), easy to manipulate at high level. Stateless components require
less mechanisms when removed or swapped as their state does not need to be managed. Both
constraints indicate the mechanisms to be used for modifying a running platform : they should
be component oriented and do not need to consider state management.

Specifying the component oriented architecture with a meta-model enables the specification
of a running platform using business concepts. Meta-types defined in SoREn are linked to
business concepts. Defining a component type at model level is similar to defining specific cases
from the business concepts. Specifying a configuration of the platform is similar to defining the
security policy it should enforce. Figure 1 presents the relations between the meta-model and
the business concepts. The meta-model of SoREn is linked to generic business concepts that are
refined into business concepts, used to express the security policy. Expressing a security policy
using business concepts is equivalent to specifying a platform model using the meta-model. The
expressed security policy can then be translated to a dynamic update that will make the running
platform comply to the model it expresses.

We distinguish two kinds of generic business concepts : action concepts, concerning actions
taken by the running platform and information concepts, concerning information accessible and
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Figure 2: Relation between platform model and business concepts

used by the platform. The meta-model of SoREn specifies component meta-types linked to the
action concepts and marker meta-types linked to the information concepts. Markers are objects
present in the platform encoding information on the platform global state, the systems it watches
and their environment. Table 1 lists the meta-types defined in the SoREn meta-model and their
associated generic business concepts. It gives a real-life example for each generic business concept.
Figure 2 gives an example of instantiation of the meta-model and its associated generic business
concepts into a reconfiguration. Its only depicts the instantiation process for the Probe and
Measure meta-classes as the instantiation of other meta-classes would work in a similar way. The
Probe and Measure meta-classes are linked to the Raw Data and Information generic business
concepts. The Authentication Attempt and Attempt Source business concepts are instantiation
of the generic business concepts and are combined to express a policy for watching authentication
attempts. In SoREn, these business concepts take the form of Probe and Measure types Network
Monitor and Ip Address. Assuming the platform was enforcing no previous policy, translating the
policy into a reconfiguration boils down to listing components and marker types to be installed.

The meta-model of SoREn defines meta-types and how they interact with each other. In a
platform, components are connected to a core module through which they communicate with by
the mean of markers. Figure 3 details the interaction between components and markers. Compo-
nents of meta-type Probe (called “probes” in the following) get information from watched systems
and their environment. They produce measures (markers of meta-type Measure) registering that
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Figure 3: Interactions between markers and components according to the meta-model of SoREn

information. Detectors (components of meta-type Detector) analyze measures present in the
platform core and process them according to their inner semantic (e.g. recognize patterns, check
thresholds). If a detector detects a threat, it generates a situation (marker of meta-type Situation)
registering all information about that threat (e.g. date of detection, concerned assets). Deciders
(components of meta-type Decider) analyze situations and parts. Parts are markers of meta-type
Part representing the state of a given asset. While other markers only register information and
are deleted from the platform when they become irrelevant, parts persist in the platform core
and are synchronized to the assets they represent. Their state changes whenever the state of their



associated asset changes. Using information collected by analyzing parts and situations, deciders
may trigger the creation of responses (markers of meta-type Response) according to their inner
semantic. Responses register requests for reactions and contain all information relevant to these
reactions. Creating a response in the platform core triggers all installed actuators (components
of meta-type Actuator). If one installed actuator can handle the requested reaction in the con-
ditions detailed in the response, that actuator follows its inner semantic to act on the watched
systems and/or their environment. If the action of the actuator impacts any asset associated to
a part in the platform core, the state of that part is modified to represent the new state of that
asset. Measures are never deleted from the platform. A measure indicates information received
at a given time and date. Situations and responses are deleted when obsolete. They indicate a
current threat or a requested action and delete when the threat is passed or when the requested
action is complete. Responses are managed by a handler responsible for the triggering of the
appropriate actuators. When a response is created, the handler looks up an installed actuator
that can handle the response and triggers it. Parts are not produced by components. They are
installed once and their state evolves in synchronization with their associated assets until they
are uninstalled. The distinction between markers and components in the meta-model ensure a
stateless design for components and distinguishes the purpose of both components and markers.
Markers indicate what the platform “knows” on the watched systems and their environment. An
external observer analyzing the markers present in the core platform would get an overview of
the watched systems, their state, the threats they are subject to and what action is being taken
as a response. Components indicate what the platform “can do”. An external observer analyzing
the installed components would get an overview of the security policy enforced by the platform.

The meta-model detailed in this section treats components as black boxes of which only
inputs and outputs are known. Components are weakly constrained, allowing more possibilities
for their inner semantics and ensuring flexibility of the platform.

4 Dynamic updating issues

This section discusses the selection and the configuration of DSU mechanisms embedded in
SoREn. It presents the main issues of dynamic updates and how they are addressed in SoREn.

