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Abstract

Thanks to the increased availability of computing capabilities in data centers, the recently

proposed virtual network function paradigm can be used to keep up with the increasing

demand for network services as internet and its applications grow. The problem arises

then of managing the virtual network functions, that is, to decide where to instantiate the

functions and how to route the demands to reach them. While it arises in an application

field, the Virtual Network Function placement and routing problem combines location

and routing aspects in an interesting, challenging problem.

In this paper, we propose several ILP-based heuristics and compare them on a data-

set that includes instances with different sizes, network topologies and service capacity.

The heuristics prove effective in tackling even large size instances, with up to 50 nodes

and more than 80 arcs.

Keywords: virtual network functions, routing, location, matheuristics

1. Introduction1

Over the past years, the amount of traffic on the network increased due to the diffusion2

of internet services and their widespread availability through mobile devices, and the3

arrival of 5G will boost it even further. Among the challenges that this increase will4

create, network providers will be facing a growing demand for certain network functions5
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such as firewalls, proxies or WAN optimizers, which brings with them a high demand for6

computing capacity. Network functions have been historically provided on hardware, i.e.,8

by installing expensive, specifically designed devices on some network nodes to provide9

the required functions. However, these devices are hardly able to keep up with the10

increasing demand and cannot be upgraded easily and cost-effectively to increase their11

capacity or provide new functionalities. On the other hand, a great amount of computing12

capacity has been recently made available on the network thanks to the diffusion of data13

centers and cloud computing facilities. It has therefore been proposed to provide network14

functions on a virtual, rather than hardware, basis. According to the Network Function15

Virtualization paradigm, part of the computing capacity available on the network nodes16

can be reserved to provide the required network functions in a cheap, flexible and easy-17

to-update way.18

The problem arises then of determining the position of the Virtual Network Functions19

(VNFs) in the graph: node capacity must be reserved to provide virtual services, usually20

by allocating some virtual machines. In addition, the routing of each demand must21

be selected to guarantee that the demand can use the functions it requires by passing22

through a node hosting one VNF instance of the required type.23

In this paper, we consider a network where each node is connected to a server or a24

data center that provides computing capacity. A set of demands is given, each requiring25

the same type of VNF. The problem is to decide where to allocate computing capacity26

to VNFs and how to route all the demands to satisfy their request. We assume the VNF27

to be capacitated, as well as the network connections, thus limiting the amount of traffic28

that can pass on each network link and be served by each VNF. The goal is to minimize29

the number of allocated VNF instances.30

Besides its relevance from the application point of view, the problem is interesting31

and worth studying from an optimization point of view, even with only one type of32

service. Indeed, the problem combines features of the facility location and the network33

routing problems, but the very way in which they are combined is new and produces an34

interesting, challenging problem.35

We will focus on the underlying problem structure, rather than addressing a very spe-36
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cific version of it. Due to its relevance from the application point of view, the problem has37

been widely addressed in the telecommunication literature, where the solution proposed38

have been mainly models and heuristics. However, only in [1], there is a comparison39

between formulations. Even the most promising formulation proposed in [1] cannot deal40

with large size instances. The goal of this work is therefore to develop and compare41

heuristics based on mathematical models to tackle large size instances.42

By considering a single service case, we focus on the underlying structure of the43

problem rather than addressing a real-life case. By modifying the used models, ILP-44

based heuristics allow us to develop approaches that can be applied (hopefully with the45

same success) to other versions of the problem.46

The paper is organized as follows. In Section 2, we report a short literature review47

about VNFs location and routing problems. In Section 3, we describe the problem and48

the formulation used in the ILP-based heuristics. We describe the heuristics in Section 4.49

In Section 5, we report the comparison of the different heuristics and the assessment of50

their performances. Conclusions (Section 6) end the paper.51

2. Literature52

Although VNFs related optimization problems have appeared rather recently (see,53

e.g., the early works in [2] and [3]), they have received significant attention, especially54

in the telecommunication community. Due to the many features that can be considered,55

several variants of the problem have been considered in the literature, the main focus56

being the application perspective, and, as a consequence, formulations and problem-57

tailored heuristics.58

From the point of view of the problem features and definition, the objective functions59

and the constraints may differ and yield to several variants of the problem. Objective60

functions are mainly related to VNF costs: they can be considered on their own (see,61

e.g., [4] and [5]) or combined with the link costs (see, e.g., [6] and [7]). Links and VNFs62

or nodes are considered as capacitated in almost all the studies.63

The different technological features considered give rise to different variants of the64

problem as well, and to different constraints, such as maximum allowed end-to-end la-65

tency [4], [6], [8], partial or total order in the VNFs chain [6], incompatibility among66
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VNFs [6]. In some works, even when is not considered explicitly as a constraint, the67

maximum allowed delay is introduced as a penalization in the objective function [9].68

Besides the main application environment, represented by a wired telecommunication69

network to which end-users are connected (the so-called NFVI-PoP), the same underlying70

problem structure can be found in many contexts and with different network architec-71

tures, such as Mobile core [10], DataCenters [11], or Wireless [12]. This leads to a wide72

number of variants of the problem, and the subsequent research works can be hard to73

classify and compare in terms of computational efficiency.74

Focusing on the solution approach, ILP models are often proposed together with75

classical constructive and improving heuristics [13], [2]. ILP formulations are used also76

within column generation approaches [14], [15], relaxation and rounding [16], or Benders’77

decomposition approaches [17], [18], and formulation-based heuristics [6].78

In some papers (e.g., [19], [20], [9]), besides the offline and static version, an online79

version is also proposed, where the demands are not present all the time, but may appear80

and disappear. Such a version is usually dealt with using an incremental version of the81

approaches proposed for the offline case.82

In most of the papers, only a specific version of the problem is handled, and only83

few case studies based on the same topology are considered, thus making it difficult to84

compare the proposed approaches or to derive wide spectrum insights. A guide to the85

broad literature, mainly from the telecommunication community, can be found in [21].86

In this paper, we consider the underlying structure of the problem, focusing on the87

features that are common to almost all the versions of the problem. We consider the VNFs88

opening problem together with the demand assignment and routing problem. We assume89

that VNFs and links are capacitated. The VNF cost minimization is a very commonly90

used objective function in the literature, we apply the same metric. As we consider91

all the nodes equally expensive, our objective turns out to be the minimization of the92

number of open VNFs. The considered problem has been studied from the computational93

complexity perspective in [22], where it was proved to be NP-complete even if only one94

capacity is considered (either link or VNF). Different formulations are analyzed and95

compared in [1]. We exploit the results of such analysis, and we develop ILP-based96

heuristics with the goal of successfully tackling large-size instances, in terms of network97
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size and number of demands. We tested our methods on a large data-set including98

instances with different topologies and capacities. This element is not common in the99

current literature.100

3. Problem description & formulation101

We consider a problem where a set of demands must be routed on a telecommuni-102

cation network and must receive a service provided by VNF instances allocated on the103

computing nodes. Each computing node is connected to a telecommunication node. The104

demands originate and end in telecommunication nodes. An example of such a system,105

with six telecommunication nodes, is illustrated by Figure 1. The telecommunication106

nodes are represented as circles, while the computing nodes are represented as squares.107

There are two demands: the first one has origin in node 1 and destination in node 6,108

and the second one has origin in node 1 and destination in node 5. In the figure, we also109

report a possible solution. The first demand is routed along the path 1− 3− 4− 6 and is110

served by the VNF allocated on the computing node connected to (telecommunication)111

node 3, namely 3-C. The second demand is routed along the path 1− 2− 5 and is served112

by the VNF allocated on the computing node 5-C.113

2 5

61

3 4

2-C 5-C

6-C1-C

3-C 4-C

Figure 1: Small example - original graph: computing facilities are represented as square nodes.
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As each telecommunication node is connected with one and only one computing node114

and vice versa, without loss of generality, we collapse each computing node into the115

connected telecommunication node and represent them with a single node, as illustrated116

by Figure 2.117

2 5

61

3 4

Figure 2: Small example - collapsed graph: computing nodes are merged with the telecommunication

nodes. In light-gray we highlight nodes that host a VNF.

