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We consider the Schr ödinger partial differential equation of a rotating symmetric rigid molecule (symmetric rotor) driven by a z-linearly polarized electric field, as prototype of degenerate infinite-dimensional bilinear control system. By introducing an abstract perturbative criterium, we classify its simultaneous approximate controllability; based on this insight, we numerically perform an orientational selective transfer of rotational population.

I. INTRODUCTION

A. Physical model T HE attitude of a rigid body is a point in the Lie group of rotations SO(3), parametrized by the Euler's angles (α, β, γ) ∈ [0, 2π) × [0, π] × [0, 2π). At the quantum level, the state of the system is decribed by the so-called wave function ψ : SO(3) → C whose square modulus |ψ| 2 can be interpreted as a probability density. Throughout the paper, we use the Haar volume of SO(3), vol Haar = 1 8 dαdγ sin(β)dβ in Euler coordinates, as reference measure without further notice and we require that ψ belongs to the unit sphere of the set L 2 (SO(3)) of square integrable (for the Haar volume) complex functions on SO(3), equipped with its natural L 2 norm.

When submitted to an external z-linearly polarized electric field of (variable) real intensity u, the dynamics of the wave function ψ is given by the bilinear Schrödinger equation

i ψ = (H rot + uH z )ψ, ψ ∈ L 2 (SO(3)), (1) 
where H z = -δ cos(β) is the interaction Hamiltonian between the z-polarization of the electric field and the electric dipole moment δ > 0 along the symmetry axis,

H rot = -2A 1 sin(β) ∂ ∂β sin(β) ∂ ∂β + 1 sin 2 (β) ∂ 2 ∂α 2 + ∂ 2 ∂γ 2 -2 cos(β) ∂ 2 ∂α∂γ + (A -C) ∂ 2 ∂γ 2 , (2) 
is the (essentially self-adjoint) rotational Hamiltonian, and A, C > 0 are the rotational constants.

Since the linear operator H z : L 2 (SO(3)) → L 2 (SO(3)) is bounded, standard arguments (see for instance [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]Theorem 2.5]) guarantee the well-posedness of (1) for every locally integrable control function u. We denote with (u, t) → Υ u t the propagator at time t of (1), i.e., for every t, the solution ψ(t) at time t of (1) satisfies ψ(t) = Υ u t (ψ(0)). An important question is the controllability of the above system [START_REF] Ball | Controllability for distributed bilinear systems[END_REF], that is the possibility to chose a suitable (time variable) u : [0, T ] → R that drives the system from a known given state ψ(0) = ψ 0 to (or close enough to) a given target ψ(T ) = ψ 1 .

B. Contribution and main results

The contribution of this paper is a characterization of the approximate controllability of the system [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]. Our main result is the following.

Theorem 1: (i) There exists a countable family (H n ) n∈N of orthogonal closed infinite dimensional subspaces of L 2 (SO(3)) such that, for every T > 0, for every u in L 1 ([0, T ], R), for every n in N, Υ u T (H n ) ⊂ H n . Moreover, also the orthogonal complement G in L 2 (SO(3)) of H := n∈N H n is invariant for the propagators of (1), and the dynamics in G are completely determined by the dynamics in H. (ii) Denoting with p n the orthogonal projection of L 2 (SO(3)) onto H n , for every > 0, and every ψ 0 , ψ 1 in H such that p n (ψ 0 ) = p n (ψ 1 ) for all n ∈ N, there exist T > 0

and u ∈ L 1 ([0, T ], R) such that Υ u T (ψ 0 ) -ψ 1 <
. The first statement is indeed both an obstruction to controllability, since the norm of each H n component of the wave function is conserved for any choice of control, and a partial obstruction to simultaneous controllability, since the dynamics in G are related to the dynamics in H for any choice of control (for a more detailed statement see Theorem 10(a)). The second part of Theorem 1 states a simultaneous approximate controllability result in H w.r.t. n, and may be refined in the following way.

Proposition 2: In the second statement of Theorem 1, u can be chosen to be analytic instead of L 1 and the majoration Υ u T (ψ 0 ) -ψ 1 < can be required to hold for the graph norm of (H rot ) k for any k in N.