4.1 Update unit and update management

As presented in section 3, the architecture of SoREn is component oriented to simplify dynamic
updating. Any update of a running platform can be modeled as operations on components. The
smallest part of SoREn that can be modified through dynamic updating is either a component
or a marker type. Because there is a strong dependency of components on the marker types they
handle, updating a marker type requires updating all components handling it. By definition of an
update unit (i.e. the smallest part of a program that can be updated), the update unit of SoREn
is a component or a marker type. However, since every update includes modifications on at least
one component, the update unit can be considered as being one component for simplification
purposes.

Dynamic updates on the running platform are managed by a manager module embedded
in the platform core. This module embeds a thread executing update operations concurrently
with the general execution of the platform. Updates are applied sequentially, preventing the



simultaneous application of two updates. Parallel application of two updates modifying a same
element in an incompatible way (e.g. one update deletes a field used by the other) raises the
issue of choosing which modification should be applied while the other is discarded. That issue
is not addressed in SoREn and is out of the scope of this paper.

4.2 Alterability and update life-cycle

Updates follow a straightforward life-cycle centered on the detection of alterability. A given pro-
gram is in a state of alterability [Martinez et al., 2015] for a given update if the update can be
applied to program without causing unwanted behavior (e.g. crash of the program, manipulation
of inconsistent data). The state of alterability of a program can be detected by watching alterabil-
ity criteria which are conditions on the state of a program. Several alterability criteria are defined
in the literature [Vandewoude et al., 2007, Ghafari et al., 2012]. Selecting suited alterability cri-
teria for a given program and a given update is a central issue of dynamic updating. In SoREn,
the alterability of running platforms is detected using the quiescence of modified components, as
defined by Kramer and Magee [Kramer and Magee, 1990]. In a component oriented architecture,
a component is quiescent if :

(Condition 1) it is not engaged in a transaction

(Condition 2) it will not initiate new transactions

(Condition 3) no transaction engaging the component will be initiated by other components

A quiescent component can be safely removed or modified from the system. The system is
therefore in a state of alterability for any update concerning that component alone.

In SoREn, probes, detectors and deciders periodically engage transactions by themselves.
As a consequence, condition (3) is always satisfied for components of these meta-types. The
quiescence of these components can be achieved by suspending them after they complete a
transaction (satisfying conditions (1) and (2)). Transactions engaging actuators are initiated by
the response handler embedded in the platform core, when response markers of the appropriate
type are created. As a consequence, condition (2) is always satisfied for actuators. Condition (3)
can be satisfied by suspending the creation of response markers handled by the actuator. The
quiescence of actuators can be achieved by suspending the creation of associated responses and
waiting for any engaged transaction to finish (satisfying condition (1)). New components to be
installed in the platform are always quiescent because they are engaged in no transaction and no
transaction will be initiated until the components are installed.

When an update is requested, the update manager guides the execution of the platform
towards its alterability state by suspending concerned probes, detectors and deciders after they
complete their current transaction and by suspending the creation of response markers handled by
concerned actuators. When every component concerned by the update is quiescent, the platform
is alterable and the update is applied.

Life-cycle of updates in SoREn considers others criteria than alterability criteria. In some
cases, even if the platform is alterable, we may not want to apply an update. When a situation
marker is present in the platform, we need all components and marker types necessary for han-
dling the situation. Probes are needed for providing up-to-date information. Detectors are needed



to detect possible changes in the situation. Deciders are needed to analyze that situation and
actuators are needed to respond to that situation. Before guiding the platform to alterability, the
update managers checks that the update does not remove components needed by the platform.
If the platform needs components removed by the update, the update is postponed to a later
moment. This step of the update life-cycle is detailed in section 5

4.3 Data updating

Because components are stateless, the only data concerned by updates in SoREn are the markers
present in the platform. Because of the strong link between components and marker types,
component updates are likely to affect markers. A newly installed component may produce
markers of a new type that should be installed. The removal of a component may cause a type
of marker to be unecessary. In SoREn, new marker types are automatically installed along
components that require them, and marker types required by no components are uninstalled
when no marker of their type is present in the platform. Even if an update modifies a marker
type, SoREn treats that update as the installation of a new marker type. Modifying an installed
marker type implies modifying all markers of that type which raises issues if that modification
extends the information held by the markers. In that case, the update developper needs to
specify how to treat that information extension when converting oudated marker to their new
type (e.g. add void fields, use default values). Because we want to limit intervention by developper
during updates, we chose to consider the modification of a marker type as the addition of a new
marker type. This choice has little impact on updates. Because markers have a short life span in
the platform, oudated markers are rapidly replaced by markers of the new type. Situations and
responses are eventualy deleted and measures become old enough that no detectors analyze them.
Because each part type has only a few instances in the platform, parts and part types are treated
as components during installation. Part types are installed and instanciated or uninstalled when
explicitely requested.

5 Automatic reconfiguration

To change the configuration of a running platform, administrators supply a configuration specify-
ing several scenarios. That configuration is a combination of scenarios detailing policies enforced
by the platform. The configuration is parsed and translated into update instructions submitted
to the plaform update manager. This section details how scenarios are specified and presents an
operational semantic for calculating an update from a supplied configuration.

