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Single-input perturbative control of a quantum
symmetric rotor

Thomas Chambrion and Eugenio Pozzoli

Abstract— We consider the Schrödinger partial differen-
tial equation of a rotating symmetric rigid molecule (sym-
metric rotor) driven by a z-linearly polarized electric field,
as prototype of degenerate infinite-dimensional bilinear
control system. By introducing an abstract perturbative
criterium, we classify its simultaneous approximate con-
trollability; based on this insight, we numerically perform
an orientational selective transfer of rotational population.

Index Terms— Algebraic/geometric methods, distributed
parameter systems, quantum control.

I. INTRODUCTION

A. Physical model

THE attitude of a rigid body is a point in the Lie group
of rotations SO(3), parametrized by the Euler’s angles

(α, β, γ) ∈ [0, 2π) × [0, π] × [0, 2π). At the quantum level,
the state of the system is decribed by the so-called wave
function ψ : SO(3) → C whose square modulus |ψ|2 can be
interpreted as a probability density. Throughout the paper, we
use the Haar volume of SO(3), volHaar = 1

8dαdγ sin(β)dβ in
Euler coordinates, as reference measure without further notice
and we require that ψ belongs to the unit sphere of the set
L2(SO(3)) of square integrable (for the Haar volume) complex
functions on SO(3), equipped with its natural L2 norm.

When submitted to an external z-linearly polarized electric
field of (variable) real intensity u, the dynamics of the wave
function ψ is given by the bilinear Schrödinger equation

iψ̇ = (Hrot + uHz)ψ, ψ ∈ L2(SO(3)), (1)

where Hz = −δ cos(β) is the interaction Hamiltonian between
the z-polarization of the electric field and the electric dipole
moment δ > 0 along the symmetry axis,

Hrot = −2A

[
1
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∂
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(
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, (2)
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is the (essentially self-adjoint) rotational Hamiltonian, and
A,C > 0 are the rotational constants.

Since the linear operator Hz : L2(SO(3)) → L2(SO(3))
is bounded, standard arguments (see for instance [1, Theorem
2.5]) guarantee the well-posedness of (1) for every locally
integrable control function u. We denote with (u, t) 7→ Υu

t

the propagator at time t of (1), i.e., for every t, the solution
ψ(t) at time t of (1) satisfies ψ(t) = Υu

t (ψ(0)).
An important question is the controllability of the above

system (1), that is the possibility to chose a suitable (time
variable) u : [0, T ]→ R that drives the system from a known
given state ψ(0) = ψ0 to (or close enough to) a given target
ψ(T ) = ψ1.

B. Contribution and main results
The contribution of this paper is a characterization of the

approximate controllability of the system (1). Our main result
is the following.

Theorem 1: (i) There exists a countable family (Hn)n∈N
of orthogonal closed infinite dimensional subspaces of
L2(SO(3)) such that, for every T > 0, for every u in
L1([0, T ],R), for every n in N, Υu

T (Hn) ⊂ Hn. More-
over, also the orthogonal complement G in L2(SO(3)) of
H :=

⊕
n∈N
Hn is invariant for the propagators of (1),

and the dynamics in G are completely determined by the
dynamics in H.

(ii) Denoting with pn the orthogonal projection of L2(SO(3))
ontoHn, for every ε > 0, and every ψ0, ψ1 inH such that
‖pn(ψ0)‖ = ‖pn(ψ1)‖ for all n ∈ N, there exist T > 0
and u ∈ L1([0, T ],R) such that ‖Υu

T (ψ0)− ψ1‖ < ε.
The first statement is indeed both an obstruction to control-

lability, since the norm of each Hn component of the wave
function is conserved for any choice of control, and a partial
obstruction to simultaneous controllability, since the dynamics
in G are related to the dynamics in H for any choice of
control (for a more detailed statement see Theorem 10(a)). The
second part of Theorem 1 states a simultaneous approximate
controllability result in H w.r.t. n, and may be refined in the
following way.

Proposition 2: In the second statement of Theorem 1, u
can be chosen to be analytic instead of L1 and the majoration
‖Υu

T (ψ0) − ψ1‖ < ε can be required to hold for the graph
norm of (Hrot)

k for any k in N.
Beside this theoretical result, we show with a numerical

example that the proof is constructive, as it furnishes a method
to obtain explicit control laws inducing a selective transfer
between eigenstates of the rotational Hamiltonian.