Beside this theoretical result, we show with a numerical example that the proof is constructive, as it furnishes a method to obtain explicit control laws inducing a selective transfer between eigenstates of the rotational Hamiltonian.

C. A brief survey of the literature

The study of the controllability properties of quantum systems modelled through the bilinear Schrödinger equation is a fundamental problem for applications in physics and chemistry. Molecular systems are prototypes of degenerate systems and have been investigated in theoretical physics since the early days of quantum control [START_REF] Judson | Optimal design of external fields for controlling molecular motion: application to rotation[END_REF]- [START_REF] Turinici | Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules[END_REF], with wellestablished experimental applications in quantum chemistry [START_REF] Patterson | Enantiomer-specific detection of chiral molecules via microwave spectroscopy[END_REF] and recently theoretical ones in quantum computation [START_REF] Albert | Robust encoding of a qubit in a molecule[END_REF]. For an overview on the controllability of molecular rotation, its physical relevance, and its applications we refer also to [START_REF] Koch | Quantum control of molecular rotation[END_REF]. In an abstract framework, one usually writes the dynamics as

i ψ = (H 0 + uH 1 )ψ, (3) 
where H 0 and H 1 are self-adjoint operators on some Hilbert space, endowed with Hilbert product •, • . When the Hilbert space is finite-dimensional, controllability is well-understood in terms of Lie-algebraic conditions [START_REF] Jurdjevic | Control systems on Lie groups[END_REF], [START_REF] Schirmer | Complete controllability of quantum systems[END_REF]. When the dimension is infinite, the question of the controllability of such quantum bilinear control systems raised much interest in the last two decades, and has been attacked with various techniques (see, e.g., [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], [START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF] for fixed point techniques, [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF], [START_REF] Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF] for Lyapunov techniques or [START_REF] Bloch | Finite controllability of infinite-dimensional quantum systems[END_REF]- [START_REF] Keyl | Controlling several atoms in a cavity[END_REF] for the geometric techniques similar to our approach in this work).

1) Obstruction to (simultaneous) controllability: An obvious obstruction to the controllability of system (3) is the stability of strict closed Hilbert subspaces by H 0 and H 1 . This situation has already been noted in [START_REF] Boscain | Classical and quantum controllability of a rotating symmetric molecule[END_REF]. A less obvious obstruction (an infinite-dim. version of [START_REF] Belhadj | Ensemble controllability and discrimination of perturbed bilinear control systems on connected, simple, compact Lie groups[END_REF]Lemma 3]) is the existence of isomorphisms between decoupled dynamics that makes them related, hence not simultaneously controllable: this is the content of the second statement of Theorem 1(i).

2) Averaging and selective excitation: Averaging is a standard technique to induce a rotation on the subspace spanned by two eigensates φ 1 and φ 2 of H 0 , associated with simple eigenvalues λ 1 and λ 2 by using a periodic control with period 2π |λ 1 -λ 2 | [START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF]. Under generic conditions, this technique is extremely efficient in large time. The main difficulty in controlling degenerate quantum systems is that a periodic control pulse that oscillates in resonance with a spectral gap |λ 1 -λ 2 | of the drift does not select in general only one transition between two corresponding eigenstates, as it excites transitions between all couples of eigenstates each belonging to one of the two addressed degenerate eigenspaces. To overcome this difficulty, we use a perturbative approach (as in [START_REF] Chambrion | Controllability of the discrete-spectrum Schrödinger equation driven by an external field[END_REF], [START_REF] Boscain | On the control of spin-boson systems[END_REF]- [START_REF] Zhang | Complete controllability of finite quantum systems with twofold energy level degeneracy[END_REF]), replacing u by u(t) = µ + v(t) for a suitable constant µ, and taking v to be periodic in resonance with the spectral gaps of H 0 + µH 1 . This idea of lifting spectral degeneracies has a long history in spectroscopy experiments [START_REF] Dakin | Resolution of a rotational line of the OCS molecule and its Stark effect[END_REF].