5.1 Defining a scenario

A scenario lists components that should be installed and specifies the configuration of each
components. It also details links between installed components : for each pair of components that
exchange information, the scenario lists the marker types they use to communicate. A scenario
is the equivalent of one security policy. One configuration regroups one or more scenarios, the
partition of the configuration into scenarios is left to administrators discretion provided each
scenario is independent from the other. Each scenario must contain the dependencies of the
components it lists. Figure 4 presents an example of scenario handling deauthentication attacks



Probes :
- DeauthProbe : /path/to/probe
Detectors :
- DeauthAttackDetector : /path/to/detector , detectFloor = 5, resetCeil = 3
Deciders :
- WiFiSwitcher : /path/to/decider
Actuators :
- WiFiController : /path/to/actuator
Parts :
- TransmissionProtocol : /path/to/part_type
Links :
- DeauthProbe to DeauthAttackDetector with DeauthenticationFrame
- DeauthAttackDetector to WiFiSwitcher with DeauthAttack
- WiFiSwitcher to WiFiController with DisableWiFi , EnableWiFi

Figure 4: Example of scenario

of WiFi communications. Note that parts are treated as components, as indicated in section 4.
Only the names of the marker types are specified in scenarios. Full specification of marker types
(e.g. fields, default values) are embedded in component types manifests. Each component type
is associated with a manifest specifying dependencies, handled marker types and instructions for
instantiating and installing components.

5.2 Calculating reconfiguration operations

A configuration can be formally defined as a set of Scenarios which in turn can be formally
defined as a set of components and links.

Definition 1 Links and scenarios. A Link specifies exchanges of information between two
components types τC and τ ′C . It lists all markers typesMT i through which the components of
the two types exchange information.

L = {τC , τ ′C , {MT 0, ...,MT k}}

A scenario is a set of components (instances of component types), combined with a set of
links. The components in S are instances of the components types listed in the links of S .

S = {{C0, ...,Ck}, {L0, ...,Lj}}

Assuming {S0, ...,Sk} is the configuration of the running platform, when a new configuration
{S ′

0, ...,S
′
j} is supplied by administrators, the reconfiguration process assumes that all components

and marker types listed in the old configuration should be uninstalled and all components and
marker types listed in the new configuration should be installed. If the configurations have no
common element, this is a fair assumption. If they share similarities, the reconfiguration process
should takes these similarities into account to avoid uninstalling then installing a same element
under another name or with different parameters. To address that issue, we define an operational
semantic for reducing the initial termRemoveS0 t0, ...,RemoveSk tk , AddS ′

0 t
′
0, ...,AddS ′

j t
′
j .

Figure 5 details the grammar of that semantic.
Before simplification, the term is divided into blocks. Subterms that have common elements

are grouped into blocks according to the following rule : if tc and t′c contain scenario update terms



Configuration update term

tc ::= AddS t | RemoveS t | tc , t′c
Scenario update term

t ::= add e | remove e | renameC n |modifyC n0 v0 ... nk vk | link eS | relink eS S ′ | t t′ | ⊥
Context (scenario)

C ::= t [·] | [·] t
Context (configuration)

Cc ::= t0c ... t
k
c [·] t′c

0
... t′c

j

e : an element (marker type, component)
n : a name (element name or element parameter name)
v : a value (element parameter value)
C : a component

Figure 5: Grammar of the update semantic

Alterability criteria

A ::= True | no {s0, ..., sk} | A&A′ | quiescence C
s : a situation type

C : a component

Figure 6: Grammar for alterability criteria

concerning (respectively) elements e and e′ (e.g. tc = AddS add e , t′c = RemoveS ′ remove e′),
tc and t′c are grouped in a block if any of the following requirements are verified :

1. e and e′ are identical : they have the same type, name and parameters (noted e = e′)

2. e and e′ are different only by name (noted diff(e, e′) = n)

3. e and e′ are different only by parameters (noted diff(e, e′) = n1v1, ..., nkvk)

4. e and e′ are different only by name and parameters (noted diff(e, e′) = n, n1v1, ..., nkvk)

Each block is simplified using the reduction rules of figure 7. If an element e′ is uninstalled
through the uninstallation of a scenario and replaced by an identical element e from a new
scenario, that element is kept installed in the platform and relinked to the new scenario (Rule 1).
If e′ only differs from e by name or parameters, e′ is relinked to the new scenario and modified
to become identical to e (Rules 2 through 4). The reduction rules also handle the duplication of
elements. If two scenario S and S ′ install two identical elements, respectively e and e′, only e is
installed and linked to S ′, preventing the duplication of elements in the platform (Rule 5). If the
installation of a scenario S relinks an element e to it while an identical element e′ is installed by
a different scenario S ′, e is linked to S ′ and e′ is not installed (Rule 6).

