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A B S T R A C T

Fluid-fluid displacement porosimetry (FFDP) is a method for determining the pore size distribution of a porous 
medium from viscous fluid-fluid immiscible displacement (drainage) results, using a simplistic representation of 
the pore structure by cylindrical parallel tubes. The method leads to unambiguous estimates when the porous 
medium microstructure is strongly anisotropic and reasonably akin to this representation. The information ob
tained from this technique is however less straightforward to interpret for more complex microstructures. On the 
basis of synthetic data obtained from pore network simulations, it is evidenced, in particular, that this method 
leads to a shift in the distribution toward unrealistic small pore sizes. The shift, that may be very significant, is 
due to the viscous pressure drop in the displacing fluid. It is shown that significant improvement is achieved 
when the characterization of the pore size distribution is considered as an inverse optimization problem. The 
latter is solved using an optimization method presented in a previous work that was restricted to situations where 
viscous effects are unimportant.   

1. Introduction

Fluid-fluid displacement porosimetry (FFDP) is a technique for
characterizing the pore size distribution of a porous medium (Morison, 
2008; Peinador et al., 2010; Calvo et al., 2015; Tanis-Kanbur et al., 
2019). In particular, the method is commonly used for the character
ization of thin porous media such as ultrafiltration and microfiltration 
membranes (see e.g. Peinador et al., 2010; Calvo et al., 2015; Tanis-
Kanbur et al., 2019), and is traditionally referred to as the Liquid-Liquid 
Displacement Porosimetry (LLDP) technique since the two fluids 
commonly used are liquids. However, the technique can be extended to 
Gas-Liquid Displacement Porosimetry (Islam et al., 2020; Peinador et al., 
2020) and can be simply referred to as the FFDP technique. In this 
method, the membrane is saturated by a wetting liquid and another 
immiscible liquid or gas is forced through the pores. This is accom
plished through a series of pressure steps resulting in the immiscible 
displacement of the wetting liquid by the injected fluid (a drainage 
process). The injected fluid pressure at the membrane inlet is measured, 
as well as the injected fluid flow rate through the membrane. The 
dependence of these two quantities upon the pore size distribution lies in 
the local capillary pressure invasion threshold which must be overcome 

for a displacement to occur in a pore, and also in the dependency of the 
local flow conductances on the pore size. However, as pointed out earlier 
(Morison, 2008), practically all the determinations of the pore size 
distribution with the FFDP technique have been made considering a 
simplified representation of the membrane as a bundle of parallel cy
lindrical tubes. As analyzed in some reported works (Mourhatch et al., 
2011; Maalal et al., 2021), this is quite a questionable simplification 
since the microstructure of most membranes significantly differs from 
this simplistic representation. Owing to this simplification, the question 
arises as to whether this technique really allows determining the pore 
size distribution in thin porous layers which structure departs from a 
simple system of cylindrical pores in parallel. The main objective of the 
present article is hence to clarify this question. To this end, the FFDP is 
simulated numerically for given microstructures. This means that the 
pore size distribution is perfectly known for each microstructure under 
consideration, without assuming cylindrical tubes in parallel. Then, the 
pore size distribution (PSD) is determined from the FFDP numerical 
simulation, i.e., from the simulated two-phase immiscible displacement 
in the microstructure of interest, as it would be obtained from a FFDP 
real experiment. The PSD estimated with this technique and the 
simplistic pore structure representation can finally be compared to the 
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real PSD in order to evaluate the possible bias and errors associated with 
the FFDP. According to these simulations, significant discrepancies are 
found between the PSD extracted from the FFDP and the real PSD. In 
order to improve the PSD estimation from the FFDP raw data, the PSD 
extraction model, based on the parallel cylindrical tubes simplification, 
is abandoned and a more sophisticated approach is developed. It consists 
in considering the PSD determination as an inverse optimization prob
lem, which is solved using the method presented in Maalal et al. (2021). 
This approach is tested for various PSD, namely, uniform, Gaussian, 
Log-normal and bimodal. Both steps, i.e., the evaluation and assessment 
of the commonly used FFDP approach and the inverse optimization 
approach, are based on numerical simulations of the immiscible 
fluid-fluid displacement in the pore space of the thin porous medium 
under consideration. The latter are performed within the classical 
framework of pore network modeling (Blunt 2001, Blunt et al., 2002; 
Xiong et al., 2016; Bondino et al., 2013). Typically, pore network models 
rest on a yet simplified representation of the pore space as a system of 
nodes connected by narrower channels. The nodes are local larger vol
umes in the pore space, which, within the framework of pore network 
modeling, are referred to as pore bodies. The narrower channels be
tween pores are referred to as pore throats or simply throats. In what 
follows, simple two-dimensional square pore networks are considered. 