C. A brief survey of the literature

The study of the controllability properties of quantum
systems modelled through the bilinear Schrödinger equation
is a fundamental problem for applications in physics and
chemistry. Molecular systems are prototypes of degenerate
systems and have been investigated in theoretical physics
since the early days of quantum control [2]–[4], with well-
established experimental applications in quantum chemistry
[5] and recently theoretical ones in quantum computation [6].
For an overview on the controllability of molecular rotation,
its physical relevance, and its applications we refer also to [7].
In an abstract framework, one usually writes the dynamics as

iψ̇ = (H0 + uH1)ψ, (3)

where H0 and H1 are self-adjoint operators on some Hilbert
space, endowed with Hilbert product 〈·, ·〉. When the Hilbert
space is finite-dimensional, controllability is well-understood
in terms of Lie-algebraic conditions [8], [9]. When the di-
mension is infinite, the question of the controllability of
such quantum bilinear control systems raised much interest
in the last two decades, and has been attacked with various
techniques (see, e.g., [10], [11] for fixed point techniques, [12],
[13] for Lyapunov techniques or [14]–[16] for the geometric
techniques similar to our approach in this work).

1) Obstruction to (simultaneous) controllability: An obvious
obstruction to the controllability of system (3) is the stability of
strict closed Hilbert subspaces by H0 and H1. This situation
has already been noted in [17]. A less obvious obstruction
(an infinite-dim. version of [18, Lemma 3]) is the existence
of isomorphisms between decoupled dynamics that makes
them related, hence not simultaneously controllable: this is
the content of the second statement of Theorem 1(i).

2) Averaging and selective excitation: Averaging is a stan-
dard technique to induce a rotation on the subspace spanned
by two eigensates φ1 and φ2 of H0, associated with simple
eigenvalues λ1 and λ2 by using a periodic control with period

2π

|λ1 − λ2|
[19]. Under generic conditions, this technique is

extremely efficient in large time. The main difficulty in con-
trolling degenerate quantum systems is that a periodic control
pulse that oscillates in resonance with a spectral gap |λ1−λ2|
of the drift does not select in general only one transition
between two corresponding eigenstates, as it excites transitions
between all couples of eigenstates each belonging to one of
the two addressed degenerate eigenspaces. To overcome this
difficulty, we use a perturbative approach (as in [15], [20]–
[22]), replacing u by u(t) = µ + v(t) for a suitable constant
µ, and taking v to be periodic in resonance with the spectral
gaps of H0 + µH1. This idea of lifting spectral degeneracies
has a long history in spectroscopy experiments [23].

Alternatively, the procedure of breaking coupled rotational
transitions is often conducted by physicists by means of several
orthogonal controls (so-called multi-polarization, see e.g. [24],
[25] for controllability results on finite dimensional modal
truncations with three orthogonal control fields). The con-
trollability of the corresponding PDEs (with three orthogonal
control fields) has been established in [17], [26], [27].

3) Novelty of the contribution: This work is the first one deal-
ing with the controllability of the orientation of the symmetric
molecule with one control field only. We give a complete
description of the approximate controllability properties of this
system. This settles an open question asked in Section II-E
of [7]. The techniques we use are proved effective with a
numerical example.

D. Content of the paper
Section II is devoted to the proof of Theorem 1. A general

abstract controllability test in presented in Section II-B, and
applied to our example in Section II-C. Section III presents
the result of numerical simulations.

II. SIMULTANEOUS APPROXIMATE CONTROLLABILITY : A
PERTURBATIVE APPROACH

A. Non-resonant chains of connectedness
Definition 3: Let m ∈ N. A couple (Am, Bm) of linear

operators on an infinite-dim. Hilbert space Hm satisfies A if
(i) Am (with domain D(Am)) is a skew-adjoint unbounded

operator, with discrete simple spectrum (that is, every
point in the spectrum is a purely imaginary eigenvalue
with multiplicity one);

(ii) Bm is a skew-adjoint bounded operator.
We consider the family of systems

ψ̇ = (Am + uBm)ψ, ψ ∈ Hm, (4)

m ∈ N, where Hm is an infinite-dimensional Hilbert space,
u ∈ L1

loc(R,R), and (Am, Bm) is supposed to satisfy A for
every m ∈ N. We denote by Υu,m

t the propagator of (4) (and
we shall drop the dependence of m when it is applied to an
initial datum in Hm since there is no ambiguity).