The network is represented by a graph G(N,A), where N represents the set of nodes118

and A represents the set of arcs (or links). An instance of the VNF can be installed119

on any node in N , as we assume that computing capability is available on each node of120

the network. If needed, such a representation can be used also if computing capability121

is available only on a subset of nodes. We assume uniform capacities both for links and122

VNF instances: let u denote the arc capacity and q the VNF or service (in what follows123

we will use these two terms interchangeably) capacity. The set D represents the network124

demands: each demand k ∈ D is characterized by a source (origin) node ok, a destination125

(terminal) node tk and a demand amount dk. The demand must be served by (i.e., pass126

through) an instance of the VNF, but a demand can pass through a node without using127

the service installed on it. Demands cannot be split and must be routed on simple paths.128

The problem is to decide on which nodes to open a VNF instance together with the129

routing and the VNF assignment of each demand.130

In this paper, we propose matheuristic approaches that first try to compute a feasible131

solution and then refine it. The approaches are mainly based on the k-opt neighborhood132
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Notation

Sets

N set of nodes

A set of arcs

D set of demands

Capacities

u arc capacity

q service capacity

Demand parameters

ok origin of demand k ∈ D

tk destination of demand k ∈ D

dk amount of demand k ∈ D

Assignment/location variables

yi 1 if a service is opened on node i ∈ N

zki 1 if demand k ∈ D uses the service on node i ∈ N

Routing variables

xk1
ij 1 if arc (i, j) ∈ A is used by demand k in sub-path 1

xk2
ij 1 if arc (i, j) ∈ A is used by demand k in sub-path 2

Table 1: Mathematical notation.

search [23]. We use the most promising formulation analyzed in [1]. In the following,133

we briefly describe such formulation. The opening of a VNF instance on node i ∈ N134

is modelled with a binary variable yi, which is equal to 1 if a VNF instance is opened135

on node i and 0 otherwise. The assignment of demand k to the instance of the VNF136

opened on the node i is modelled with a binary variable zki . To model the demand k137

passing through a VNF instance, the demand’s path is split into two sub-paths: the first138

one from the origin ok to the service node to which k is assigned (described by binary139

variables xk1
ij ) and the second one from the service node to the destination tk (described140

by binary variables xk2
ij ). Table 1 recaps the notation and the variables.141
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The resulting model (Split Path - SP) is:142

(SP) min
∑

i∈N

yi (1)

∑

i∈N

zki = 1 ∀k ∈ D (2)

zki ≤ yi ∀k ∈ D, i ∈ N (3)
∑

k∈D

dk(x
k1
ij + xk2

ij ) ≤ u ∀(i, j) ∈ A (4)

∑

j:(i,j)∈A

xk1
ij −

∑

j:(j,i)∈A

xk1
ji =











1− zki if i = ok

−zki otherwise

∀k ∈ D, i ∈ N (5)

∑

j:(i,j)∈A

xk2
ij −

∑

j:(j,i)∈A

xk2
ji =











zki − 1 if i = tk

zki otherwise

∀k ∈ D, i ∈ N (6)

∑

j:(j,i)∈A

(xk1
ji + xk2

ji ) ≤ 1 ∀k ∈ D, i ∈ N (7)

∑

j:(i,j)∈A

(xk1
ij + xk2

ij ) ≤ 1 ∀k ∈ D, i ∈ N (8)

∑

k∈D

dk zki ≤ q̄i yi ∀i ∈ N (9)

∑

i∈N

yi ≥ V NFLB (10)

yi ∈ {0, 1} ∀i ∈ N (11)

zki ∈ {0, 1} ∀i ∈ N, k ∈ D (12)

xk1
ij , x

k2
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ D (13)

where

q̄i = min







q,max







∑

(i,j)∈A

u+
∑

k∈D:tk=i

dk,
∑

(j,i)∈A

u+
∑

k∈D:ok=i

dk













(14)

Equation (14) strengthens the value of the capacity parameters. Indeed, the amount143

of demand that can be served by a service opened on the node i is limited not only by144

the service capacity q, but also by the overall capacity of the links incident in i. However,145
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the demands originated in i can be served in i without impacting the incoming links’146

capacity. Similar reasoning can be applied to the outgoing arcs, leading to the value of147

q̄i.148

Constraints (2) force each demand to be assigned to one service. Constraints (3)149

guarantee that a demand is assigned to a node only if a service instance is opened on the150

node. Constraints (4) are the link capacity constraints. Constraints (5) and (6) are flow151

balancing constraints, and they link the choice of a service to the first half (and second152

half) of the routing path (respectively). Constraints (7) and (8) forbid the two paths153

from entering both into (or going both out from) the same node, thus forbidding the use154

of the same link (represented by the two arcs (i, j) and (j, i)) for both sub-paths. These155

constraints, together with the routing constraints (5)-(6), imply that a simple path is156

used to route each demand. Isolated cycles with no VNF may occur, which however can157

be removed without worsening the objective function, as shown in [1]. Constraints (9)158

limit the amount of demand served by each service instance, and link the opening and159

assignment variables.160

Constraint (10) bounds the number of needed service instances. In [1] the value of

the bound V NFLB is set equal to
⌈∑

k∈D dk

q

⌉

. We further improve the formulation by

computing the value of V NFLB as the optimal solution of the following Bin-Packing-like

Problem (BPP), which uses the same parameters and variables summarized in Table 1:

(BPP )min
∑

i∈N

yi

∑

i∈N

zki = 1 ∀k ∈ D

∑

k∈D

dk zki ≤ q̄i yi ∀i ∈ N

However, if solving (BPP) proves to be too time-consuming, we resort to the looser bound161

and set V NFLB =
⌈∑

k∈D dk

q

⌉

.162

4. Heuristic approaches163

In this paper we present the most promising approaches proposed in [21]. All of them164

are two step matheuristic methods:165

9



1. Finding a starting feasible solution;166

2. Improving the feasible solution from the first step with a local search procedure.167

In both steps, mathematical programming models other than SP are solved using a168

standard solver. These models have been developed to speed up the solution phase. We169

derived them by the original SP by fixing some variables, changing the objective function,170

or reducing the search space.171

We propose two different strategies to find a feasible solution and two different local172

search procedures, obtaining a total of four different complete matheuristics. In the173

following paragraphs, we will first sketch the key elements used to compose our strategies,174

and then show how we combined them into a whole matheuristic approach.175

4.1. Key ingredients of the matheuristics176

In this section, we describe the key ingredients that compose the matheuristics. The177

first one is a sub-problem that aims at serving the maximum number of demands with178

a given number of VNFs, rather than assigning all of them and minimizing the num-179

ber of VNFs. The second ones are the k-opt constraints that are used to define the180

neighborhoods of the local search.181

4.1.1. Maximization of served demands model182

The routing sub-problem, namely the problem of finding a feasible path for each183

demand given the location of the VNF instances, is in itself a challenging problem. In184

fact, it is difficult to even check feasibility when a VNF instance is open in each node,185

as it is a special case of the integer multicommodity flow problem. To speed up the186

feasibility check for a given number of VNF instances V NFfix, we exploit an auxiliary187

problem, whose goal is to maximize the number of served demands. We refer to it as the188