After simplification, each blocks is transformed into one update. As a consequence, one recon-
figuration requested by the administrator can be decomposed into several independent updates.
This allows a faster application of these updates and a faster fulfillment of the reconfiguration
requested. Indeed, smaller update have less restrictive alterability criteria which are easier to
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satisfy. The update terms of each block specify the operations of the update. Adding alterabil-
ity criteria to a block provides enough information to achieve a full specification of the update.
Figure 6 presents the grammar for alterability criteria and figure 8 details inference rules for
deducing alterability criteria from update terms. Note that alterability criteria include security
criteria discussed in section 4. A scenario cannot be removed while situations it handles are
present in the platform. Rules 1 through 6 detail how quiescence criteria are deduced from sce-
nario update terms. The removal, the renaming and the modification of a component require
that component to be quiescent. Other operations do not produce alterability criteria because
the platform is always alterable for them. Rules 7 through 11 detail how security criteria are
deduced from configuration update terms. Removing a scenario requires the absence of situa-
tions handled by it (Rule 8). Adding a scenario does not have such requirements (Rule 7). In
some situations, one scenario is removed to be replaced by a new scenario extending it. The new
scenario may be an update of the removed scenario, replacing components by updated versions
or even add new components to handle more marker types. In this case, situations handled by
the older version can be handled by both scenarios in a same maner and the presence of such
situations should not prevent the application of the update.

We consider the extension of a scenario by another. A scenario S extends a different scenario
S ′ if the general semantic of S ′ is included in the semantic S . i.e. S extends S ′ if through the
modification of components parameters, S ′ is included in S . Such general semantic is encoded
in the links of scenarios. Links specify the marker types handled by the scenario and how the
components of the scenario interact with each other through markers. Two scenarios sharing the
same links only differ by the configuration of their components. We define scenario extension
using scenario links.

Definition 2 Link extension. A link extends another if it includes the exchange of information
specified by the other link.

Let L = {τ0C , τ1C , {MT 0, ...,MT k}} and L′ = {τ ′0C , τ ′
1
C , {MT

′
0, ...,MT

′
n}} be two links.

L extends L′ if {MT ′
0, ...,MT

′
n} ⊂ {MT 0, ...,MT k} . We note L > L′.

Definition 3 Scenario extension. A scenario S extends another scenario S ′ if all the links of
S ′ are extended by links of S . We note S > S ′.

S > S ′ ⇔ ∀L′ ∈ S ′,∃L ∈ S s.t. L > L′

We note S ≯ S ′ if there is no extension relation between S and S ′ (neither S extends S ′ nor
S ′ extends S ). We extend that notation to configuration update terms and note tc ≯ t′c if there
is no extension relation between any of the scenarios present in the terms tc and t′c.

tc ≯ t′c ⇔ ∀S ∈ tc,∀S ′ ∈ t′c,S ≯ S ′

Rules 9 through 11 of figure 8 uses the scenario extension relations to infer alterability criteria
when combining configuration update terms. Rule 9 precises that no criteria on the presence of
situations are added when extending a scenario. Rule 10 extends that inference to the extension of
several removed scenarios by one new scenario. The new scenario includes the general semantic of
each removed scenario. Rule 11 specifies that when no scenario extension is involved, alterability
criteria add themselves when two configuration update terms are combined.



5.3 Discussion on reconfiguration calculation

The principal issue when calculating a reconfiguration is the calculation of alterability criteria. A
simple solution would be to add the quiescence of all uninstalled or modified components and the
absence of any situation handled by a removed scenario while applying the whole reconfiguration
as a single update. It is however not satisfying as it could cause higher delays in the application
of the update. The probability of meeting all alterabilty criteria at the same time decreases
while the number of criteria increases. For that reason we decided to divide each reconfiguration
into independent updates and to have these updates as small as possible. Splitting the original
configuration term into block allows such division while preventing unnecessary operations like
installing a component that was just uninstalled.

By design, SoREn treats components as black boxes which inputs and outputs are markers.
The semantic of a scenario lies in the marker types it handles and through which components.
Marker types are the building blocks of that semantic. Defining the concept of scenario extension
allows the detection of unchanging parts of the semantics of a platform during a reconfiguration
and the simplification of alterability criteria. The update instructions may uninstall a scenario
and install a new one while keeping the semantic of the former in the platform. Using links, we
can detect such situation by detecting when an uninstalled scenario is replaced by an extension of
itself. An update extending a scenario can be applied even if situations handled by the scenario are
present in the platform. For that update, alterability criteria concerning the absence of situations
are unnecessary.

The exclusion of parts from the links is not a problem. Parts are inner representations of assets
of the watched systems and do not bring more meaning in the scenario semantic than response
types and actuators. Indeed, parts do not specify the actions the scenario takes, response types
do. Parts do not specify how these actions are handled, actuators do. Including parts in the links
of a scenario would only add redundant information.