Alternatively, the procedure of breaking coupled rotational transitions is often conducted by physicists by means of several orthogonal controls (so-called multi-polarization, see e.g. [START_REF] Turinici | Multi-polarization quantum control of rotational motion through dipole coupling[END_REF], [START_REF] Leibscher | Complete controllability despite degeneracy: Quantum control of enantiomer-specific state transfer in chiral molecules[END_REF] for controllability results on finite dimensional modal truncations with three orthogonal control fields). The controllability of the corresponding PDEs (with three orthogonal control fields) has been established in [START_REF] Boscain | Classical and quantum controllability of a rotating symmetric molecule[END_REF], [START_REF] Boscain | Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum[END_REF], [START_REF] Pozzoli | Classical and quantum controllability of a rotating asymmetric molecule[END_REF].

3) Novelty of the contribution: This work is the first one dealing with the controllability of the orientation of the symmetric molecule with one control field only. We give a complete description of the approximate controllability properties of this system. This settles an open question asked in Section II-E of [START_REF] Koch | Quantum control of molecular rotation[END_REF]. The techniques we use are proved effective with a numerical example.

D. Content of the paper

Section II is devoted to the proof of Theorem 1. A general abstract controllability test in presented in Section II-B, and applied to our example in Section II-C. Section III presents the result of numerical simulations.

II. SIMULTANEOUS APPROXIMATE CONTROLLABILITY : A PERTURBATIVE APPROACH

A. Non-resonant chains of connectedness

Definition 3: Let m ∈ N. A couple (A m , B m ) of linear operators on an infinite-dim. Hilbert space H m satisfies A if (i) A m (with domain D(A m )
) is a skew-adjoint unbounded operator, with discrete simple spectrum (that is, every point in the spectrum is a purely imaginary eigenvalue with multiplicity one); (ii) B m is a skew-adjoint bounded operator. We consider the family of systems

ψ = (A m + uB m )ψ, ψ ∈ H m , (4) 
m ∈ N, where H m is an infinite-dimensional Hilbert space, u ∈ L 1 loc (R, R), and (A m , B m ) is supposed to satisfy A for every m ∈ N. We denote by Υ u,m t the propagator of (4) (and we shall drop the dependence of m when it is applied to an initial datum in H m since there is no ambiguity).

Definition 4: System ( 4) is approximately controllable if for every ψ 0 , ψ 1 in H m with ψ 0 = ψ 1 , and every > 0 there exist T ≥ 0 and u

∈ L 1 ([0, T ], R) such that Υ u T (ψ 0 )-ψ 1 < .
We denote the sets of eigenvalues and eigenfunctions of A m , resp., by Λ m := {λ m j } j∈N and Φ m := {φ m j } j∈N , we introduce the notation b (j,m),(j ,m) := φ m j , B m φ m j , and the set Ξ m := {(j, m)} j∈N that labels the eigenfunctions of A m .

Definition 5: The operator B m is said to be connected w.r.t. Φ m if for any couple of labels ρ, ξ ∈ Ξ m there exists a finite sequence

{(ρ 1 1 , ρ 1 2 ), . . . , (ρ p 1 , ρ p 2 )} ⊂ Ξ 2 m that connects them, that is • ρ 1 1 = ρ and ρ p 2 = ξ; • ρ n 2 = ρ n+1 1 , ∀n = 1, . . . , p -1; • b ρ n 1 ,ρ n 2 = 0, ∀n = 1, . . . , p. If B m is connected w.r.t. Φ m , one can choose a chain of connectedness S m ⊂ Ξ 2 m w.r.t. Φ m , that is a sequence that connects any couple of labels ρ, ξ ∈ Ξ m . Definition 6: A chain of connectedness S m is said to be non-resonant w.r.t. Φ m if for any (ρ = (j, m), ξ = (j , m)) ∈ S m , one has |λ m j -λ m j | = |λ m l -λ m l | for all ((l, m), (l , m)) ∈ Ξ 2 m \ {(ρ, ξ), (ξ, ρ)} such that b (l,m),(l ,m) = 0.
The following result is the starting point of our analysis.

Theorem 7 ( [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF]): Let m ∈ N. If (4) admits a nonresonant chain of connectedness w.r.t. Φ m , then it is approximately controllable.