Split Path Maximizing the number of served demands problem (SP-MD). As we want to189

keep the representation of the auxiliary problem as similar as possible to the original, we190

introduce a slightly different graph. We add one auxiliary node a equipped with a VNF191

instance with infinite capacity. An uncapacitated arc is added from every demand source192

node to the auxiliary node and from the auxiliary node to every demand destination193

node. The resulting graph is denoted as:194
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GMD = (N ∪ {a}, AMD),

where N is the set of original nodes and AMD is the increased set of arcs:195

AMD = A ∪ {(sk, a) : k ∈ D} ∪ {(a, tk) : k ∈ D}

A trivial feasible solution can always be found on such a graph: each demand is served196

by the service open in a and is routed on the two-arcs path from its source to a and from197

a to its destination. Then, the auxiliary problem (SP-MD) is defined as follows:198

(SP-MD) max
∑

k∈D,i∈N

zki (15)

∑

i∈N∪{a}

zki = 1 ∀k ∈ D (16)

∑

j:(i,j)∈AMD

xk1
ij −

∑

j:(j,i)∈AMD

xk1
ji =











1− zki if i = ok

−zki otherwise

∀k ∈ D, i ∈ N ∪ {a} (17)

∑

j:(i,j)∈AMD

xk2
ij −

∑

j:(j,i)∈AMD

xk2
ji =











zki − 1 if i = tk

zki otherwise

∀k ∈ D, i ∈ N ∪ {a} (18)

(3), (4), (7), (8), (9)
∑

i∈N

yi = V NFfix (19)

∑

i∈N :(i,a)∈AMD

(xk1
ia + xk2

ia ) ≤ zka ∀k ∈ D (20)

yi ∈ {0, 1} ∀i ∈ N (21)

zki ∈ {0, 1} ∀i ∈ N ∪ {a}, k ∈ D (22)

xk1
ij , x

k2
ij ∈ {0, 1} ∀(i, j) ∈ AMD, k ∈ D (23)

The objective function (15) maximizes the number of demands served by the given199

number of open VNFs, imposed by constraint (19). Constraints (20) prevent from using200

arcs incident in a for routing a demand that is not served by the VNF on a. Indeed, such201

arcs do not belong to the original set of arcs, and cannot be used for finding a feasible202

routing on the original graph.203
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Constraints (3), (4), (7), (8), and (9) are the same as in SP and are defined only on204

nodes and arcs of the original graph G. Instead, constraints (2), (5) and (6) are replaced205

by (16), (17) and (18), respectively, as such constraints are extended to the graph GMD.206

4.1.2. Local search based on k-opt neighborhood207

A k-opt neighborhood [23] is defined as the set of solutions such that only a given208

number of changes for the variables is allowed w.r.t. the current solution. The neigh-209

borhood is explored solving an ILP model, whose goal is to find an improving solution.210

As an example, let us consider a general binary problem, with variables ξ. The current211

solution is described by the set of variables equal to 1, S̄. The k-opt neighborhood is212

given by the set of feasible solutions satisfying the additional constraint213

∑

i∈S̄

(1− ξi) +
∑

i/∈S̄

ξi ≤ κ (24)

where κ is the maximum allowed number of changes, defining the size of the neigh-214

borhood.215

In our problem, we may limit the number of changes in VNF opening or in the216

assignments. Thus, we consider two different k-opt constraints.217

k-opt-L constraint limiting the changes in the opened VNF:218

Let us denote with S̄f the set of nodes selected to host a VNF instance and with κf

the maximum allowed number of changes. The k-opt constraint limits the number

of opening variables that can change their values w.r.t. the current solution:

∑

i∈S̄f

(1− yi) +
∑

i∈N\S̄f

yi ≤ κf (25)

k-opt-A constraint limiting the assignments changes:219

Let us denote with S̄d ⊂ D×N the assignment selected in the current solution and

with κd the maximum number of changed assignments. The k-opt constraint is as

follows:

∑

(k,i)∈S̄d

(1− zki ) +
∑

(k,i)∈(D×N)\S̄d

zki ≤ κd (26)
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Such constraints can be used either separately or in combination, leading to different220

neighborhoods. We call ’L’ neighborhood the neighborhood where the number of changes221

in the VNF’s opening is limited (defined by constraint (25)), and ’A’ neighborhood222

the one where the number of changes in the assignments is limited (defined by con-223

straint (26)). The term ’LA’ is used for their combination (using both constraints (25)224

and (26)).225

4.1.3. Summary of the formulations used in the matheuristics226

Combining the described models with the k-opt constraints, we formulated several227

models. The four models that we use in the two different heuristic steps1 (initial feasible228

solution, local search procedure) are reported in Table 2. The last column summarize229

the steps where each model is used. AFR and DFR are the names of the two first-step230

procedures.231

Formulation Model k-opt Heuristic

name Obj. Constraints constraints steps

SP (1) (2)-(9), (10) - -

SP-MD (15) (3),(4),(7)-(9), (16)- (18), (19)-(20) - DFR

SP-MD-A SP-MD (26) AFR

SP-L SP (25) DFR, local search

SP-LA SP (25), (26) local search

Table 2: Recap of models.

4.2. Initial solution232

Both first-step procedures fix the number of opened VNF instances and try to find233

a feasible assignment and routing, but they differ in the number of VNF instances they234

use as a starting point and in the way a feasible assignment and routing is searched. The235

first approach, All-open Feasible Routing (AFR), opens a VNF instance in each node and236

tries to serve all the demands. Instead, in the second procedure, Dichotomic placement237

Feasible Routing (DFR), the number of VNF instances to be open is set through a238

dichotomic-like procedure. If the dichotomic-like procedure is unable to find a feasible239

1Some combination were not effective and where discarded during a preliminary analysis, see [21].
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solution, a further step is applied, which opens a VNF instance in each node. While both240

procedures may end up opening a VNF in each node, the DFR procedure may reduce241

the number of open VNFs, as opposed to AFR, which never does.242

In the following, the procedure schemes are reported and commented.243

4.2.1. All-open Feasible Routing (AFR)244

The AFR scheme is given in Algorithm 1.

Algorithm 1 Overview of the AFR heuristic

1: V NFfix = |N |

2: S̄d = ∅ and res⋆ = 0

3: while total time-limit is not exceeded do

4: res = solve (SP-MD-A, solver TL)

5: if res == |D| then

6: return solution with number of VNF equal to |N | and assignment S̄d

7: end if

8: if res⋆ < res < |D| then

9: S̄d = current assignment solution

10: res⋆ = res

11: end if

12: end while

13: return ”No feasible solution found”

245

AFR opens (and keeps) a VNF instance in each node (line 1). It tries to find a feasible246

assignment and routing solution applying a k-opt neighborhood based local search on the247

assignments to the problem of maximizing the number of served demands (line 4). It248

starts with the trivial solution where no demand is served by the VNFs on the original249

nodes and all the demands are assigned to the auxiliary node a. The partial assignment250

solution S̄d is empty and the number of assigned demands res⋆ is equal to 0 (line 2). The251

k-opt neighborhood based local search tries to increase the number of served demands. A252

time-limit is set for solving SP-MD-A (denoted as solver TL in the algorithm scheme).253

The overall procedure ends if one of the following conditions holds: i) all the demands254

can be served and therefore a feasible solution with |N | VNFs for the original problem255

14



is provided, ii) the overall time-limit is reached, iii) there is no improving solution in the256

neighborhood. In the two latter cases, no feasible solution is provided.257

4.2.2. Dichotomic placement Feasible Routing (DFR)258

The DFR scheme is given in Algorithm 2.259

Algorithm 2 Overview of the DFR heuristic

1: stop = false, V NFfix = (|N |+ V NFLB)/2

2: while total time-limit is not exceeded or stop == false do

3: res = solve (continuous relaxation of SP-MD, solver TL)

4: if res == |D| then

5: solve (SP-MD, solver TL)

6: if res == |D| then

7: return solution with number of VNF equal to V NFfix

8: end if

9: end if

10: if V NFfix ≥ |N | then

11: stop = true

12: else

13: V NFfix = (|N |+ V NFfix)/2

14: end if

15: end while

16: if total time-limit is not exceeded then

17: return output of the Recovery strategy (Algorithm 3)