Definition 4: System (4) is approximately controllable if for
every ψ0, ψ1 in Hm with ‖ψ0‖ = ‖ψ1‖, and every ε > 0 there
exist T ≥ 0 and u ∈ L1([0, T ],R) such that ‖Υu

T (ψ0)−ψ1‖ <
ε.
We denote the sets of eigenvalues and eigenfunctions of
Am, resp., by Λm := {λmj }j∈N and Φm := {φmj }j∈N, we
introduce the notation b(j,m),(j′,m) := 〈φmj , Bmφmj′ 〉, and the
set Ξm := {(j,m)}j∈N that labels the eigenfunctions of Am.

Definition 5: The operator Bm is said to be connected w.r.t.
Φm if for any couple of labels ρ, ξ ∈ Ξm there exists a finite
sequence {(ρ11, ρ12), . . . , (ρp1, ρ

p
2)} ⊂ Ξ2

m that connects them,
that is
• ρ11 = ρ and ρp2 = ξ;
• ρn2 = ρn+1

1 ,∀n = 1, . . . , p− 1;
• bρn1 ,ρn2 6= 0,∀n = 1, . . . , p.

If Bm is connected w.r.t. Φm, one can choose a chain of
connectedness Sm ⊂ Ξ2

m w.r.t. Φm, that is a sequence that
connects any couple of labels ρ, ξ ∈ Ξm.

Definition 6: A chain of connectedness Sm is said to be
non-resonant w.r.t. Φm if for any (ρ = (j,m), ξ = (j′,m)) ∈
Sm, one has |λmj −λmj′ | 6= |λml −λml′ | for all ((l,m), (l′,m)) ∈
Ξ2
m \ {(ρ, ξ), (ξ, ρ)} such that b(l,m),(l′,m) 6= 0.

The following result is the starting point of our analysis.
Theorem 7 ( [28]): Let m ∈ N. If (4) admits a non-

resonant chain of connectedness w.r.t. Φm, then it is approxi-
mately controllable.



B. A simultaneous approximate controllability test

We remark that in (4) the control function u does not depend
on m, meaning that our goal is to simultaneously control a
family of systems with the same external field.

Definition 8: The family of systems (4), m ∈ N, is si-
multaneously approximately controllable if, for every r ∈ N,
every ψ

mj
0 , ψ

mj
1 ∈ Hmj with ‖ψmj0 ‖ = ‖ψmj1 ‖, and every

ε > 0, there exist T ≥ 0 and u ∈ L1([0, T ],R) such that
‖Υu

T (ψ
mj
0 )− ψmj1 ‖ < ε, ∀j = 1, . . . , r.

Notice that the controllability of each single system does not
imply in general the simultaneous controllability of the family;
indeed, a part of it may not be simultaneously controllable
with only one external field. This is the case, e.g., for the
evolutions in Hm and Hm′ if Hm = Hm′ , Am = Am′ and
Bm = Bm′ for some m′ 6= m. When two spectral gaps
corresponding to two different drifts Am and Am′ , m 6= m′,
happen to be equal (that is, a spectral degeneracy appears in
the family of systems), the variation of the eigenvalues of Am
(resp. Am′ ) under the action of Bm (resp. Bm′ ), considered as
a perturbation, can lift such degeneracy and thus furnish the
simultaneous controllability in m and m′. This is the content
of the next result, where the variation is expanded up to the
second order w.r.t. the perturbation parameter.

Theorem 9: Suppose that for every m ∈ N system (4)
admits a non-resonant chain of connectedness Sm w.r.t. Φm
and either one of the following holds

(i) λmj −λmj′ = ±(λnl −λnl′) for some ((j,m), (j′,m)) ∈ Sm
and ((l, n), (l′, n)) ∈ Ξ2

n implies

b(j,m),(j,m) − b(j′,m),(j′,m)

6= ±
(
b(l,n),(l,n) − b(l′,n),(l′,n)

)
; (5)

(ii) λmj −λmj′ = ±(λnl −λnl′) and b(j,m),(j,m)−b(j′,m),(j′,m) =
±(b(l,n),(l,n) − b(l′,n),(l′,n)) for some ((j,m), (j′,m)) ∈
Sm and ((l, n), (l′, n)) ∈ Ξ2

n implies∑
k 6=j

|b(j,m),(k,m)|2

λmk − λmj
−
∑
k 6=j′

|b(j′,m),(k,m)|2

λmk − λmj′

6= ±

∑
k 6=l

|b(l,n),(k,n)|2

λnk − λnl
−
∑
k 6=l′

|b(l′,n),(k,n)|2

λnk − λnl′

 . (6)

Then, the family of systems (4), m ∈ N, is simultaneously
approximately controllable.