B. A simultaneous approximate controllability test

We remark that in (4) the control function u does not depend on m, meaning that our goal is to simultaneously control a family of systems with the same external field.

Definition 8: The family of systems (4), m ∈ N, is simultaneously approximately controllable if, for every r ∈ N, every

ψ mj 0 , ψ mj 1 ∈ H mj with ψ mj 0 = ψ mj 1
, and every > 0, there exist T ≥ 0 and u

∈ L 1 ([0, T ], R) such that Υ u T (ψ mj 0 ) -ψ mj 1
< , ∀j = 1, . . . , r. Notice that the controllability of each single system does not imply in general the simultaneous controllability of the family; indeed, a part of it may not be simultaneously controllable with only one external field. This is the case, e.g., for the evolutions in

H m and H m if H m = H m , A m = A m and B m = B m for some m = m.
When two spectral gaps corresponding to two different drifts A m and A m , m = m , happen to be equal (that is, a spectral degeneracy appears in the family of systems), the variation of the eigenvalues of A m (resp. A m ) under the action of B m (resp. B m ), considered as a perturbation, can lift such degeneracy and thus furnish the simultaneous controllability in m and m . This is the content of the next result, where the variation is expanded up to the second order w.r.t. the perturbation parameter.

Theorem 9: Suppose that for every m ∈ N system (4) admits a non-resonant chain of connectedness S m w.r.t. Φ m and either one of the following holds

(i) λ m j -λ m j = ±(λ n l -λ n l ) for some ((j, m), (j , m)) ∈ S m and ((l, n), (l , n)) Ξ 2 n implies b (j,m),(j,m) -b (j ,m),(j ,m) = ± b (l,n),(l,n) -b (l ,n),(l ,n) ; (5) 
(ii) λ m j -λ m j = ±(λ n l -λ n l ) and b (j,m),(j,m) -b (j ,m),(j ,m) = ±(b (l,n),(l,n) -b (l ,n),(l ,n) ) for some ((j, m), (j , m)) ∈ S m and ((l, n), (l , n)) ∈ Ξ 2 n implies k =j |b (j,m),(k,m) | 2 λ m k -λ m j - k =j |b (j ,m),(k,m) | 2 λ m k -λ m j = ±   k =l |b (l,n),(k,n) | 2 λ n k -λ n l - k =l |b (l ,n),(k,n) | 2 λ n k -λ n l   . (6)
Then, the family of systems (4), m ∈ N, is simultaneously approximately controllable. Proof:

Step 1: If there are no degenerate transitions, that is, if for all m, n ∈ N

|λ m j -λ m j | = |λ n l -λ n l | (7) 
for all ((j, m), (j , m)) ∈ S m and all ((l, n), (l , n)) ∈ Ξ 2 n such that b (l,n),(l ,n) = 0, then the family of systems (4), m ∈ N, is simultaneously approximate controllable. Indeed, by denoting for any m, N ∈ N

Σ (N ) m := {|λ m j -λ m j |, ((j, m), (j , m)) ∈ S m , j, j ≤ N }
the set of spectral gaps of the chain S m which connect states φ m j , φ m j with j, j ≤ N , one has that for any m 1 , . . . , m r ,

r ∈ N, any σ ∈ Σ (N )
m1 , and any τ, > 0, there exists a control

u ∈ L 1 ([0, T ], R) such that [29, Prop. 4.1] Υ u,m1 T -e τ Eσ(Bm 1 ) L(H (N ) m 1 ,H (N ) m 1 ) < (8) Υ u,mj T -Id L(H (N ) m j ,H (N ) m j ) < , ∀j = 2, . . . , r (9) 
where

H (N ) m := span{φ m j , j = 1, . . . , N }, M L(H (N ) m ,H (N ) m )
denotes the operator norm of any matrix M :

H (N ) m → H (N ) m
and the operator E σ (B m ) is defined for every σ ≥ 0 as

φ m j , E σ (B m )φ m j = φ m j , B m φ m j , if |λ m j -λ m j | = σ 0, if |λ m j -λ m j | = σ.
The existence of a control u that verifies (8) and ( 9) is guaranteed by the fact that each S m is non-resonant w.r.t. Φ m and by [START_REF] Koch | Quantum control of molecular rotation[END_REF]. Then, ( 8) and ( 9) imply the simultaneous approximately controllability of the family of systems (4), m ∈ N.