18: end if

We start with the number of VNF instances V NFfix equal to the middle value260

between opening all the nodes and the lower bound V NFLB , i.e., V NFfix = (|N | +261

V NFLB)/2 (line 1). Although the V NFLB might be feasible, preliminary tests showed262

that the BPP bound is loose in most of the cases. Thus, starting from this value would263

excessively slow down the overall procedure.264

We perform the following steps:265

15



• The continuous relaxation of model SP-MD is solved with the given value V NFfix266

(line 3).267

• If the continuous relaxation assigns and routes all the demands, then a feasible268

solution for the integer problem is searched by solving SP-MD (line 5). Otherwise,269

the integer problem solution is skipped.270

• If the procedure is unable to serve all the demands, the number of opened service271

V NFfix is increased. Its value is the middle point of the new search interval that272

is delimited by |N | (opening all the nodes) and the previous V NFfix (line 13).273

A time-limit is set for each single run of the solver. Checking the solution of the continu-274

ous relaxation allows us to quickly identify unfeasible problems, speeding up the overall275

procedure.276

The dichotomic-like procedure ends if one of the following conditions holds: i) a277

feasible solution is found (line 7), and the solution with a number of VNFs equal to278

V NFfix is returned, ii) the time-limit of the overall procedure is exceeded (line 2), iii)279

a VNF has been opened in each node and yet a feasible routing has not been found280

(line 11).281

Algorithm 3 Recovery strategy

1: if total time not exceeded then

2: S̄f = N ;

3: solve (SP-L, solver TL)

4: if problem solved then

5: return solution with num. of VNF between |N | − kf and |N |

6: end if

7: end if

8: return ”No feasible solution found”

If no solution is found and the overall time-limit is not exceeded, a further step is282

performed. We call this step Recovery strategy, and we report its scheme in Algorithm 3.283

A VNF instance is opened in each node (line 2) and the model SP-L is solved (line 3):284

both assignment and routing variables can be modified, while at most κf VNF instances285
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can be closed. The SP-L is solved only once, as the goal of the procedure is to quickly find286

a feasible solution, and not to obtain the smallest number of VNF instances. Reducing287

the search space using constraint (25) allows us to speed up the search. If even such a288

step fails, the procedure returns a no feasible solution output.289

4.3. Improving step290

Once a feasible solution is found, a k-opt neighborhood search is applied to improve291

it. The scheme of the local search based on the k-opt neighborhood is described in292

Algorithm 4.293

At each iteration, the procedure explores the neighborhood of the current solution294

S̄, solving an ILP model of the problem with additional constraints of the form (24). If295

an improving solution is found, then the current solution is updated (line 5). A feasible296

solution must be provided to initialize the local search.297

Algorithm 4 Overview of the local search procedure

Input: a feasible solution S̄ (output of AFR or DFR)

1: res⋆ = value(S̄)

2: improve = True

3: while improve and total time-limit is not exceeded do

4: res = solve (SP + k-opt constraint (L or LA), solver TL)

5: if res ≤ res⋆ then

6: S̄ = current solution

7: res⋆ = res, improve = True

8: else

9: improve = False

10: end if

11: end while

12: return S̄, res⋆

Two different neighborhoods are considered, L and LA, as described in Section 4.1.2.298

Neighborhood L limits the changes in the opening variables using constraint (25), while,299

neighborhood LA limits the changes in both opening and assignments instead, using300
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constraints (25) and (26). The two neighborhoods are applied to both initial solution301

procedures, thus yielding to 4 different heuristics.302

In the LA neighborhood, when a local minimum is reached, the size of the assignment303

based neighborhood is increased by setting the value of κd equal to |D| (thus allowing to304

change up to half of the current demand to VNF assignments). If an improving solution305

is found, the local search size is restored to its original value. Otherwise, the procedure306

stops, having explored two neighborhoods of different size without improvement. After307

some preliminary tests, we decided to fix the k-opt parameters as follows:308

• κf (on opening variables) to ⌈|N |/10⌉309

• initial κd (on assignment variables) to ⌈|D|/2⌉.310

The 4 different matheuristics are summarized in Table 3.311

Method Init. solution Improving step

AFR-L AFR k-opt-L

AFR-LA AFR k-opt-LA

DFR-L DFR k-opt-L

DFR-LA DFR k-opt-LA

Table 3: Summary of matheuristic approaches.

5. Computational results312

This section is devoted to the analysis of the computational results. First, we describe313

the test settings (Section 5.1) and the structure of the tables and the figures (Section 5.2);314

later, we present two different analyses: we compare the performance of the heuristics315

among themselves and with the solver (Section 5.3); finally, we evaluate the impact of316

combining two different heuristics (Section 5.4).317

5.1. Test settings318

The proposed heuristics have been coded in AMPL and tested on a set of instances319

based on the SNDLib [24]. The models are solved with IBM ILOG CPLEX 12.7.1.0. The320
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tests run on an Intel Xeon, CPU E5-1620 v2 (4 cores), 3.7 GHz with 32 GB of RAM.321

We set a tree memory limit of 3000 MB. The time-limits depend on the instances, and322

we will detail them below. We use the solution of the model SP(1)-(10) with a standard323

solver as a term of comparison. We set a 10 seconds time-limit for the Bin-Packing-based324

bound computation. If no solution is found within the time-limit, we resort to the bound325

obtained by rounding up the ratio between the overall demand and the service capacity.326

The test set is the same presented in [21] and [1]. We report here a short description327

of how the instances were generated. Network topologies and demands are taken from328

the SNDLib. We generated link capacity (u) and service capacity (q) as follows.329

As for the services, three levels of capacity are considered: low, medium, and high. In330

the high capacity case, the parameter q is set to guarantee that all the demands can be331

served by a single VNF instance (service uncapacitated instances), namely q =
∑

k∈D dk.332

In the low VNF capacity case, the parameter q is twice the total amount of the demands333

divided by the number of nodes q =
⌈

2
∑

k∈D dk

|N |

⌉

, which means, we need to install a VNF334

instance in at least half of the nodes. Medium capacity is the average between the high335

one and the low one.336

As for the links, we consider just one of the levels proposed in [21] and [1], as it turned337

out that instances with higher link capacity values can be easily solved by a standard338

solver (see computational results of [1]). Therefore, the link capacity u is computed as339

the minimum capacity for a feasible routing to exist, neglecting the services. This value340

is obtained solving a suitable MILP model.341

Preliminary results allowed us to group instances in different classes based on the342

performances of the solver applied to the SP formulation. We distinguish three classes:343

group1: topologies that the solver can solve to optimality within one hour for any344

capacity setting. For these instances we set an overall time-limit of 10 minutes for345

the heuristics and a time-limit of 600s for every single call to the solver within the346

heuristic;347

group2: topologies that the solver cannot solve to optimality within one hour (or due348

to the memory limit) for at least one capacity setting. For these instances we set349

an overall time-limit of 20 minutes for the heuristics and a time-limit of 600s for350

every single call to the solver within the heuristic;351
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group3: topologies that the solver cannot solve to optimality within two hours (or due352

to the memory limit) for at least one capacity setting. For these instances, we353

used two overall time-limits for the heuristics: one hour and two hours (the two354

hours time-limit is used to perform tests combining the heuristics). In both cases,355

a time-limit of 900s is set for every single call to the solver.356

The 48 instances are presented in Table 4, where for each instance size (number of357

nodes, number of arcs and number of demands) and capacity values are reported.358