Proof: Step 1: If there are no degenerate transitions, that
is, if for all m,n ∈ N

|λmj − λmj′ | 6= |λnl − λnl′ | (7)

for all ((j,m), (j′,m)) ∈ Sm and all ((l, n), (l′, n)) ∈ Ξ2
n

such that b(l,n),(l′,n) 6= 0, then the family of systems (4),
m ∈ N, is simultaneously approximate controllable. Indeed,
by denoting for any m,N ∈ N

Σ(N)
m := {|λmj − λmj′ |, ((j,m), (j′,m)) ∈ Sm, j, j′ ≤ N}

the set of spectral gaps of the chain Sm which connect states
φmj , φ

m
j′ with j, j′ ≤ N , one has that for any m1, . . . ,mr,

r ∈ N, any σ ∈ Σ
(N)
m1 , and any τ, ε > 0, there exists a control

u ∈ L1([0, T ],R) such that [29, Prop. 4.1]

‖Υu,m1

T − eτEσ(Bm1 )‖L(H(N)
m1

,H(N)
m1

)
< ε (8)

‖Υu,mj
T − Id‖L(H(N)

mj
,H(N)
mj

)
< ε,∀j = 2, . . . , r (9)

where H(N)
m := span{φmj , j = 1, . . . , N}, ‖M‖L(H(N)

m ,H(N)
m )

denotes the operator norm of any matrix M : H(N)
m → H(N)

m

and the operator Eσ(Bm) is defined for every σ ≥ 0 as

〈φmj , Eσ(Bm)φmj′ 〉 =

{
〈φmj , Bmφmj′ 〉, if |λmj − λmj′ | = σ

0, if |λmj − λmj′ | 6= σ.

The existence of a control u that verifies (8) and (9) is
guaranteed by the fact that each Sm is non-resonant w.r.t.
Φm and by (7). Then, (8) and (9) imply the simultaneous
approximately controllability of the family of systems (4),
m ∈ N.
Step 2: If there are resonant transitions but (5) or (6) are
satisfied, we take a shifted control u(t) = v(t) + µ, obtaining

ψ̇ = (Am + µBm)ψ + vBmψ, ψ ∈ Hm. (10)

for µ > 0. Then, being Bm bounded, we have that [30]

d

dµ

∣∣∣
µ=0

λmj (µ) = b(j,m),(j,m),

d2

dµ2

∣∣∣
µ=0

λmj (µ) =
∑
k 6=j

|b(j,m),(k,m)|2

λmk − λmj
,

where {λmj (µ)}j∈N are the eigenvalues (analytic w.r.t. µ) of
Am + µBm. A 2nd order Taylor expansion then shows that

|λmj (µ)− λmj′ (µ)| 6= |λnl (µ)− λnl′(µ)|, for a.e. µ,

for all ((j,m), (j′,m)) ∈ Sm and all ((l, n), (l′, n)) ∈ Ξ2
n.

Also, 〈φmj (µ), Bmφ
m
j′ (µ)〉 6= 0 for a.e. µ if b(j,m),(j′,m) 6= 0,

where {φmj (µ)}j∈N are the eigenfunctions (analytic w.r.t. µ)
of Am + µBm. We can then apply Step 1 to the family of
systems (10), m ∈ N, by replacing any |λmj − λmj′ | ∈ Σ

(N)
m

with the corresponding |λmj (µ)− λmj′ (µ)|.