6 Implementation and experimentation

We implemented SoREn in Python, using the Pymoult library [Martinez et al., 2015] for the
DSU features of the platform. To test the design of SoREn and the automatic reconfiguration
calculation presented in this paper, we implemented components and markers for two scenarios
and used the two scenarios to test a platform reconfiguration.

6.1 Platform core and base classes

The platform core is build around a central class providing interfaces for the installed components,
allowing them to access the markers present in the platform core and to create new markers.
That central class is linked to classes handling the internal database, the application of updates
and the management of the configuration. The platform core embeds a MongoDB document
oriented database, storing measures, situations and responses. Any data structure can be stored
in the database provided it is converted into a dictionary’s (also called document). Document
oriented databases are well suited for SoREn because the data model do not need to be defined
beforehand.

Figure 9 presents a simplified class diagram of SoREn. Liked to the Platform class (fulfilling
the role of entry point of the platform), the Configuration and ReconfigurationInterpretor
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classes respectively hold the curent configuration of the platform and handle reconfigurations.
Base classes are defined for each components and marker meta-types. Each component or marker
type inherits from these base classes. For instance, to define a new Probe type, one must create
a new class inheriting from the Probe class embedded in SoREn. Marker types can be defined
simply by providing a text specification of their fields. At runtime, that specification is read by
the platform and supplied to one of the MetaMeasure, MetaSituation or MetaResponse classes
that will generate a child class of the appropriate base class. These three special classes are
defined in SoREn using python meta-classes. In Python, meta-classes inherit from the basic
Python class type and are instantiated into classes (whereas regular classes inherit from the the
basic Python class object and are instantiated into objects). Because Python meta-classes are
handled as regular classes, the meta-classes associated to the marker meta-types are depicted
as regular classes in figure 9. When reconfiguring the platform, the text specification of marker
types is provided in the manifest file of the installed components. Supplied components are paired
with a manifest file specifying component type specific parameters and the specification of each
marker type they handle. Because parts are usually more complex, they cannot be generated the
same way as other marker types. They may have methods implementing synchronization with
the watched system, preventing them from being simply instantiated using a meta-class. For this
reason, Part types must be defined as a new class inheriting from the Part base class, as if they
where component types.

Reconfiguration calculation is handled in the ReconfigurationInterpretor class that im-
plements the internal representation of the platform configuration and an interpreter based on the
reduction rules detailed in section 5. This module provides an interface class linked to the central
class of the platform core. An internal representation of the platform current configuration is kept
in the module to help the calculation of reconfigurations. When a new configuration is supplied
to the platform (in the format of a structured YaML file), it is parsed and transformed into an in-
ternal representation of the wanted configuration. Both internal representations of the old and the
new configuration are used to build the original termRemoveS0 t0, ...,RemoveSk t0 , AddS ′

0 t
′
0,

...,AddS ′
j t

′
j that will be simplified. After calculation of alterability criteria, an update object

(instance of a Pymoult update class) is created for each block. Update objects are then sent
to the update manager (instance of the Pymoult UpdateManager class), which handles their
application.

Figure 10 presents a deployment diagram of SoREn. The platform runs on a server providing
a Linux environment embedding Python capabilities. Components are also deployed on that
server. Probes, parts and actuators are linked with embedded parts of the watched system to
collect data, synchronize their state and trigger action. In this figure, the server running SoREn
is outside of the watched system. However, it would be possible to embed that server inside the
watched system.

6.2 Experimentation on the case of a scenario extension

To validate the pertinence of SoREn, we implement components for a case study implying a
scenario extension with two objectives :

1. showing that the meta-model of SoREn allows the design of security policies

2. showing that the reconfiguration protocol of SoREn allows simple and fast reconfigurations
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Figure 10: SoREn Deployement diagram

We adress the case of a vehicle communicating wirelessly with a ground infrastructure via
Wi-Fi or 4G protocols. By default, the vehicle uses the Wi-Fi protocol but is the target of
deauthentication attacks : attackers send false deauthentication frames to the vehicle to dis-
rupt communication or as a preliminary to man-in-the-middle attacks [Sethuraman et al., 2019].
When such attacks happen, we want the vehicle to switch to the 4G protocol until Wi-Fi can be
safely used again.