Data from SNDLib Capacity

Network |N | |A| |D|
VNF (q) Link (u)

high medium low

gr
ou

p
1

atlanta 15 22 210 136726 77478 18230 19404

geant 22 36 462 2999992 1636359 272726 359868

nobel-eu 28 41 378 1898 1016 135 214

nobel-us 14 21 91 5420 3097 774 486

polska 12 18 66 9943 5800 1657 995

sun 27 51 67 476 255 35 53

gr
ou

p
2

france 25 45 300 99830 53908 7986 9413

janos-us 26 42 650 80000 43076 6153 7624

newyork 16 49 240 1774 997 221 66

norway 27 51 702 5348 2872 396 358

gr
ou

p
3

cost266 37 57 1332 679598 358166 36735 53562

germany50 50 88 662 2365 1229 94 123

giul39 39 86 1471 7366 3871 377 363

india35 35 80 595 3292 1740 188 121

janos-us-ca 39 61 1482 2032274 1068246 104219 180471

pioro40 40 89 780 115953 60875 5797 7609

Table 4: Instances’ details.
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5.2. Tables and figures description359

We report the results for the model and the heuristics in Tables 5, 6 and 7, for group1,360

group2 and group3, respectively. In each table, the instances are grouped by the VNF361

capacity value (high, medium or low).362

For each instance, we report:363

• for the SP model solution:364

– the dual bound (lower bound - LB)365

– the best integer solution found (upper bound - UB)366

– the computational time (Time)367

• for the heuristics (Sol Heur), as a summary:368

– the best value found by the heuristics (Best)369

– the worst value found by the heuristics (Worst)370

• for each heuristic:371

– the solution (Sol)372

– the computational time (Time)373

The symbol ’-’ represents the cases where no solution can be found. ’ML’ stands for374

memory limit. When the time-limit is reached, we report its value, i.e., one hour (’1h’),375

for the solver, and 10 minutes (’10m’), 20 minutes (’20m’) and one hour (’1h’) for the376

heuristics on group1, group2 and group3, respectively. We highlight in bold the best377

result obtained by the heuristic(s) and with a light-gray background the heuristic that378

finds the best value within the smallest computational time.379

We report summarized results in Figures 3, 4 and 5. In Figure 3, for group1, we380

report:381

#best: the number of instances for which the heuristic finds the best solution among382

the solutions found using the heuristics,383

#opt: the number of instances for which the heuristic finds the same UB as the model,384
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#faster: the number of instances for which the heuristic finds a feasible (not necessarily385

optimal) solution and requires a smaller computational time than the model.386

In Figures 4 and 5, for group2 and group3, respectively, we report:387

#best: as for group1,388

#UB imp: the number of instances in which the heuristic finds the same number of389

VNFs as the model or a smaller one.390

We report # UB imp instead of #opt, because the model does not always find the391

optimal solution on these instances. We do not report the value #faster because the392

model reaches its time-limit in almost all the instances (except for some low capacity393

ones) and the time-limit imposed on the heuristics (600s for group2, 1 hour for group3)394

is always smaller than the one imposed on the solver.395

5.3. Heuristics comparison396

In this section, we compare the proposed heuristics and the model. We show that the397

heuristics can be successfully applied and can outperform the model.398

The model provides good results on the group1 instances. Its behavior worsens for399

the other groups (especially for the high and the medium capacity cases), where the400

heuristics improve upon it. The heuristics are, in general, faster than the model.401

There is not a clear winner among the heuristics. In general, they provide rather402

similar results. The best performing heuristic is not the same for all the instances. Nev-403

ertheless, the best and the worst values are similar, at least as far as group1 and group2404

are concerned. The difference increases for the instances of group3. When they do not405

provide similar results, the AFR and DFR-based heuristics are somehow complementary.406

In fact, when the performance of one worsens, the performance of the other improves. A407

question then arises if combining the two different policies is profitable. This question is408

addressed in Section 5.4.409

We hereby report a detailed analysis of the results, a subsection for each group of410

instances. We report more detailed results in Appendix A: the comparison of the first411

step heuristics (AFR and DFR) and the impact of the local search procedure on the412

overall algorithm.413
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5.3.1. Group1 instances414
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Figure 3: Summary of heuristics’ results on instances of group1 for different cases of VNF capacity.

On the group1 instances, the heuristic behavior varies depending on the capacity case.415

The polska instance represents an exception: it is very challenging for the heuristics, but416

not for the model. Indeed, polska can be solved using the model for all the capacity417

cases, while only the AFR-based heuristics can find a feasible solution for the medium418

capacity case.419

Put aside the instance polska, the heuristics show a good behavior in the high capacity420

case. Heuristics are in general faster than the model (the only exception being DFR-LA421

on instance nobel-us). They fail to find the optimal solution in 1 or 2 cases. When422

they fail, their solution has only one VNF instance more than the optimal one. On423

the overall, DFR-L behaves slightly better than the others, while DFR-LA provides the424

poorest performance.425

All the heuristics provide the same solution in the medium capacity instances, and426

they all fail in finding the optimum in two out of five instances (leaving aside polska,427

which is challenging in all the capacity cases, as mentioned). AFR-LA provides the best428

performance, being the fastest on most of the instances (it is outperformed just twice,429
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and not by the same heuristic), while DFR-L is faster than the model in only three430

instances. AFR-L and DFR-L reach the time-limit in nobel-us (and polska).431

The low capacity instances are not challenging for the model nor for the heuristics,432

aside from polska. In fact, all the heuristics can find the optimal solution in all the433

instances. They are slower than the model in all the instances but atlanta, except DFR-434

LA, which is faster than the model in both atlanta and nobel-us.435

Instance SP Sol Heur AFR-L AFR-LA DFR-L DFR-LA

Network LB UB Time Best Worst Sol Time Sol Time Sol Time Sol Time

h
ig
h

atlanta 3 3 1528.7 3 4 4 43.7 4 62.8 3 29.8 4 24.1

geant 1 1 299.0 1 1 1 175.7 1 164.4 1 84.3 1 94.7

nobel-eu 3 3 1406.5 3 3 3 410.6 3 206.0 3 438.4 3 481.4

nobel-us 4 4 265.9 4 5 4 65.9 4 98.9 4 116.1 5 10m

polska 4 4 534.2 - - - 10m - 10m - 10m - 10m

sun 2 2 44.1 2 3 3 33.9 3 31.6 3 18.8 2 9.8

m
ed

iu
m

atlanta 3 3 800.3 4 4 4 47.4 4 38.3 4 51.1 4 48.3

geant 2 2 241.8 2 2 2 218.7 2 113.9 2 255.1 2 304.9

nobel-eu 3 3 2595.9 3 3 3 10m 3 285.0 3 10m 3 339.9

nobel-us 4 4 262.4 4 4 4 80.6 4 94.1 4 150.3 4 101.9

polska 4 4 902.4 6 - 6 10m 6 10m - 10m - 10m

sun 2 2 213.0 3 3 3 29.3 3 19.2 3 12.1 3 86.2

lo
w

atlanta 8 8 58.1 8 8 8 17.6 8 32.4 8 13.6 8 13.2

geant 12 12 23.1 12 12 12 79.8 12 163.6 12 51.9 12 71.8

nobel-eu 15 15 24.7 15 15 15 62.7 15 78.8 15 53.7 15 61.8

nobel-us 8 8 10.9 8 8 8 24.2 8 61.9 8 19.9 8 5.3

polska 7 7 286.0 - - - 10m - 10m - 10m - 10m

sun 14 14 1.7 14 14 14 8.8 14 14.6 14 5.4 14 22.0

Table 5: Results of heuristics on group1 compared with ILP model solved by CPLEX. Computational

time is expressed in seconds. The time-limit for heuristics is set to 10 minutes (10m = 600s).