As illustrated in Fig. 1, the pore bodies are located at the nodes of a 
square regular grid and the throats correspond to the segments between 
nodes. The morphology of pore networks extracted from real porous 
media microstructures is obviously more complex than a regular grid, 
(see e.g. Agaesse et al., 2016; Raeini et al., 2017). However, it is ex
pected that the crucial features for assessing the FFDP are the pore space 
interconnectivity (the fact that a pore body is connected to several 
neighboring pore bodies) and the disordered nature of the pore space 
(the fact that the local geometrical dimensions vary from one pore body 
or throat to another). These two characteristics are present in the simple 
pore networks considered in this study so that the main conclusions 
reached from this approach are expected to also apply to unstructured 
networks representative of the pore space of real porous media. 

Within the pore network approach, the throats and pore bodies shall 
be considered as the two microsctructure elements to which a size dis
tribution can be affected, namely the pore body size distribution (PBSD) 
and the throat size distribution (TSD), respectively. The constrictions in 
the pore space, which correspond to the throats, play an important role 
since the menisci tend to get pinned in the constrictions during a 
drainage process. This results from capillary effects. Moreover, the local 

viscous pressure drops are highly dependent on the flow through the 
throats (the narrower the passage, the greater is the pressure drop be
tween two pore bodies for an identical flow rate). For these reasons, the 
focus is laid here on the determination of the TSD. 

The present study can be seen as an extension of the works presented 
in Mourhatch et al. (2011) and Maalal et al. (2021). In the latter refer
ence, the immiscible displacement was simulated using the standard 
invasion percolation (IP) algorithm as described for instance in Wil
kinson and Willemesen (1983). This corresponds to a situation where 
the displacement is controlled by capillary effects only. However, in a 
FFDP experiment, the fluid pressure is not spatially uniform in the dis
placing phase but decreases on average from the inlet to the outlet. For 
this reason, the displacement is expected to differ from that predicted by 
the standard IP algorithm and the flow situation corresponding to the 
FFDP requires a specific study. Consequently, the viscous pressure drop 
in the displacing fluid is taken into account, contrary to the study pre
sented in Maalal et al. (2021). It is thus important to notice that the 
situation considered in the present work is much closer to operating 
conditions of currently available FFDP devices than the situation 
considered in Maalal et al. (2021). As shall be seen, the existence of the 
viscous pressure drop leads to an important bias in the determination of 
the pore size distribution if not considered in data interpretation. The 
identification and the illustration of this viscous bias is the major 
objective of the present work together with a method for alleviating its 
impact. 

The present article is organized as follows. In Section 2, the method 
commonly used for determining the TSD from the FFDP raw data is 
recalled. The pore network model is presented in Section 3. The algo
rithms used to simulate the displacement and compute synthetic FFDP 
data is presented in Section 4. Section 5 is dedicated to the assessment of 
the TSD determination from the commonly used FFDP method using a 
parallel cylindrical tubes model. In Section 6, a method to determine the 
TSD from the FFDP curve using PNM simulations combined with an 
optimization method is briefly presented. Section 7 reports on results 
obtained with the optimization method when both the FFDP and 
retention curves are used as target data. A short discussion is presented 
in Section 8. Conclusions are drawn in Section 9. 