Step 2: If there are resonant transitions but ( 5) or ( 6) are satisfied, we take a shifted control u(t) = v(t) + µ, obtaining

ψ = (A m + µB m )ψ + vB m ψ, ψ ∈ H m . ( 10 
)
for µ > 0. Then, being B m bounded, we have that [START_REF] Kato | Perturbation theory for linear operators[END_REF] 

d dµ µ=0 λ m j (µ) = b (j,m),(j,m) , d 2 dµ 2 µ=0 λ m j (µ) = k =j |b (j,m),(k,m) | 2 λ m k -λ m j ,
where {λ m j (µ)} j∈N are the eigenvalues (analytic w.r.t. µ) of A m + µB m . A 2 nd order Taylor expansion then shows that |λ m j (µ) -λ m j (µ)| = |λ n l (µ) -λ n l (µ)|, for a.e. µ, for all ((j, m), (j , m)) ∈ S m and all ((l, n), (l , n)) ∈ Ξ 2 n . Also, φ m j (µ), B m φ m j (µ) = 0 for a.e. µ if b (j,m),(j ,m) = 0, where {φ m j (µ)} j∈N are the eigenfunctions (analytic w.r.t. µ) of A m + µB m . We can then apply Step 1 to the family of systems [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], m ∈ N, by replacing any

|λ m j -λ m j | ∈ Σ (N ) m
with the corresponding |λ m j (µ) -λ m j (µ)|.

C. Proof of Theorem 1

In this section we apply Theorem 9 to the explicit physical system [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]. Since 

H rot D k,m j = (Aj(j + 1) -(A -C)k 2 )D k,m j =: E k,m j D k,m j , (11) 
for quantum numbers j ∈ N, k, m = -j, . . . , j, which resp. represent the angular momentum norm and components on the moving and fixed z-axes (see [START_REF] Gordy | Microwave molecular spectra, ser. Techniques of chemistry[END_REF]Fig. 10.1]). The eigenvalues E k,m j of H rot are defined in [START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF]: each E k,m j has a 2-dim. degeneracy w.r.t. k, and a (2j + 1)-dim. degeneracy w.r.t. the angular momentum orientation m: the eigenspace of E k,m j is thus given by E k j := span{D k,m j , D -k,m j } m=-j,...,j . Thanks to the spectral theorem of unbounded self-adjoint operators, one has the orthonormal decomposition of the ambient Hilbert space L 2 (SO(3)) = span{D k,m j } j∈N,k,m=-j,...,j. . The selection rules for H z w.r.t. the D-functions are [31, Table 2.1]

D k,m j , H z D k ,m j = 0, if |j -j | > 1, or k = k , or m = m , (12) 
ans its non-vanishing matrix elements are [31, Table 2.1]

D k,m j , iH z D k,m j = iδ km j(j + 1) =: b (j,k,m),(j,k,m) , (13) 
D k,m j , iH z D k,m j+1 = iδ [(j + 1) 2 -k 2 ] 1/2 [(j + 1) 2 -m 2 ] 1/2 -(j + 1)[(2j + 1)(2j + 3)] 1/2 =: b (j,k,m),(j+1,k,m) . ( 14 
)
For any (k, m) ∈ Z 2 , we consider the infinite-dim. closed subspace H k,m := span{D k,m j | j ∈ N, j ≥ max{|m|, |k|}} and the orthogonal projection p (k,m) : L 2 (SO( 3)) → H k,m . One interprets the H k,m as spaces where angular momentum components on the moving and fixed z-axes are fixed. Notice that 3)) and each H k,m is invariant for the propagators of (1) (cf. ( 12)), system (1) can be seen as the family of systems

(H rot | H k,m , H z | H k,m ) satisfies A for every (k, m) ∈ Z 2 . Since (k,m)∈Z 2 H k,m is dense in L 2 (SO(
i ψ = (H rot | H k,m + uH z | H k,m )ψ, ψ ∈ H k,m , (15) 
(k, m) ∈ Z 2 . We define the set

N := {(k, m) ∈ Z × N | |k| ≤ m}.
The next result classifies which part of ( 1) is simultaneously controllable (compare also with Fig. 1).