5.3.2. Group2 instances436

The instances of group2 are more challenging both for the model and the heuristics.437

In fact, for the high and medium capacity case, the model finds an upper bound only in438

one instance out of four, while for the others it cannot compute a feasible solution within439

the time-limit (one hour). Instead, the low capacity instances are less challenging for440
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Figure 4: Summary of heuristics’ results on instances of group2 for different cases of VNF capacity.

the model, except for the instance france. Although the group2 instances are challenging441

for the heuristics (they reach the time-limit in almost all the cases), they clearly show442

the heuristics’ benefit. Only in france with high capacity, no heuristic can find a feasible443

solution. The DRF-based heuristics can find a solution for france with medium and444

low capacity, while the AFR-based heuristics (and the model) cannot. For the newyork445

instance, it is the reverse: for both high and low capacities, AFR-based heuristics can446

find a feasible solution, while the DFR-based heuristics fail. When all heuristics can447

find a solution, the DRF-based methods perform better. In norway with the low and448

medium capacity, DRF-based heuristics obtain solutions with a value that is half the one449

found by the AFR-based ones. The instance newyork with medium capacity represents450

an exception: AFR-LA can find a solution with a value of 6, while all the other methods451

find a value of 8 or 9. As mentioned before, the low capacity instances are less challenging452

for the model. It is also true for the heuristics, which manage to find the optimal solution453

almost always. Overall, the group2 instances show that the heuristics can outperform the454

model, by finding feasible solutions where the model cannot. The heuristics’ solutions455

are very close to the lower bound provided by the model (it is worth noting that the456
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time-limit imposed on the heuristics is one-third of the one imposed on the model).457

Instance SP Sol Heur AFR-L AFR-LA DFR-L DFR-LA

Network LB UB Time Best Worst Sol Time Sol Time Sol Time Sol Time

h
ig
h

france 4 - ML - - - 20m - 20m - 20m - 20m

janos-us 3.91 5 1h 6 6 6 20m 6 20m 6 20m 6 20m

newyork 2.6 - 1h 5 - 9 20m 5 20m - 20m - 20m

norway 4.6 - 1h 7 13 11 20m 13 20m 7 20m 7 20m

m
ed

iu
m

france 4 - ML 14 - - 20m - 20m 14 20m 14 20m

janos-us 3.9 5 1h 6 6 6 20m 6 20m 6 20m 6 20m

newyork 2.7 - 1h 6 9 8 20m 6 20m 8 20m 9 20m

norway 4.6 - 1h 6 13 13 20m 13 20m 7 20m 6 20m

lo
w

france 13 - 1h 17 - - 20m - 20m 19 20m 17 20m

janos-us 14 14 84.5 14 14 14 116.8 14 139.2 14 105.1 14 122.7

newyork 9 9 1972.6 9 - 9 837.5 14 20m - 20m - 20m

norway 14 14 315.3 14 14 14 688.3 14 904.3 14 833.7 14 1021.1

Table 6: Results of heuristics on group2 compared with ILP model solved by CPLEX. Computational

time is expressed in seconds. The time-limit for heuristics is set to 20m= 1200s.

5.3.3. Group3 instances458

The model can find a feasible solution only in one instance out of 6 of the group3459

for the high and medium capacity case. Instead, as for the group2, the low capacity460

instances are less challenging: the model can solve three of them to optimality (two in461

a short computational time). Nevertheless, in three instances of the low capacity case,462

the model cannot find a feasible solution. Furthermore, for giul39 with the high and463

medium capacity, the model cannot even find a lower bound. On the contrary, all the464

heuristics can find a feasible solution for all the instances. The AFR-based heuristics465

perform better than the DFR-based ones on the high and medium capacity cases, with466

some exceptions. DFR-L obtains a solution that is half the one found by the other467

heuristics on janos-us-ca with high capacity. DFR-LA finds a solution that is at least468

one-third smaller than the other heuristics on pioro40 with medium capacity. On the low469

capacity instances, the DFR-based heuristics perform better than the AFR-based ones.470

However, except for a few cases (i.e., janos-us-ca with low capacity, pioro40 with medium471

capacity, and cost266 with low capacity), the difference between the best and the worst472
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Figure 5: Summary of heuristics’ results on instances of group3 for different cases of VNF capacity.

heuristic is not significant. In the low capacity case, the best heuristic provides optimal,473

or nearly optimal (janos-us-ca and pioro40), solutions.474

As for the computational time, low capacity instances are less time-consuming. The475

local search based on VNF location (L) is, in general, faster. AFR-L reaches the time-476

limit only in half of the instances with high and medium capacity. DFR-L reaches the477

time-limit in one instance for the high and low capacity cases and in two for the medium478

ones. AFR-LA and DFR-LA are more time-consuming: they run out of time in more479

than half the instances for the high and medium capacity cases and in three for the low480

capacity ones.481
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Instance SP Sol Heur AFR-L AFR-LA DFR-L DFR-LA

Network LB UB Time Best Worst Sol Time Sol Time Sol Time Sol Time

h
ig
h

cost266 3 6 2h 4 6 4 1h 4 1h 5 2965.4 6 3169.3

germany50 3.35 - 2h 5 7 7 2012.4 5 2544.6 7 1311.8 6 2583.5

giul39 - - 2h 27 30 27 1h 27 1h 30 1h 30 1h

india35 3.46 - 2h 8 10 8 1h 8 1h 10 3053.7 10 1h

janos-us-ca 2.84 - 2h 6 13 13 1h 12 1h 6 3383.1 12 1h

pioro40 3 - 2h 11 40 37 2143.9 40 2142.6 27 2692.9 11 1h

m
ed

iu
m

cost266 3 6 2h 4 6 4 1h 4 1h 5 2892.5 6 3100.6

germany50 3.35 - 2h 5 7 7 1998.5 5 2543.9 7 1278.0 5 3341.7

giul39 - - 2h 24 30 27 1h 27 1h 30 1h 24 3130.2

india35 3.46 - 2h 8 10 8 1h 8 1h 10 2936.6 10 1h

janos-us-ca 2.84 - 2h 6 12 6 1h 12 1h 10 1h 6 1h

pioro40 3 - 2h 11 40 37 2142.7 40 2142.8 27 2689.4 11 1h

lo
w

cost266 19 - 2h 19 28 28 1939.4 19 1934.9 19 1663.5 19 1893.7

germany50 26 26 296.3 26 26 26 274.3 26 509.9 26 247.5 26 386.6

giul39 20 20 2754.6 32 36 36 2196.6 33 1h 35 2164.0 32 1h

india35 18 18 287.5 18 18 18 1861.3 18 1563.9 18 1130.1 18 1054.4

janos-us-ca 20 - 2h 23 29 27 2403.3 29 1h 23 1h 29 1h

pioro40 21 - ML 23 28 28 2877.0 24 1h 23 2963.2 23 1h

Table 7: Results of heuristics on group3 compared with the ILP model solved by CPLEX. Computational

time is expressed in seconds. The time-limit for heuristics is set to 1h= 3600s.
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5.4. Extending the time-limit and combining heuristics482

In this section, we focus on the group3 instances. The aim is to evaluate if the483

behavior of the heuristics changes using a longer computational time. More precisely,484

we use the same time-limit we imposed on the model, i.e., two hours. The results are485

reported in Table 8. For ease of reading, we report two additional columns from Table 7:486

the best and worst values found by the heuristics in one hour (columns three and four).487