C. Proof of Theorem 1
In this section we apply Theorem 9 to the explicit phys-

ical system (1). Since Hrot : H2(SO(3)) → L2(SO(3))
is the Laplace-Beltrami operator of the compact mani-
fold SO(3) (endowed with the diagonal Riemannian metric
diag(A,A,C)), it has discrete spectrum. The spectral decom-
position of Hrot is explicit, given in terms of the Wigner
D-functions {Dk,m

j (α, β, γ) = ei(kγ+mα)dk,mj (β) | j ∈
N, k,m = −j, . . . , j}, where dk,mj solves a suitable Legendre
differential equation, and reads [31, Sec. 6]

HrotD
k,m
j = (Aj(j + 1)− (A− C)k2)Dk,m

j =: Ek,mj Dk,m
j ,
(11)

for quantum numbers j ∈ N, k,m = −j, . . . , j, which resp.
represent the angular momentum norm and components on the
moving and fixed z-axes (see [31, Fig. 10.1]). The eigenvalues
Ek,mj of Hrot are defined in (11): each Ek,mj has a 2-dim.
degeneracy w.r.t. k, and a (2j + 1)-dim. degeneracy w.r.t. the



angular momentum orientation m: the eigenspace of Ek,mj is
thus given by Ekj := span{Dk,m

j , D−k,mj }m=−j,...,j . Thanks
to the spectral theorem of unbounded self-adjoint operators,
one has the orthonormal decomposition of the ambient Hilbert
space L2(SO(3)) = span{Dk,m

j }j∈N,k,m=−j,...,j.. The selec-
tion rules for Hz w.r.t. the D-functions are [31, Table 2.1]

〈Dk,m
j , HzD

k′,m′

j′ 〉 = 0, if |j − j′| > 1, or k 6= k′, or m 6= m′,
(12)

ans its non-vanishing matrix elements are [31, Table 2.1]

〈Dk,m
j , iHzD

k,m
j 〉 = iδ

km

j(j + 1)
=: b(j,k,m),(j,k,m), (13)

〈Dk,m
j , iHzD

k,m
j+1〉 = iδ

[(j + 1)2 − k2]1/2[(j + 1)2−m2]1/2

−(j + 1)[(2j + 1)(2j + 3)]1/2

=: b(j,k,m),(j+1,k,m). (14)

For any (k,m) ∈ Z2, we consider the infinite-dim. closed sub-
space Hk,m := span{Dk,m

j | j ∈ N, j ≥ max{|m|, |k|}} and
the orthogonal projection p(k,m) : L2(SO(3)) → Hk,m. One
interprets the Hk,m as spaces where the angular momentum
components on the moving and fixed z-axes are fixed. Notice
that (Hrot|Hk,m , Hz|Hk,m) satisfies A for every (k,m) ∈ Z2.
Since

⊕
(k,m)∈Z2 Hk,m is dense in L2(SO(3)) and each Hk,m

is invariant for the propagators of (1) (cf. (12)), system (1) can
be seen as the family of systems

iψ̇ = (Hrot|Hk,m + uHz|Hk,m)ψ, ψ ∈ Hk,m, (15)

(k,m) ∈ Z2. We define the set N := {(k,m) ∈ Z × N |
|k| ≤ m}. The next result classifies which part of (1) is
simultaneously controllable (compare also with Fig. 1).

Theorem 10: (a) Related dynamics: Let (k,m) ∈ N ,
then the linear isomorphisms defined on the basis as

f(k,m),1 : Hk,m → H−k,−m
Dk,m
j 7→ D−k,−mj ,

f(t)(k,m),2 : Hk,m → Hm,k
Dk,m
j 7→ eit(A−C)(k2−m2)Dm,k

j ,

f(t)(k,m),3 : Hk,m → H−m,−k
Dk,m
j 7→ eit(A−C)(k2−m2)D−m,−kj ,

are such that

Υu
t ◦p(k,m) = f(t)−1(k,m),i ◦Υu

t ◦f(t)(k,m),i ◦p(k,m) (16)

for all t ∈ R, all i = 1, 2, 3, and all u ∈ L1
loc(R,R).

(b) Non-related dynamics: The family of systems (15),
(k,m) ∈ N , is simultaneously approximately control-
lable.
Proof: In order to prove (a), we first notice that

〈Dk,m
j , HzD

k,m
j+h〉 = 〈f(t)(k,m),iD

k,m
j , Hzf(t)(k,m),iD

k,m
j+h〉

for all h = 0, 1, j ≥ min{|k|,m}, t ∈ R and i = 1, 2, 3 (cf.
(13) and (14)). Also,

〈Dk,m
j , HrotD

k,m
j 〉 = 〈f(k,m),1D

k,m
j , Hrotf(k,m),1D

k,m
j 〉

for all j ≥ min{k, |m|} (cf. (11)), which implies (16) for
i = 1. Finally, for i = 2, 3,

〈Dk,m
j , HrotD

k,m
j 〉=〈f(t)(k,m),iD

k,m
j , Hrotf(t)(k,m),iD

k,m
j 〉

− (A− C)(k2 −m2)

for all j ≥ min{|k|,m} and t ∈ R (cf. (11)), which implies
(16) for i = 2, 3 and concludes the proof of (a).