Theorem 10: (a) Related dynamics: Let (k, m) ∈ N , then the linear isomorphisms defined on the basis as

f (k,m),1 : H k,m → H -k,-m D k,m j → D -k,-m j , f (t) (k,m),2 : H k,m → H m,k D k,m j → e it(A-C)(k 2 -m 2 ) D m,k j , f (t) (k,m),3 : H k,m → H -m,-k D k,m j → e it(A-C)(k 2 -m 2 ) D -m,-k j ,
are such that

Υ u t • p (k,m) = f (t) -1 (k,m),i • Υ u t • f (t) (k,m),i • p (k,m) (16)
for all t ∈ R, all i = 1, 2, 3, and all u ∈ L 1 loc (R, R). (b) Non-related dynamics: The family of systems [START_REF] Chambrion | Controllability of the discrete-spectrum Schrödinger equation driven by an external field[END_REF], (k, m) ∈ N , is simultaneously approximately controllable.

Proof: In order to prove (a), we first notice that

D k,m j , H z D k,m j+h = f (t) (k,m),i D k,m j , H z f (t) (k,m),i D k,m
j+h for all h = 0, 1, j ≥ min{|k|, m}, t ∈ R and i = 1, 2, 3 (cf. ( 13) and ( 14)). Also,

D k,m j , H rot D k,m j = f (k,m),1 D k,m j , H rot f (k,m),1 D k,m j
for all j ≥ min{k, |m|} (cf. ( 11)), which implies ( 16) for i = 1. Finally, for i = 2, 3,

D k,m j , H rot D k,m j = f (t) (k,m),i D k,m j , H rot f (t) (k,m),i D k,m j -(A -C)(k 2 -m 2 )
for all j ≥ min{|k|, m} and t ∈ R (cf. ( 11)), which implies ( 16) for i = 2, 3 and concludes the proof of (a). The proof of part (b) is an application of Theorem 9: for any (k, m) ∈ N we consider the chain of connectedness S (k,m) := {((j, k, m), (j + 1, k, m)), j ≥ min{|k|, m}}, which is nonresonant w.r.t. the eigenbasis

{D j k,m | j ≥ min{k, |m|}} of H rot | H k,m .
We check the resonances w.r.t. the eigenbasis of H rot | H k ,m for (k , m ) = (k, m), by using ( 11) and ( 12

): since E k,m j+1 -E k,m j = 2A(j + 1), then E k,m j+1 -E k,m j = E k ,m j +1 -E k ,m j if and only if j = j and k , m = -j, . . . , j. Since b (j+1,k,m),(j+1,k,m) -b (j,k,m),(j,k,m) = -2δ km j(j+1)(j+2) (cf. ( 13 
)), then b (j+1,k,m),(j+1,k,m) -b (j,k,m),(j,k,m) =b (j+1,k ,m ),(j+1,k ,m ) -b (j,k ,m ),(j,k ,m )
if and only if k m = km. Hence, by applying Theorem 9(i), we conclude that the family of systems ( 15) with (k, m) ∈ N and km = k m is simultaneously approximately controllable. When km = k m , we consider the second order condition: thanks to [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF], this is equivalent to solve the equality

± |b (j+1,k,m),(j+1±1,k,m) | 2 E 0,m j+1±1 -E 0,m j+1 - ± |b (j,k,m),(j±1,k,m) | 2 E 0,m j±1 -E 0,m j = ± |b (j+1,k,m ),(j+1±1,k,m ) | 2 E 0,m j+1±1 -E 0,m j+1 - ± |b (j,k,m ),(j±1,k,m ) | 2 E 0,m j±1 -E 0,m j , which reads Q(j)(m 2 + k 2 -m 2 -k 2 ) = 0 (cf. ( 14 
)
), where Q(j) is a quotient of polynomials in j that has no positive integer zeros nor poles, which implies (k , m ) = (k, m), under the assumptions km = k m , (k, m), (k , m ) ∈ N . By applying Theorem 9(ii), we conclude that the family of systems ( 15) with (k, m) ∈ N is simultaneously approximately controllable.