2. Fluid-fluid displacement porosimetry

As indicated above and sketched in Fig. 1, the FFDP is based on the
measurement of the pressure, Pi, in the displacing fluid at the inlet and 
the corresponding displacing fluid flow rate Q(Pi). The pressure, Po, at 
the outlet is fixed and considered to be the same in the displacing and 
displaced fluids (this point is further discussed in Section 4). The 
commonly used method (Morison, 2008) for determining the TSD from 
the flow-rate data Q(Pi) in the FFDP explicitly relies on the model of a 
bundle of parallel cylindrical tubes. On this basis, the flow-rate is 
computed by applying Poiseuille’s law in each tube containing the 
non-wetting fluid or possibly a mixed Poiseuille-Knudsen flow model in 
the case of GLDP (Islam et al., 2020). In what follows, Knudsen effects 
are not considered. Moreover, steady, laminar and incompressible flow 
is assumed and both fluids are supposed Newtonian. This allows writing 

Qi =
ΔPπ
8μL

∫+∞

rmin

r4fQ(r)dr (1) 

Here, L is the tube length, ΔP = Pi − Po, μ is the displacing fluid 
dynamic viscosity; the radius of a tube is denoted by r and fQ is the TSD 
to be determined. For a given inlet pressure Pi, the radius rmin is defined 
with the Young-Laplace equation as 

rmin =
2γ cosθ

ΔP
(2)  

where γ is the interfacial tension and θ the contact angle. In the present 

Fig. 1. Square pore network and sketch of immiscible displacement in FFDP 
(displacing fluid in blue, displaced fluid in light grey). The red dashed area 
corresponds to an exemplary network slice used for spatially averaging 
the pressure. 
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work, the displaced fluid is considered as being perfectly wetting and 
hence, θ = 0. Eq. (2) expresses that all the tubes having a radius greater 
or equal to rmin are invaded by the displacing fluid. The greater the inlet 
pressure, the lower is the threshold radius rmin. Combining Eqs. (1) and 
(2) leads to

Qi =
πγ cosθ
4μLrmin

∫+∞

rmin

ρ4fQ(ρ)dρ (3) 

Considering Eq. (3) for rmin = r and deriving the relationship with 
respect to r leads to 

dQi

dr
= −

Qi

r
−

πγ cosθ
4 μL

r3fQ(r) (4)  

and thus to 

fQ(r) = −
4 μL

πγ cosθ
r− 3

(
dQi

dr
+

Qi

r

)

(5) 

Eq. (5) can be expressed in discrete form as (Morison, 2008) 

fQk(rAB) = −
4 μL

πγ cosθ
r− 3

AB

(
QiB − QiA

rB − rA
+

QiAB

rAB

)

(6)  

where QiA and QiB are two close values of Qi corresponding to two close 
values of the inlet pressure PiA and PiB, QiAB = QiB+QiA

2 and rAB = (rA + rB)

/2, rA and rB being determined from Eq. (2). 
The value of fQk can then normalized as 

dQk(rAB) =
fQk

∑n
i=1fQi

(7)  

where n is the number of classes considered to compute the throat size 
distribution. In what follows, water is considered as the wetting fluid 
and air as the displacing fluid. Thus γ = 0.072 N/m and μ = μair = 10− 5 

Pa.s. 
The above equations are similar to Eqs. (9)–(14) in Maalal et al. 

(2021). However, there is a significant difference. In this reference, only 
quasi-static displacements were considered. As a result, the viscous 
pressure drop ΔP in Eq. (1) was assumed small compared to the capillary 
pressure, i.e., the pressure difference between the two fluids. As a 
consequence, ΔP was independent of rmin. The relaxation of the 
quasi-static hypothesis induces a modification of the radius exponent in 
Eqs. (5) and (6), which is now equal to -3 whereas it is equal to -4 in the 
corresponding equations in Maalal et al. (2021). This is because the 
viscous pressure drop and the capillary pressure are directly correlated 
as expressed by Eq. (2) in the viscous case whereas the pressure drop is 
independent of the capillary pressure in the QS case considered in 
Maalal et al. (2021). 