The proof of part (b) is an application of Theorem 9: for any
(k,m) ∈ N we consider the chain of connectedness S(k,m) :=
{((j, k,m), (j + 1, k,m)), j ≥ min{|k|,m}}, which is non-
resonant w.r.t. the eigenbasis {Dj

k,m | j ≥ min{k, |m|}} of
Hrot|Hk,m . We check the resonances w.r.t. the eigenbasis of
Hrot|Hk′,m′ for (k′,m′) 6= (k,m), by using (11) and (12):
since Ek,mj+1 − E

k,m
j = 2A(j + 1), then

Ek,mj+1 − E
k,m
j = Ek

′,m′

j′+1 − E
k′,m′

j′

if and only if j′ = j and k′,m′ = −j, . . . , j. Since
b(j+1,k,m),(j+1,k,m) − b(j,k,m),(j,k,m) = −2δ km

j(j+1)(j+2) (cf.
(13)), then

b(j+1,k,m),(j+1,k,m) − b(j,k,m),(j,k,m)

=b(j+1,k′,m′),(j+1,k′,m′) − b(j,k′,m′),(j,k′,m′)

if and only if k′m′ = km. Hence, by applying Theorem 9(i),
we conclude that the family of systems (15) with (k,m) ∈ N
and km 6= k′m′ is simultaneously approximately controllable.
When km = k′m′, we consider the second order condition:
thanks to (12), this is equivalent to solve the equality∑

±

|b(j+1,k,m),(j+1±1,k,m)|2

E0,m
j+1±1 − E

0,m
j+1

−
∑
±

|b(j,k,m),(j±1,k,m)|2

E0,m
j±1 − E

0,m
j

=
∑
±

|b(j+1,k,m′),(j+1±1,k,m′)|2

E0,m′

j+1±1 − E
0,m′

j+1

−
∑
±

|b(j,k,m′),(j±1,k,m′)|2

E0,m′

j±1 − E
0,m′

j

,

which reads Q(j)(m′2 +k′2−m2−k2) = 0 (cf. (14)), where
Q(j) is a quotient of polynomials in j that has no positive
integer zeros nor poles, which implies (k′,m′) = (k,m),
under the assumptions km = k′m′, (k,m), (k′,m′) ∈ N . By
applying Theorem 9(ii), we conclude that the family of sys-
tems (15) with (k,m) ∈ N is simultaneously approximately
controllable.

Remark 11: By noticing that D0,m
j (α, β, γ) = Y mj (α, β),

where Y mj are the spherical harmonics, that is, the eigenfunc-
tions of the Laplace-Beltrami operator ∆S2 of the 2-sphere
S2 ⊂ R3, one has that L2(S2) = span{D0,m

j | j ∈ N,m =
−j . . . , j} and Hrot|⊕

m∈ZH0,m
= Hrot|L2(S2) = −2A∆S2 .

Hence, the case k = 0 in Theorem 10 classifies the simultane-
ous approximate controllability w.r.t. the orientational quantum
number m of the Schrödinger equation

iψ̇ = (−∆S2 − u δ cos(β))ψ, ψ ∈ L2(S2),

of a rotating linear molecule (compare also with Fig. 1(a)).
To conclude the proof of Theorem 1, we consider the lexico-
graphic ordering l : Z2 → N and set Hl(k,m) := Hk,m with
corresponding orthogonal projection pl(k,m) := p(k,m) for
any (k,m) ∈ Z2; hence, (12) and Theorem 10(a) imply that
H :=

⊕
(k,m)∈N Hk,m and G :=

⊕
(k,m)∈Z2\N Hk,m satisfy



the statement (i) of Theorem 1. Finally, let ψ0, ψ1 be in H
and such that ‖pn(ψ0)‖ = ‖pn(ψ1)‖ for all n ∈ N. For ε > 0
let r ∈ N be such that ‖ψ0 −