Assuming the vehicle embeds a SoREn platform, we design and implement a scenario that
fulfills this requirement. As depicted by figure 11, we define component types DeauthProbe,
DeauthDetector, DeauthDecider and MediumSwitcher of respective meta-types Probe, De-
tector, Decider and Actuator. We also define marker types DeauthMeasure, DeauthAttack,
SwitchMedium and Medium of respective meta-types Measure, Situation, Response and Part.
The Medium part installed by this scenario represents the communication medium used by the
vehicle (Wi-Fi or 4G). It has one attribute which value can be switched to Wi-Fi or to 4G .
Responses of type SwitchMedium express requests for the medium to be switched. Markers of



Core

DeauthProbe

MediumSwitcher

DeauthDetector

DeauthDecider

DeauthMeasure

DeauthAttack

SwitchMedium

Medium

Figure 11: Deauthentication attack scenario

that type have one field : the medium to which communications should be switched (Wi-Fi or
4G). Situations of type DeauthAttack indicate that a deauthentication attack has been detected.
Markers of that type have one field : the date of detection. Measures of type DeauthMeasure
indicate the date a deauthentication frame was received. Markers of that type have one field :
the frame reception date. Components of type DeauthProbe analyze all received frames and
generate a measure of type DeauthMeasure whenever a deauthentication frame is received. Com-
ponents of type DeauthDetector read DeauthMeasure measures and generate a situation of type
DeauthAttack whenever more than a predefined number ntf of deauthentication frame have been
received during a predefined time period ∆t

f . They remove DeauthAttack situations from the
platform when less than nrf deauthentication frame have been received during ∆r

f . n
t
f , n

r
f , ∆

t
f

and ∆r
f are parameters defined in the scenario that specifies the installation of the components.

Components of type DeauthDecider generate a response of type SwitchMedium with field value
4G whenever a DeauthAttack is created and the Medium part is set to Wi-Fi. They generate a
SwitchMedium response with filed value Wi-Fi when no DeauthAttack is present in the platform
and the Medium part is set to 4G. They also delete response markers of type SwitchMedium when
the requested response is no longer needed (e.g. the DeauthAttack situation that triggered the
generation of the response marker is deleted before any actuator handled the requested response).
Components of type MediumSwitcher handle responses of type SwitchMedium and change the
protocol used by the vehicle. They also set the Medium part to the proper value and delete before
deleting the response marker after completing the requested task.

We implement the components and configure the platform with that scenario, setting val-
ues ntf = 5, ∆t

f = 200ms, nrf = 2, ∆r
f = 200ms. We read frames from a file containing Wi-Fi

frames captured using Wireshark [Wireshark, 2020] during a lab experiment reproducing a Wi-Fi
deauthentication attack. The setup for the experiment was an attack computer sending deau-
thentication frames to a target computer connected to a Wi-Fi hotspot.

We assume the vehicle is on service and the platform is running. We discover that, with our
scenario, the vehicle is vulnerable to the jamming of 4G communications. We decide that the
vehicle should switch back to Wi-Fi if 4G communications are jammed. If a deauthentication
attack is detected and 4G communications are jammed, we decide the vehicle should use Wi-Fi
and used reinforced protocols at application layer to defend itself in the case of a man-in-the-
middle attack. We define an extension on the scenario as depicted by figure 12.

4G Communications [European Telecommunications Standards Institute, 2010] use OFDM
modulation and the quality level of the received 4G signal can be measured by the Error Vector
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Figure 13: Jamming of uplink 4G signals

Magnitude (EVM). EVM is commonly used to assess the quality of digital communication signals.
It expresses as a percentage the difference between an expected symbol and the symbol actu-
ally received. The maximum permissible EVM to ensure sufficient quality of the communication
depends on the modulation coding scheme. We consider the QPSK modulation which allows a
17.5% maximum EVM. We define the EVM measure type with one field containing the value of the
EVM measured by the probes of type JammingProbe. Detectors of type JammingDetector read
the EVM measures and produce a situation of type Jamming when the measured EVM is above
17.5% for more that ∆j . Like DeauthAttack situations, Jamming attack have one field : the
date of detection of the situation. We also define a new type of decider for requesting responses
according to the previous description. If a deauthentication attack is detected, MediumDecicer
deciders generate a SwitchMedium response requesting the medium to be switched to Wi-Fi. If a
jamming attack is detected, the deciders generate SwitchMedium response requesting the medium
to be switched to 4G. If both attacks are detected, the deciders generate a SwitchMedium and
a ReinforceSec responses requesting the medium to be switched to Wi-Fi and the application
layer to use reinforced security protocols. A new type of actuator is defined to handle the rein-
forcement of application layer security and the AppLayer part type is defined to represent the
application layer security protocols.

We implement the components and define the extended scenario, setting values ntf = 5, ∆t
f =

200ms, nrf = 2, ∆r
f = 200ms and ∆j = 3s. As for the previous scenario, we use the captured

frames and use EVM readings recorded during a lab experiment reproducing a jamming attack.
Using a CMW500 device as eNodeB and a Huawei dongle as User Equipment, we used the



setup depicted on figure 13. The jammer attacks uplink signals from the User Equipment (i.e.
the watched system) and the CMW500 measures the EVM of these signals. After measuring
the EVM of jammed and non-jammed uplink signals, we construct a trace of measured EVM
with one measure each 200ms, including jamming and non jamming periods. The JammingProbe
probes replays that trace, creating EVM measures, assuming symmetry of the setup : downlink
signals are jammed and the UE measures the EVM of theses signals. An alternative to EVM
measurement would be measure the BLER (Block Error Rates) of signals which can be done at
MAC layer. How this can be done is out of the scope of this paper.