3. Interconnected model porous medium

For FFDP, immiscible displacement is simulated in the model porous
medium depicted in Fig. 1 using the pore network modeling (PNM) 
approach (Blunt et al., 2002). Obviously, this structure does not assume 
an underlying cylindrical parallel tubes structure. As illustrated in this 
figure, pore bodies in the pore network model are spheres of radius rp 
located at the nodes of a regular square grid. The distance between two 
adjacent nodes is the lattice spacing a, with a = 350 μm in all the sim
ulations presented below. The size of the network is the number of nodes 
(pores) in each direction (for example, Fig. 1 shows a 30 × 30 square 
network). Throats are cylindrical channels of radius rt. The throat size is 
randomly distributed according to a given probability density function 
(p.d.f.). Similarly, the pore body sizes are distributed according to a 
given p.d.f. with the constraint that the size of a pore body is equal to, or 
greater, than the size of the largest throat to which it is connected. In the 
remainder of this work, the same type of p.d.f. is considered for both the 

pore bodies and the throats of a given network. In what follows, four 
types of p.d.f. are considered, namely uniform, Gaussian, Log-normal 
and bimodal. Also, it can be noted that the network coordination 
number, i.e., the number of throats connected to a pore body, is 4 in the 
2D square network. 

4. Fluid – fluid immiscible displacement simulation

In the FFDP, a wetting fluid is displaced by a non-wetting one, a
process called drainage. It is analyzed in details by Lenormand et al. 
(1988), where it is shown that the resulting flow pattern depends on the 
competition between capillary and viscous forces. The method for 
computing the flow is similar to that described in this reference. Since 
the inlet pressure variation between two pressure steps is small, a 
simplification is to consider that the pressure variation in the displaced 
fluid between the two steady states corresponding to the two considered 
pressure steps can be neglected. The pressure is thus considered as 
uniform and equal to Po in the displaced fluid. In fact, there is necessarily 
a flow in the displaced fluid and thus a viscous pressure drop during the 
transient period between two equilibria (equilibrium refers to the 
steady-state situation reached after each inlet pressure increment). 
However, only a small fraction of menisci moves during each transient 
period since the inlet pressure increments are small. As a result, the 
transient flow rate in the displaced fluid is small. The approximation 
that is performed consists in neglecting this flow and the associated 
displaced fluid viscous pressure drop in the identification of the moving 
menisci (see below). This means that the viscous flow is only computed 
in the sub-region of the network occupied by the displacing fluid. The 
displacing fluid flow computation consists in expressing the mass con
servation equation at each network node (pore body) j that is given by 
∑

Qi− j,k = 0 (8)  

where Qi− j,k is the non-wetting fluid volume flow rate between pore 
body j and adjacent pore body k. If the throat between pore bodies j and 
k is occupied by the wetting fluid, then Qi− j,k = 0. If the throat is 
occupied by the non-wetting fluid, then 

Qi− j,k =
πr4

t j,k

8μnwlj,k
ΔPj,k (9)  

where rt j,k and lj,k are the radius and length of the throat connecting the 
two pore bodies, respectively, whereas ΔPj,k is the pressure drop in the 
displacing fluid between the two neighboring pore bodies. The boundary 
conditions at the inlet and outlet of the network are P = Pi and P = Po =

const, respectively. A zero-flux condition is imposed on the lateral faces 
of the network. This leads to a linear system for the pressure field at the 
nodes of the network in the non-wetting fluid. This system is numerically 
solved using the conjugate gradient method. Once the pressure field is 
obtained, the displacing fluid flow rate Qi is computed using Poiseuille’s 
law applied to all throats saturated by the displacing fluid and connected 
to the inlet. It can thus be noticed that the pressure is considered to be 
the same in the wetting fluid and non-wetting fluid at the outlet. This is 
an approximation. Actually, the pressure in the wetting fluid is expected 
to be slightly lower than in the non-wetting fluid at the outlet where the 
non-wetting fluid saturation remains small. The approximation consists 
in neglecting the pressure difference between the two fluids at the outlet 
compared to the viscous pressure drop, i.e. the pressure difference be
tween the two fluids at the inlet. 