Remark 11:

By noticing that D 0,m j (α, β, γ) = Y m j (α, β)
, where Y m j are the spherical harmonics, that is, the eigenfunctions of the Laplace-Beltrami operator ∆ S 2 of the 2-sphere

S 2 ⊂ R 3 , one has that L 2 (S 2 ) = span{D 0,m j | j ∈ N, m = -j . . . , j} and H rot | m∈Z H0,m = H rot | L 2 (S 2 ) = -2A∆ S 2 .
Hence, the case k = 0 in Theorem 10 classifies the simultaneous approximate controllability w.r.t. the orientational quantum number m of the Schrödinger equation

i ψ = (-∆ S 2 -u δ cos(β))ψ, ψ ∈ L 2 (S 2 ),
of a rotating linear molecule (compare also with Fig. 1(a)). To conclude the proof of Theorem 1, we consider the lexicographic ordering l : Z 2 → N and set H l(k,m) := H k,m with corresponding orthogonal projection p l(k,m) := p (k,m) for any (k, m) ∈ Z 2 ; hence, [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF] and Theorem 10(a) imply that H := (k,m)∈N H k,m and G := (k,m)∈Z 2 \N H k,m satisfy the statement (i) of Theorem 1. Finally, let ψ 0 , ψ 1 be in H and such that p n (ψ 0 ) = p n (ψ 1 ) for all n ∈ N. For > 0 let r ∈ N be such that ψ 0 -r i=0 p i (ψ 0 ) < /3, ψ 1r i=0 p i (ψ 1 ) < /3. By Theorem 10(b), there exists u ∈ L 1 ([0, T ]) such that Υ u T ( r i=0 p i (ψ 0 )) -r i=0 p i (ψ 1 ) < /3. By triangular inequality, we have that Υ u T (ψ 0 ) -ψ 1 < . 
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D. Proof of Proposition 2

Since the restriction of H z is bounded from D(H k rot ) to itself for every integer k in N, the system (iH rot , iH z ) is indeed k-mildly coupled for every k in the sense of Definition 5 in [START_REF] Boussaïd | Regular propagators of bilinear quantum systems[END_REF]. Proposition 2 is a consequence of the density of polynoms in L 1 ([0, T ], R) for any T > 0 and Proposition 23 in [START_REF] Boussaïd | Regular propagators of bilinear quantum systems[END_REF].

III. NUMERICAL SIMULATIONS OF ORIENTATIONAL SELECTIVE TRANSFER

A. Error estimate for finite-dimensional approximations

In this section we formulate an estimate (which we use in Sec. III-B) of the error made by replacing the original system by one of its Galerkin approximations in the spirit of [START_REF]Weakly coupled systems in quantum control[END_REF]. (N ) (t, s) (for brevity X u (N ) (t, s) when it is applied to an initial datum in H

(N ) m ) the propagator of ẋ = (A (N ) m + uB (N ) m )x, x ∈ H (N ) m ∼ = C N , (17) 
where 17) is usually called the N -dimensional Galerkin approximation of (4).

A (N ) m = π m N A m π m N , B ( 
N ) m = π m N B m π m N . System (
Proposition 13: Let B m be tri-diagonal w.r.t. Φ m . Then, for every

ψ 0 ∈ H m , N 1 , N ∈ N with N 1 ≤ N and u ∈ L 1 loc (R, R), π m N1 Υ u t (ψ 0 ) -π m N1 X u (N ) (t, 0)π m N ψ 0 (18) ≤ u L 1 ([0,t]) |b (N,m),(N +1,m) | sup s∈[0,t] π m N1 X u (N ) (t, s)φ m N . Proof: We have d dt π m N Υ u t (ψ 0 ) = (A (N ) m + uB (N ) m )π m N Υ u t (ψ 0 ) + uπ m N B m (Id -π m N )Υ u t (ψ 0
). We integrate by using the variation of constants formula

π m N Υ u t (ψ 0 ) = X u (N ) (t, 0)π m N ψ 0 + t 0 u(s)X u (N ) (t, s)π m N B m (Id -π m N )Υ u s (ψ 0 )ds,
and then we project on a subspace of dimension

N 1 ≤ N π m N1 Υ u t (ψ 0 ) = π m N1 X u (N ) (t, 0)π m N ψ 0 + t 0 u(s)π m N1 X u (N ) (t, s)π m N B m (Id -π m N )Υ u s (ψ 0 )ds.
Thanks to the tri-diagonal structure, we have

π m N B m (I -π m N )Υ u s (ψ 0 ) = b (N,m),(N +1,m) φ m N +1 ,Υ u s (ψ 0 ) φ m N
, and the thesis follows.