⊕r
i=0 pi(ψ0)‖ < ε/3, ‖ψ1 −⊕r

i=0 pi(ψ1)‖ < ε/3. By Theorem 10(b), there exists u ∈
L1([0, T ]) such that ‖Υu

T (
⊕r

i=0 pi(ψ0)) −
⊕r

i=0 pi(ψ1)‖ <
ε/3. By triangular inequality, we have that ‖Υu

T (ψ0)−ψ1‖ <
ε.
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Fig. 1. Hz acting on the spectral graphs of: (a) Hrot|⊕
m∈ZH0,m

; (b)
Hrot|⊕

m∈ZH1,m
; (c) Hrot|⊕

m∈ZH−1,m
. Arrows with same num-

bers correspond to related transitions; arrows with different numbers
correspond to simultaneously controllable transitions.

D. Proof of Proposition 2
Since the restriction of Hz is bounded from D(Hk

rot) to
itself for every integer k in N, the system (iHrot, iHz) is
indeed k-mildly coupled for every k in the sense of Definition
5 in [32]. Proposition 2 is a consequence of the density of
polynoms in L1([0, T ],R) for any T > 0 and Proposition 23
in [32].

III. NUMERICAL SIMULATIONS OF ORIENTATIONAL
SELECTIVE TRANSFER

A. Error estimate for finite-dimensional approximations
In this section we formulate an estimate (which we use in

Sec. III-B) of the error made by replacing the original system
by one of its Galerkin approximations in the spirit of [33].

Definition 12: The operator Bm is said to be tri-diagonal
w.r.t. Φm if, for any j, j′ ∈ N, |j − j′| > 1 implies
〈φmj , Bmφmj′ 〉 = 0.
Consider the orthogonal projection πmN : Hm → H(N)

m :=
span{φm1 , . . . , φmN} on the first N eigenfunctions of Am and
denote by Xu,m

(N) (t, s) (for brevity Xu
(N)(t, s) when it is applied

to an initial datum in H(N)
m ) the propagator of

ẋ = (A(N)
m + uB(N)

m )x, x ∈ H(N)
m
∼= CN , (17)

where A(N)
m = πmNAmπ

m
N , B

(N)
m = πmNBmπ

m
N . System (17) is

usually called the N -dimensional Galerkin approximation of
(4).

Proposition 13: Let Bm be tri-diagonal w.r.t. Φm. Then,
for every ψ0 ∈ Hm, N1, N ∈ N with N1 ≤ N and u ∈
L1
loc(R,R),∥∥∥πmN1

Υu
t (ψ0)− πmN1

Xu
(N)(t, 0)πmNψ0

∥∥∥ (18)

≤ ‖u‖L1([0,t])|b(N,m),(N+1,m)| sup
s∈[0,t]

∥∥∥πmN1
Xu

(N)(t, s)φ
m
N

∥∥∥ .
Proof: We have

d

dt
πmNΥu

t (ψ0) = (A(N)
m + uB(N)

m )πmNΥu
t (ψ0)

+ uπmNBm(Id− πmN )Υu
t (ψ0).

We integrate by using the variation of constants formula

πmNΥu
t (ψ0) = Xu

(N)(t, 0)πmNψ0

+

∫ t

0

u(s)Xu
(N)(t, s)π

m
NBm(Id− πmN )Υu

s (ψ0)ds,

and then we project on a subspace of dimension N1 ≤ N

πmN1
Υu
t (ψ0) = πmN1

Xu
(N)(t, 0)πmNψ0

+

∫ t

0

u(s)πmN1
Xu

(N)(t, s)π
m
NBm(Id− πmN )Υu

s (ψ0)ds.

Thanks to the tri-diagonal structure, we have

πmNBm(I− πmN )Υu
s (ψ0)=b(N,m),(N+1,m)〈φmN+1,Υ

u
s (ψ0)〉φmN ,

and the thesis follows.
Remark 14: For applications, N and N1 are the dimensions

of the spaces, respectively, where the numerical simulation is
performed and where the transfer approximately happens.

B. Construction of the control laws and results
In this final section, considering A = 1, C = 2 in (2), we

numerically simulate the transfer between the two rotational
states

ψ1 =
1√
3

(D1,−1
1 +D1,0

1 +D1,1
1 ),

ψ2 =
1√
3

(D1,−1
1 +D1,0

1 +D1,1
2 ).