The flow computation method described above applies for a given 
fluid distribution in the network. It must be coupled with an algorithm 
allowing the determination of the fluid distribution. To this end, a 
meniscus at the entrance of a throat is defined as stable when the 
pressure difference between each side of the meniscus is less than the 
capillary pressure threshold of the throat under consideration (such a 
throat is referred to as an interfacial throat), which means 

O. Maalal et al.
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Pi− j,k − Po < Pcth (10) 

Here, Pcth = 2γ cosθ
rt 

and Pi− j,k is the pressure in the displacing fluid- 
saturated pore body adjacent to the throat under consideration, of 
radius rt. Starting from the fluid distribution obtained at the previous 
step, the pressure field in the displacing fluid for the new pressure step is 
computed as indicated above. Then, all unstable menisci are identified. 
This corresponds to all menisci such that Pi− j,k − Po ≥ Pcth. The interfacial 
throat for which (Pi− j,k − Po) − Pcth is maximum is invaded with the dis
placing fluid together with the adjacent pore body if the latter was not 
already invaded in a previous step. If this pore body was occupied by the 
displaced fluid, new menisci are then positioned at the entrance of the 
throats occupied by the displaced fluid and connected to the newly 
invaded pore body. Thus, the list of interfacial throats is updated so as to 
remove the invaded throat and add the throats connected to the newly 
invaded pore body and occupied by the displaced fluid. This procedure 
is repeated until there is no unstable menisci remaining in the network, 
i.e., until there exists no interfacial throat for which Pi− j,k − Po ≥ Pcth.
The resulting fluid distribution corresponds to the equilibrium distri
bution at the specified value of Pi.

The above procedure is enforced after the breakthrough (BT). The 
breakthrough corresponds to the minimum inlet pressure PiBT for which 
the displacing fluid reaches the outlet. For inlet pressures lower than 
PiBT, the displacing fluid does not reach the outlet and therefore there is 
no flow when steady state is reached. The procedure to compute the 
fluid distribution before BT is similar to the one described above. The 
important difference is that the pressure is spatially uniform and equal 
to Pi in the displacing fluid since there is no flow before BT when the 

capillary equilibrium is reached. The invasion rules described above 
correspond to a drainage process without trapping. An element, pore 
body or throat, occupied by the displacing fluid is thus assumed to be 
always connected to the outlet face, possibly through liquid films (Zhou 
et al., 1997) present in the pore and throat surface roughness and/or in a 
subnetwork of small crevices at the pore walls. Implementation of 
trapping rules is possible (see for instance Joekar-Niasar et al., 2008), 
but, for the sake of simplicity, trapping is not considered in what follows. 
In this regard, it can be recalled that trapping is exacerbated in 2D 
networks compared to 3D networks (Wilkinson and Willemsen, 1983). 
Thus, neglecting trapping can be also seen as an approximate way of 
considering a situation closer to the 3D case. The crucial point we keep 
in our approach is that menisci must travel in the pore space and that 
each meniscus displacement acts as a pore space local geometry probe. 
This point is further discussed in Section 8. 

Examples of fluid distribution in a 30 × 30 2D network obtained with 
the procedure described above are displayed in Fig. 2 whereas the cor
responding displacing fluid pressure profiles are shown in Fig. 3. The 
first pattern in Fig. 2 corresponds to breakthrough. The pressure plotted 
in Fig. 3 is the displacing fluid pressure averaged over slices containing 
one row of pores, successively positioned at different locations between 
the entrance (0) and the exit (1) of the network. Such a slice is illustrated 
in Fig. 1. The average displacing fluid pressure in a slice is computed as, 

〈P〉 =
∑m

j=1
4πr3

pj
3 Pi− j

∑m
j=1

4πr3
pj

3

(11)  

where m is the number of pores occupied by the displacing fluid in the 

Fig. 2. Example of fluid-fluid distributions, computed in a 30 × 30 2D network with a uniform TSD (rtmin = 30 μm, rtmax = 50 μm) and a uniform PBSD (rpmin = 80 μm, 
rpmax = 120 μm) for an increasing pressure difference ΔP = Pi − Po. The displacing fluid in blue enters the network at the bottom. S is the displaced fluid saturation, i. 
e., the network volume fraction occupied by the displaced (wetting) fluid. (a) At BT. (b) to (f) After BT. (a) ΔP=3653 Pa, S=0.6 (b) ΔP =3681 Pa, S=0.5 (c) ΔP =3722 
Pa, S=0.4. (d) ΔP =3743 Pa, S=0.3 (e) ΔP =3768 Pa, S=0.2 (f) ΔP =3781 Pa, S=0.1 