We supply a configuration with the extended scenario to the running platform configured
with the previous scenario and examine its behavior, checking that attacks are well handled and
the reconfiguration is correctly applied. Figure 14 presents the logs produced by the platform
during the reconfiguration. At t0, the platform is configured with the simple deauthentication
attack scenario. A deauthentication attack is detected and a situation is created. As a reaction,
the decider creates a response at t0+0.074s requesting the comunication medium to be switched
to 4G. The responsed is handled by the actuator at t0 + 0.077s and completed at t0 + 1.08s but
when the medium is switched to 4G, the deauthentication attack is over. The decider requests
the medium to be switched back to Wi-Fi at t0 + 1.109s which is completed at t0 + 2.125s. The
reconfiguration of the platform is requested at t0 + 142.295s, during a deauthentication attack.
Because the reconfiguration extends the installed scenario, the update is imediately applied and
the new scenario is completely installed at t0 + 12.707s. The newly installed decider named
mediumdecider requests the medium to be switched back to Wi-Fi at t0 + 147.807s when the
deauthentication attack is over. At t0+270.477s, a deauthentication attack is detected and a re-
sponse is created to request the medium to be switched to 4G. At t0+270.839s, a jamming attack
on 4G communication and the decider, noticing the vehicle is curently using Wi-Fi, generates a
response requesting the reinforcement of application layer security. When the deauthentication
attack is over at t0 + 271.356s, the decider cancels the reinforcement of application layer secu-
rity. Because mediumswitcher was already engaged on the switching of protocols, the decider
could not cancel the switching of the medium to 4G when the jamming attack was detected.
As a consequence, the decider immediately requests the medium to be switched back to Wi-Fi
right after it is set to 4G. To test the application of a reconfiguration not extending scenario,
we request a reconfiguration of the platform to the previous scenario at t0 + 356.766s while a
Jamming situation is present in the platform. Because the new configuration does not handle
Jamming situations, the application of the reconfiguration is delayed until t0 + 377.656s, when
the jamming attack is over. At t0 + 377.658s, the platform has been sucessflly reconfigured two
times, without disrupting the handling of deauthentication and jamming attacks.

7 Discussion and Future work

SoREn was designed in the context of the SECOURT project focusing on vehicles. As a con-
sequence, the design of SoREn is specifically targeted at embedded systems evolving in an
uncontrolled environment. The meta-model of SoREn is well suited for handling threats in that
context but may be less suited in more general contexts. For example, companies usually de-
ploy detection software on their computers and centralize decision on a different server. The
decentralized nature of SoREn, having each protected system running their own detection/de-
cision/reaction system, would incur drastic changes in the practices of such companies. For that



t0 Situation DeauthAttack triggered
t0 +0.074s Response SwitchMedium requested with parameters target =4G
t0 +0.077s Response SwitchMedium requested at t0 +0.074s handled by mediumswitcher
t0 +0.855s Situation DeauthAttack triggered at t0 solved
t0 +1.078s System Medium switched to 4G
t0 +1.080s Response SwitchMedium requested at t0 +0.074s completed
t0 +1.109s Response SwitchMedium requested with parameters target=Wifi
t0 +1.120s Response SwitchMedium requested at t0 +1.109s handled by mediumswitcher
t0 +2.121s System Medium switched to Wifi
t0 +2.125s Response SwitchMedium requested at t0 +1.109s completed
t0 +141.713s Situation DeauthAttack triggered
t0 +141.822s Response SwitchMedium requested with parameters target =4G
t0 +141.825s Response SwitchMedium requested at t0 +141.822s handled by mediumswitcher
t0 +142.295s System Reconfiguration requested
t0 +142.702s DSU Decider mediumdecider uninstalled successfully
t0 +142.703s DSU Part applayer installed successfully
t0 +142.703s DSU Measure type EVM installed successfully
t0 +142.703s DSU Situation type Jamming installed successfully
t0 +142.703s DSU Response type ReinforceSec installed successfully
t0 +142.703s DSU Probe evmsenser installed successfully
t0 +142.704s DSU Detector jammingdetector installed successfully
t0 +142.704s DSU Decider wirelessdenialdecider installed successfully
t0 +142.707s DSU Actuator securityreinforcer installed successfully
t0 +142.826s System Medium switched to 4G
t0 +142.828s Response SwitchMedium requested at t0 +141.822s completed
t0 +147.598s Situation DeauthAttack triggered at t0 +141.713s solved
t0 +147.807s Response SwitchMedium requested with parameters target=Wifi
t0 +147.814s Response SwitchMedium requested at t0 +147.807s handled by mediumswitcher
t0 +148.818s System Medium switched to Wifi
t0 +148.822s Response SwitchMedium requested at t0 +147.807s completed
t0 +169.824s Situation Jamming triggered
t0 +212.039s Situation Jamming triggered at t0 +169.824s solved
t0 +270.477s Situation DeauthAttack triggered
t0 +270.698s Response SwitchMedium requested with parameters target =4G
t0 +270.703s Response SwitchMedium requested at t0 +270.698s handled by mediumswitcher
t0 +270.839s Situation Jamming triggered
t0 +270.920s Response ReinforceSec requested with parameters target=reinforce
t0 +270.922s Response ReinforceSec requested at t0 +270.920s handled by securityreinforcer
t0 +271.356s Situation DeauthAttack triggered at t0 +270.477s solved
t0 +271.578s Response ReinforceSec requested at t0 +270.920s cancelled
t0 +271.706s System Medium switched to 4G
t0 +271.709s Response SwitchMedium requested at t0 +270.698s completed
t0 +271.791s Response SwitchMedium requested with parameters target=Wifi
t0 +271.793s Response SwitchMedium requested at t0 +271.791s handled by mediumswitcher
t0 +272.795s System Medium switched to Wifi
t0 +272.798s Response SwitchMedium requested at t0 +271.791s completed
t0 +284.406s Situation Jamming triggered at t0 +270.839s solved
t0 +332.680s Situation Jamming triggered
t0 +356.766s System Reconfiguration requested
t0 +374.929s Situation Jamming triggered at t0 +332.680s solved
t0 +377.656s DSU Part applayer uninstalled successfully
t0 +377.657s DSU Measure type EVM uninstalled successfully
t0 +377.657s DSU Situation type Jamming uninstalled successfully
t0 +377.657s DSU Response type ReinforceSec uninstalled successfully
t0 +377.657s DSU Probe evmsenser uninstalled successfully
t0 +377.657s DSU Detector jammingdetector uninstalled successfully
t0 +377.657s DSU Decider wirelessdenialdecider uninstalled successfully
t0 +377.657s DSU Actuator securityreinforcer uninstalled successfully
t0 +377.658s DSU Decider mediumdecider installed successfully
t0 +420.386s Situation DeauthAttack triggered
t0 +420.555s Response SwitchMedium requested with parameters target =4G
t0 +420.559s Response SwitchMedium requested at t0 +420.555s handled by mediumswitcher
t0 +421.560s System Medium switched to 4G