We highlight in bold the instances where the result obtained in two hours improves upon488

the result obtained within one hour.489

Instance SP Heur 1h Heur 2h AFR-L AFR-LA DFR-L DFR-LA

LB Best Worst Best Worst Sol Time Sol Time Sol Time Sol Time

h
ig
h

cost266 3 4 6 4 6 4 4408.2 4 4444.4 5 2965.4 6 3169.3

germany50 3.3 5 7 5 7 7 2012.4 5 2544.6 7 1311.7 6 2583.5

giul39 - 27 30 15 30 15 6695.6 21 7455.4 18 6885.2 30 5344.9

india35 3.5 8 10 6 10 8 3593.8 6 5462.7 10 3053.7 10 3889.8

janos-us-ca 2.8 6 13 6 12 7 5374.8 12 4437.9 6 3383.1 12 4157.3

pioro40 3 11 40 8 40 37 2143.9 40 2142.6 27 2692.9 8 5644.2

m
ed

iu
m

cost266 3 4 6 4 6 4 4257.7 4 4426.9 5 2892.5 6 3100.6

germany50 3.3 5 7 5 7 7 1998.5 5 2543.9 7 1278.0 5 3341.7

giul39 - 24 30 15 24 15 6596.7 21 7449.9 18 6610.7 24 7385.1

india35 3.5 8 10 6 10 8 3586.3 6 5473.3 10 2936.6 7 5595.5

janos-us-ca 2.8 6 12 6 7 6 4226.0 6 7040.8 7 4530.2 6 5218.5

pioro40 3 11 40 8 40 37 2142.7 40 2142.8 27 2689.4 8 5571.1

lo
w

cost266 19 19 28 19 28 28 1939.4 19 1934.92 19 1663.5 19 1893.7

germany50 26 26 26 26 26 26 274.3 26 509.924 26 247.5 26 386.6

giul39 20 32 36 29 36 36 2196.6 33 4426.01 35 2164.0 29 5843.2

india35 18 18 18 18 18 18 1861.4 18 1563.88 18 1130.1 18 1054.4

janos-us-ca 20 23 29 20 27 27 2403.3 20 4615.0 20 5992.6 21 7052.2

pioro40 21 23 28 21 28 28 2877.0 24 4792.78 23 2963.2 21 3656.8

Table 8: Results of heuristics on group3. Computational time is expressed in seconds. The time-limit

for heuristics is set to 2h= 7200s.

We shall point out that, in 3 out of 6 of the low capacity instances, the best heuristic490

can find the optimal solution even within one hour. With a longer time-limit, the best491

value improves in 9 out of 18 instances. The worst heuristic improves in a few instances:492

janos-us-ca with both high and medium capacity and giul39 with medium capacity.493
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If we focus only on the best solution value, it is not easy to determine a clear winner.494

Indeed, for the high and medium capacity instances, the AFR-based heuristics get better495

results, in general. Nevertheless, in some instances, their performance is bad (see, for496

example, pioro40, where AFR-LA obtains a solution with value 40 and DFR-LA a solu-497

tion with value 8). For low capacity instances, the DFR-based heuristics behave better498

than the AFR-based ones. The results obtained are never far from the best one, they499

are often the best (see, for example, janos-us-ca).500

This reasoning leads to a very logical question: ”can we determine the algorithm that,501

without being the best, performs well on the largest number of instances?” To answer502

this question, we introduce performance profiles as proposed in [25]. Performance profiles503

aim to assess the quality of a set of algorithms on a given data-set. More formally, we504

call:505

• I the set of instances,506

• A the set of algorithms (AFR-L, AFR-LA, ...),507

• fi(j) a measure of the performance of algorithm j ∈ A on instance i ∈ I, in our508

case the obtained objective value,509

• f⋆
i = min{fi(j), ∀j ∈ A}.510

Performance profiles are a graphical representation of the following functions:

pj(x) =

∣

∣

∣

∣

{i ∈ I :
fi(j)

f⋆
i

≤ x}

∣

∣

∣

∣

∀j ∈ A

For the value of x = 1, the function pj(x) corresponds to the number of instances where511

the heuristic j can find the best solution. For x = 2, it is the number of instances where512

the heuristic j produces a solution with a value at most twice the value found by the513

best algorithm, and so on.514

A “good” algorithm may fail in finding the best solution for some instances, but it515

guarantees to have a limited error even in the worst case. In performance profiles, it516

occupies the upper-left part of the graph, and quickly asymptotizes over the maximum517

number of instances.518

In Figure 6, we report the performance profiles for the four heuristics: the first plot519

reports the performance profiles of AFR-based heuristics, while the second plot reports520
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the profiles of the DFR-based ones. The AFR-based heuristics obtain the best solution521

on more instances, but their performance is very poor on the remaining ones. Indeed,522

in two instances, the obtained value is five times larger than the best one. On the other523

hand, the DFR-based heuristics find solutions that are, at worst, twice the overall best524

for all the instances, thus, guaranteeing a form of robustness.525
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Figure 6: Comparing quality of solutions on group3 of different heuristic strategies.

In Figure 7, we report a detailed view of Figure 6 (in two separated sub-figures). We526

can observe that the L local search (both in AFR and DFR heuristics) is less effective527

in getting the best solution than the LA local search. Nevertheless, it allows to obtain528

good quality solutions (within 1.5 and 2 times the best algorithm’s value) for a larger529

number of instances.530

The complementary behavior of the AFR-based and DFR-based heuristics gave us531

the idea of combining them: we ran them sequentially and then kept the best solution532

obtained. We tested all possible versions with the different local search strategies (L and533

LA). In Figure 8, we report the best combination, namely AFR-LA/DFR-LA, and as534
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(a) AFR heuristics
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(b) DFR heuristics capacity.

Figure 7: Detailed view of performance profiles (up to twice the best value).

a term of comparison the original AFR-LA and DFR-LA. All the heuristics run with a535

time-limit of two hours. In the combined heuristic, every single heuristic has a time-limit536

of an hour.537

AFR-LA/DFR-LA and DFR-LA are more robust than AFR-LA. Indeed, they provide538

a solution for all the instances with an objective value no greater than twice the one539

achieved with the best algorithm. The combined algorithm behaves worse than the540

single heuristics in terms of number of best solutions. Nevertheless, its performance541

increases faster than the single heuristics, allowing to solve 14 instances within less than542

1.5 times the best value.543
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Figure 8: Comparison between AFR-LA, DFR-LA and their combination.
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6. Conclusions544

In this paper, we consider a VNF placement and routing problem with a single service545

type, and capacitated VNF instances and links. The problem arises in telecommunication546

applications and several variants of this problem have been addressed in the telecommu-547

nication literature. The main structure of the problem is a challenging combination of548

routing and location aspects. Rather than developing heuristics for a very specific version549

of the problem with several particular features, as is often proposed in the literature, we550

aimed at addressing its core structure.551

We developed ILP-based heuristics, whose philosophy can be applied to tackle dif-552

ferent variants of the problem with specific features. Indeed, our methods rely on the553

solution of a sequence of ILP models, and therefore they can be adapted to tackle dif-554

ferent versions of the problem. We tested the heuristics on a significant data-set that555

includes instances with different sizes, network topologies and service capacity.556

The computational tests show that the heuristics outperform the most promising557

formulation as the problem size increases, especially when the link capacity is not too558

tight. Although there is not a clear winner among the proposed approaches, they all show559

a good behavior and the gap obtained w.r.t. the best solution known is often reasonable.560

Furthermore, a simple combination of two “complementary” heuristics provides good561

quality results in almost all the instances.562

The obtained results allow us to believe that it is worth extending our methods to563

more realistic versions of the problem, such as the multi-VNF case with no uniform564

resources.565
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Appendix A. Impact of the local search on the presented matheuristics638

In this section, we analyze the two steps of the proposed matheuristics. First, we639

show the results of the two proposed first steps (AFR or DFR). Second, we analyze the640

impact of the two local search procedures (L or LA).641

Instances SP AFR DRF AFR

DFR

LB Sol Time Sol Time Sol Time

h
ig
h

cost266 3 37 213.2 20 418.8 1.9 0.5

germany50 3.35 50 34.4 27 47.8 1.9 0.7

giul39 - 39 914.9 36 2166.2 1.1 0.4

india35 3.46 35 804.6 19 815.1 1.8 1.0

janos-us-ca 2.84 39 644.2 21 918.1 1.9 0.7

pioro40 3 40 342.3 31 1063.1 1.3 0.3

m
ed

iu
m

cost266 3 37 206.0 20 406.8 1.9 0.5

germany50 3.35 50 33.0 27 42.2 1.9 0.8

giul39 - 39 893.4 36 2118.3 1.1 0.4

india35 3.46 35 804.8 19 780.7 1.8 1.0

janos-us-ca 2.84 39 608.8 21 832.8 1.9 0.7

pioro40 3 40 341.7 31 1062.1 1.3 0.3

lo
w

cost266 19 37 421.6 28 788.6 1.3 0.5

germany50 26 50 139.5 38 55.1 1.3 2.5

giul39 20 39 685.4 35 1292 1.1 0.5

india35 18 35 226.3 27 321.1 1.3 0.7

janos-us-ca 20 39 655.6 35 1313.7 1.1 0.5

pioro40 21 40 217.6 31 580.5 1.3 0.4

Table A.1: Details of first phase heuristics AFR and DFR for the group3 instances.