O. Maalal et al.
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slice. 
As can be seen from Fig. 2, the displacement occurs in comparatively 

a larger number of throats and pore bodies in the lower region of the 
network, that is the region adjacent to the inlet, than in the upper region 
of the network. This is fully consistent with the existence of the non- 
linear viscous pressure drop in the displacing fluid illustrated in Fig. 3. 
Consider two interfacial throats of the same radius. Such a throat is 
invaded by the displacing fluid when Pi− j,k − Po ≥ Pcth. The closer the 
throat to the inlet, the greater is the local pressure Pi− j,k (see Fig. 3). As a 
result, in the sequence of pressure steps, a throat closer to the inlet is 
invaded before a throat of comparable radius located further away in the 
network. This also means that throats of different radii are invaded when 
the inlet pressure is incremented. For a given inlet pressure, since Pi− j,k 

decreases on average with the increasing distance from the inlet, the 
critical invasion threshold radius given by the equation Pi− j,k − Po = Pcth 

=
2γcosθ

rt 
increases with the increasing distance from the inlet. In other 

words, results illustrated in Figs. 2 and 3 clearly indicate that there is not 
a unique value of the threshold pore radius given by the Young-Laplace 
Eq. (2) for a given value of the inlet pressure. This is in contrast with the 
common FFDP assumption, for which a single pore radius is associated 
to each inlet pressure value. This also differs from the IP approach fol
lowed by Maalal et al. (2021). In fact, the situation considered in the 
present article can be analyzed as a situation of invasion percolation in a 
stabilizing gradient (IPSG) (Xu et al., 1998). The gradient in the pore 
occupation probability leads to the formation of a stable invasion front 
corresponding, in Fig. 2, to the gradual shrinkage of the two-phase zone, 
which localizes here on the outlet side of the network. 

The FFDP curve obtained from the algorithm above described is 
shown in Fig. 4. Note that this curve corresponds to one realization of 
the network and does not result from an average over several re
alizations (contrary to the pressure curves in Fig. 3). This curve typically 
shows the displacing fluid flow rate as a function of the pressure dif
ference ΔP = Pi − Po. Throughout the article, the displacing fluid flow 
rate, Qi, is normalized. More precisely, the quantity Qi

Pi − Po 
is considered 

and normalized by Qif
Pif − Po

, Qif and Pif being the final displacing fluid flow 
rate and inlet pressure, respectively. Thus, the quantity represented in 
Fig. 4 is 

χ =
Qi

(
Pif − Po

)

Qif (Pi − Po)
(12) 

It must be noted that χ should not be mistakenly identified as the 
displacing fluid relative permeability (kr) employed in the classical 
theory of two-phase flow in porous media (Dullien, 1991). Indeed, χ 
would correspond to kr if the fluid distributions were obtained via 
quasi-static displacements controlled only by the capillary effects. 
Owing to the viscous pressure drop in the displacing fluid, this is obvi
ously not the case in the situation under study. To this extend, χ can be 
seen as a “dynamic” relative permeability. 

5. TSD extraction from commonly used FFDP procedure

The next step is to apply the TSD extraction procedure commonly
used for FFDP, i.e., Eqs. (1) to (7), starting from the computed FFDP 
curve (Fig. 4). The objective is to analyze how the TSD obtained with 
this procedure (Eq. (6)), referred to as the FFDP TSD, compares with the 
real TSD. A 2D square 50 × 5, a 2D square 50 × 25 and a 2D square 30 ×
30 networks were considered for the comparison. Note that the second 
value in the network size nomenclature denotes its height in the main 
flow direction. For each network, the χ(ΔP) curve was computed and the 
FFDP TSD extracted using Eq. (6). For a given network size and distri
bution, the results were averaged over 100 network realizations so as to 
eliminate dispersion of the results. For a given network size, the FFDP 
TSD was extracted from each χ(ΔP) curve yielding 100 FFDP TSD which 
were finally averaged to obtain the FFDP TSD for the network under 
concern. The comparison was performed for two types of p.d.f., namely, 
uniform and Gaussian. The p.d.f. parameters are the throats and pore 
bodies minimum and maximum radii, rpmin, rpmax and rtmin, rtmax for a 
uniform distribution, the mean pore and throat radii, rpmoy, rtmoy and 
standard deviation, σ, in the case of a Gaussian p.d.f.. The p.d.f. pa
rameters considered in this section are reported in Table 1. 