Figure 14: Platform trace



reason, although the pertinence of SoREn was validated for a specific context, discussion of
the general pertinence of SoREn would require more experimentation in the future. Automatic
update calculation takes advantage of the restrictive meta-model of SoREn. Automatically cal-
culating reconfiguration of more generic systems that are not subjected to such restrictions would
be more complex . Indeed, with no a priori knowledge on updates, selecting well suited mecha-
nisms for applying all future updates would be a complex task. A probably easier solution would
be to select the used mechanisms at each update, implying that a tool or a person selects the
mechanisms. The reconfiguration system of SoREn shows that dynamic updates can be made
easier by the definition of a restrictive meta-model for applications. Future work addressing that
observation would help understand the impact of the restrictiveness of the meta-model and the
model of an application on the automatic calculation of its dynamic updates.

Platform configurations are expressed as a list of scenario to be installed, which in turn are
expressed as a list of component and marker types to be installed. As shown in table 1, the
proximity between component and marker meta-types with business concepts allows a higher
level of specification for configuration, but an even higher level of expression for configuration
should be targeted. Platform administrators should be able to reconfigure platform using only
business concepts, without considering components and marker types. This goal could be reached
by specifying an ontology for the specification of security policies and linking that ontology to
the component and marker types. Administrators would use the ontology when specifying a
configuration and an extended version of the reconfiguration interpreter would calculate the
scenarios to be installed.

8 Conclusion

This paper presented SoREn, a reconfigurable platform enforcing security policies for commu-
nicating vehicles. It detailed its meta-model centered on four stateless meta-types of components
exchanging information through objects name markers. Component and marker meta-types are
associated with high level business concepts to facilitate the expression of configuration. The re-
configuration engine, calculating the update tasks to be executed from a supplied configuration,
was also presented. The operational semantic on which the engine is based was detailed. The
paper showed the pertinence of the design of SoREn for expressing security policies, enforcing
them and for applying dynamic updates without requiring administrators to write updating code
or provide any specification on the used update mechanisms.

The example presented and discussed in this paper shows the pertinence of Dynamic Software
Updating topics in the study of safety and security issues. DSU techniques allow security systems
designs to be more reactive to new needs emerging from changes of context by enabling dynamic
reconfigurations. High level specification of updates also increase the reactivity of security sys-
tems. Indeed, it allows administrators to order the reconfiguration of the system without needing
to develop specific updating code. The time between the reporting of new needs and the effective
application of the required update is reduced. Security systems would be updated sooner, leaving
security issues unaddressed for a shorter time.

The source code of SoREn is released under the GPL License. Its source code and the code
of the components used in the experimentation presented in section 6 can be downloaded on its
repository : https://bitbucket.org/smartinezgd/soren.
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