Remark 14: For applications, N and N 1 are the dimensions of the spaces, respectively, where the numerical simulation is performed and where the transfer approximately happens.

B. Construction of the control laws and results

In this final section, considering A = 1, C = 2 in (2), we numerically simulate the transfer between the two rotational states

ψ 1 = 1 √ 3 (D 1,-1 1 + D 1,0 1 + D 1,1 1 ), ψ 2 = 1 √ 3 (D 1,-1 1 + D 1,0 1 + D 1,1 2 ).
In the spirit of [START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF], we consider the control function which is a suitable linear combination of periodic functions that oscillate in resonance with the spectral gaps of the perturbed drift (H rot +H z )| H1,1 corresponding to (k, m) = (1, 1).

u(t) =
Denoting by R the matrix of the target rotation, the coefficients in [START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF] are obtained as the ratio between the off-diagonal entries of the matrices log R and H z , both expressed in a basis where H rot + H z is diagonal. We use the control law [START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF] on subspaces spanned by the first N = 10 energy levels of the spaces H 1,m , m = -1, 0, 1 (with error less than 10 -6 on the first N 1 = 2, by Prop. 13). The results are presented on Fig. 2. The Octave script used for the computation is available on the webpage of this paper.

IV. CONCLUSION

We have exposed the controllability properties of the PDE of a symmetric rotor driven by a single control. As a byproduct, we have shown the control mechanism to lift the mdegeneracies in rotational spectra of symmetric rotors with the application of an electric field. The result is constructive, but further work is needed to optimize the choice of the parameters (especially the shift of the drift) in order to minimize the controllability time.

  H rot : H 2 (SO(3)) → L 2 (SO(3)) is the Laplace-Beltrami operator of the compact manifold SO(3) (endowed with the diagonal Riemannian metric diag(A, A, C)), it has discrete spectrum. The spectral decomposition of H rot is explicit, given in terms of the Wigner D-functions {D k,m j (α, β, γ) = e i(kγ+mα) d k,m j (β) | j ∈ N, k, m = -j, . . . , j}, where d k,m j solves a suitable Legendre differential equation, and reads[START_REF] Gordy | Microwave molecular spectra, ser. Techniques of chemistry[END_REF] Sec. 6] 

3 DFig. 1 .

 31 Fig. 1. Hz acting on the spectral graphs of: (a) Hrot| m∈Z H 0,m ; (b) Hrot| m∈Z H 1,m ; (c) Hrot| m∈Z H -1,m . Arrows with same numbers correspond to related transitions; arrows with different numbers correspond to simultaneously controllable transitions.

Definition 12 : 1 ,

 121 The operator B m is said to be tri-diagonal w.r.t. Φ m if, for any j, j ∈ N, |j -j | > 1 implies φ m j , B m φ m j = 0. Consider the orthogonal projection π m N : H m → H . . . , φ m N } on the first N eigenfunctions of A m and denote by X u,m

Fig. 2 . 1 ))

 21 Fig. 2. Top. Evolution with respect to time of the components moduli |D 1,1 1 , Υ u t (D 1,1 1 ) | (in blue) and | D 1,1 2 , Υ u t (D 1,11 ) | (in red). The control law u is given by[START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF]. The maximum of the red curve 0.999 is obtained at time T = 66.889.Bottom. Evolution with respect to time of the component modulus| D 1,-1 1 , Υ u t (D 1,-1 1)|. At time T = 66.889, | D 1,-1 1 , Υ u t (D 1,-1 1) | > 0.985. The picture is similar for | D 1,0 1 , Υ u t (D 1,0 1 ) |.
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