In Table A.1, we compare the procedures used to find a starting feasible solution,642

namely AFR and DFR. For each instance, we report:643

• the lower bound provided by the model (LB)644

• for each method:645

– the value of the solution646

– the computational time647

• the ratio between the AFR and DFR methods of:648
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– the values of the solution649

– the computational times650

AFR is faster, in general, with times that are half of those of DFR. The only excep-651

tions are germany50 with low capacity, where AFR is slower than DFR (2.5 times) and652

india35 with high and medium capacity, where the two methods need almost the same653

computational time. Conversely, as expected, AFR produces worse results than DFR,654

sometimes twice as large. An exception to this behavior is giul39 (for all the capacity655

cases). In these instances, a significant gain in computational time is coupled to a small656

loss in the solution quality (39 to 36/35).657

Overall, DFR seems more promising as a stand-alone procedure, even if it may require658

more than half an hour. AFR, on the other hand, is able to provide a good starting659

point for the local search step, as shown in Tables A.2 and A.3. In these tables, we660

report detailed results on the AFR-based and DFR-based methods. For each instance,661

we report:662

• the lower bound provided by the model (LB)663

• for the first step:664

– the value of solution (initial solution)665

– the computational time666

• for the two local search strategies (L and LA):667

– the value of solution (final value of the algorithm)668

– the computational time (of the local search alone)669

– the number of local search iterations670

– the percentage of improvement w.r.t. the initial solution.671

The best heuristic values are reported in bold, and the best local search strategy, in terms672

of quality of the solution and computational time, is highlighted in light gray. Note that673

we imposed a time-limit of one hour to the overall heuristic procedure (first step plus674

local search). When the full algorithm reaches the time-limit, we report the label ’TL’,675

to highlight when the algorithm is ”prematurely” stopped by the time-limit condition.676
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AFR AFR-L AFR-LA

Instances SP Init. solution LS solution Impr. LS solution Impr.

LB Sol Time Sol Time # % Sol Time # %

h
ig
h

cost266 3 37 213.2 4 TL 11 89.2 4 TL 12 89.2

germany50 3.35 50 34.4 7 1978.0 9 86.0 5 2510.2 10 90.0

giul39 - 39 914.9 27 TL 4 30.8 27 TL 4 30.8

india35 3.46 35 804.6 8 TL 9 77.1 8 TL 9 77.1

janos-us-ca 2.84 39 644.2 13 TL 9 66.7 12 TL 9 69.2

pioro40 3 40 342.3 37 1801.6 1 7.5 40 1800.3 0 0.0

m
ed

iu
m

cost266 3 37 206.0 4 TL 11 89.2 4 TL 12 89.2

germany50 3.35 50 33.0 7 1965.6 9 86.0 5 2510.9 10 90.0

giul39 - 39 893.4 27 TL 4 30.8 27 TL 4 30.8

india35 3.46 35 804.8 8 TL 9 77.1 8 TL 9 77.1

janos-us-ca 2.84 39 608.8 6 TL 11 84.6 12 TL 9 69.2

pioro40 3 40 341.7 37 1801.0 1 7.5 40 1801.1 0 0.0

lo
w

cost266 19 37 421.6 28 1517.8 3 24.3 19 1513.3 6 48.6

germany50 26 50 139.5 26 134.8 5 48.0 26 370.4 5 48

giul39 20 39 685.4 36 1511.1 1 7.7 33 2914.6 2 15.4

india35 18 35 226.3 18 1635.0 6 48.6 18 1337.5 6 48.6

janos-us-ca 20 39 655.6 27 1747.7 4 30.8 29 2944.4 4 25.6

pioro40 21 40 217.6 28 2659.4 3 30.0 24 TL 4 40.0

Table A.2: Details of heuristics on AFR based heuristics for the group3 instances with one hour time-

limit.
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For both AFR-based and DFR-based heuristics, the local search steps require in677

general way more computational time than the initial solution phase. However, local678

search steps are worth performing, as they tend to improve significantly upon the initial679

solution. The only exceptions being pioro40, with high and medium capacity for AFR-680

LA, and giul39 with low capacity for DFR-L.681

In AFR-based heuristics, the improvement is slightly higher for the high and medium682

capacity instances. It is above 30%, with the only exception of pioro40, and it may rise683

to about 90%. For the low capacity instances, the percentage of improvement is between684

8% and 48%. There is not a clear winner between the two neighborhoods. Starting from685

the AFR initial solution, they find the same solution in 8 instances, the L local search686

provides better results in four, while LA outperforms L in six. The number of iterations687

and the average per iteration time vary for the different instances.688

DFR DFR-L DFR-LA

Instances SP Init. solution LS solution Impr. LS solution Impr.

LB Sol Time Sol Time # % Sol Time # %

h
ig
h

cost266 3 20 418.8 5 2546.6 5 75.0 6 2750.4 5 70.0

germany50 3.3 27 47.8 7 1263.9 4 74.1 6 2535.7 5 77.8

giul39 - 36 2166.2 30 TL 2 16.7 30 TL 3 16.7

india35 3.5 19 815.1 10 2238.5 3 47.4 10 TL 3 47.4

janos-us-ca 2.8 21 918.1 6 2464.9 5 71.4 12 TL 3 42.9

pioro40 3 31 1063.1 27 1629.7 1 12.9 11 TL 5 64.5

m
ed

iu
m

cost266 3 20 406.8 5 2485.7 5 75.0 6 2693.8 5 70.0

germany50 3.3 27 42.2 7 1235.8 4 74.1 5 3300.0 6 81.5

giul39 - 36 2118.3 30 TL 2 16.7 24 1011.9 2 33.3

india35 3.5 19 780.7 10 2155.9 3 47.4 10 TL 3 47.4

janos-us-ca 2.8 21 832.8 10 TL 4 52.4 6 TL 6 71.4

pioro40 3 31 1062.1 27 1627.3 1 12.9 11 TL 5 64.5

lo
w

cost266 19 28 788.6 19 874.8 3 32.1 19 1105.1 3 32.1

germany50 26 38 55.1 26 192.5 3 31.6 26 331.5 3 31.6

giul39 20 35 1292.0 35 872.0 0 0.0 32 TL 1 8.6

india35 18 27 321.1 18 809.0 3 33.3 18 733.3 3 33.3

janos-us-ca 20 35 1313.7 23 TL 4 34.3 29 TL 2 17.1

pioro40 21 31 580.5 23 2382.8 2 25.8 23 TL 2 25.8

Table A.3: Details of heuristics on DFR based heuristics for the group3 instances with one hour time-

limit.
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A similar behavior is observed for the DFR-based heuristics, where the number of689

iterations (and thus improvements) is, in general, lower than for the AFR-based ones.690

This is not surprising, as the DFR procedure provides a better solution than the AFR691

one.692
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