In the spirit of [19], we consider the control function

u(t) = 1 +
1

25

(
2.38 sin(3.71 t)− 4.42 sin(9.63 t) (19)

+ 7.13 sin(17.59 t) + 0.01 sin(5.91 t)− 0.02 sin(13.88 t)
)
,
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Fig. 2. Top. Evolution with respect to time of the components moduli
|〈D1,1

1 ,Υu
t (D

1,1
1 )〉| (in blue) and |〈D1,1

2 ,Υu
t (D

1,1
1 )〉| (in red). The

control law u is given by (19). The maximum of the red curve 0.999 is
obtained at time T = 66.889.
Bottom. Evolution with respect to time of the component
modulus |〈D1,−1

1 ,Υu
t (D

1,−1
1 )〉|. At time T = 66.889,

|〈D1,−1
1 ,Υu

t (D
1,−1
1 )〉| > 0.985. The picture is similar for

|〈D1,0
1 ,Υu

t (D
1,0
1 )〉|.

which is a suitable linear combination of periodic functions
that oscillate in resonance with the spectral gaps of the per-
turbed drift (Hrot+Hz)|H1,1

corresponding to (k,m) = (1, 1).
Denoting by R the matrix of the target rotation, the coefficients
in (19) are obtained as the ratio between the off-diagonal
entries of the matrices logR and Hz , both expressed in a
basis where Hrot +Hz is diagonal.

We use the control law (19) on subspaces spanned by the
first N = 10 energy levels of the spaces H1,m, m = −1, 0, 1
(with error less than 10−6 on the first N1 = 2, by Prop. 13).
The results are presented on Fig. 2. The Octave script used
for the computation is available on the webpage of this paper.

IV. CONCLUSION

We have exposed the controllability properties of the PDE
of a symmetric rotor driven by a single control. As a byprod-
uct, we have shown the control mechanism to lift the m-
degeneracies in rotational spectra of symmetric rotors with the
application of an electric field. The result is constructive, but
further work is needed to optimize the choice of the parameters
(especially the shift of the drift) in order to minimize the
controllability time.

REFERENCES

[1] J. M. Ball, J. E. Marsden, and M. Slemrod, “Controllability for dis-
tributed bilinear systems,” SIAM J. Control Optim., vol. 20, no. 4, pp.
575–597, 1982.

[2] R. Judson, K. Lehmann, H. Rabitz, and W. Warren, “Optimal design of
external fields for controlling molecular motion: application to rotation,”
Journal of Molecular Structure, vol. 223, pp. 425 – 456, 1990.

[3] V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, and A. Peirce,
“Controllability of molecular systems,” Phys. Rev. A, vol. 51, pp. 960–
966, Feb 1995.

[4] G. Turinici and H. Rabitz, “Optimally controlling the internal dynamics
of a randomly oriented ensemble of molecules,” Physical Review A,
vol. 70, no. 6, pp. 063 412–1–063 412–7, 2004.

[5] D. Patterson, M. Schnell, and J. M. Doyle, “Enantiomer-specific detec-
tion of chiral molecules via microwave spectroscopy,” Nature, vol. 497,
pp. 475–477, 2013.

[6] V. V. Albert, J. P. Covey, and J. Preskill, “Robust encoding of a qubit
in a molecule,” Phys. Rev. X, vol. 10, p. 031050, Sep 2020.

[7] C. P. Koch, M. Lemeshko, and D. Sugny, “Quantum control of molecular
rotation,” Rev. Mod. Phys., vol. 91, p. 035005, Sep 2019.

[8] V. Jurdjevic and H. J. Sussmann, “Control systems on Lie groups,” J.
Differential Equations, vol. 12, pp. 313–329, 1972.

[9] S. G. Schirmer, H. Fu, and A. I. Solomon, “Complete controllability of
quantum systems,” Phys. Rev. A, vol. 63, p. 063410, May 2001.

[10] K. Beauchard and J.-M. Coron, “Controllability of a quantum particle in
a moving potential well,” J. Funct. Anal., vol. 232, no. 2, pp. 328–389,
2006.

[11] K. Beauchard and C. Laurent, “Local controllability of 1D linear and
nonlinear Schrödinger equations with bilinear control,” J. Math. Pures
Appl. (9), vol. 94, no. 5, pp. 520–554, 2010.

[12] M. Mirrahimi, “Lyapunov control of a quantum particle in a decaying
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