The comparison between the real TSD and the FFDP TSD for the 
various cases is presented in Fig. 5 and Table2. As can be seen, the FFDP 
TSD is significantly different from the real TSD for all the cases 

Fig. 3. Displacing fluid slice average pressure profiles in the 30 × 30 network 
corresponding to the fluid distributions depicted in Fig. 2. Note that the pres
sure is averaged over 30 realizations whereas only one realization is of course 
shown in Fig. 2. The inlet and outlet respectively correspond to a normalized 
height equal to 0 and 1. 

Fig. 4. FFDP curve: displacing normalized fluid flow rate, χ, as a function of 
ΔP = Pi − Po. 

Table 1 
PBSD and TSD parameters considered in Section 5.  

p.d.f Pore bodies Throats 

uniform rpmin = 80 μm, rpmax = 120 μm rtmin = 30 μm, rtmax = 50 μm 
Gaussian rpmoy = 120 μm, σ = 10 μm rtmoy = 40 μm, σ = 10 μm  

O. Maalal et al.
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Fig. 5. Comparison of the TSD obtained from the commonly used FFDP procedure, Eq. (6), and the real TSD (shown in the insets) for various cases. (a) 50 × 5 
network, Gaussian p.d.f., rtmoy = 40 μm, σ = 10 μm. (b) 50 × 5 network, uniform p.d.f., rtmin = 30 μm, rtmax = 50 μm. (c) 50 × 25 network, Gaussian p.d.f., rtmoy = 40 
μm, σ = 10 μm. (d) 50 × 25 network, uniform p.d.f., rtmin = 30 μm, rtmax = 50 μm. e 30 × 30 network, Gaussian p.d.f., rtmoy = 40 μm, σ = 10 μm. (f) 30 × 30 network, 
uniform p.d.f., rtmin = 30 μm, rtmax = 50 μm. 
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considered here. The FFDP procedure introduces a significant positive 
skewness. In addition to the noticeable asymmetry, it can be seen that 
the FFDP procedure leads to identify throat sizes smaller than in the real 
TSD. This is qualitatively consistent with the experimental results re
ported in Peinador et al. (2020), showing a shift toward smaller pore 
sizes between the pore size distribution determined from the FFDP and 
the one deduced from the capillary pressure curve. The shift can be 
explained as follows. As illustrated in Fig. 2, the region near the inlet is 
preferentially invaded due to the greater displacing fluid pressure. When 
the inlet pressure is sufficiently large, menisci are only present at some 
distance from the inlet where the pressure in the displacing fluid is less 
than at the inlet. The minimum size identified from Eq. (1) is rmin =

2γ cosθ
Pi − P0 

whereas the actual minimum size must be determined not at the 
inlet where there is no menisci anymore but where menisci are present, 
thus rmin− real ≈

2γ cosθ
P(z)− P0 

where z is the distance from the inlet where the 
less advanced menisci, i.e. the menisci the closest to inlet, can be found. 
Since P(z) − P0 < Pi − P0, rmin. < rmin− real. Hence, the throat sizes 
extracted from Eq. (1) are eventually much smaller than the sizes of the 
throats in which the menisci are actually moving since they move in a 
region where the displaced fluid pressure is significantly lower than the 
inlet pressure. The higher the inlet pressure, the greater is the impact 
since, as discussed before, the two-phase zone, i.e., the zone containing 
the menisci, shrinks and localizes on the outlet side of the network while 
increasing the inlet pressure (Fig. 2). The shift is therefore due to the 
viscous pressure drop and the use of Eq. (1) wrongly considering the 
inlet pressure and not the lower pressures in the region where the 
menisci actually move. 

As reported in Table 2, the errors associated with the parallel cy
lindrical tube simplification is very significant. In summary, the nature 
of the distribution, uniform or Gaussian, is not retrieved and the iden
tified sizes are too small. The comparison of the FFDP TSD with the real 
TSD for the two networks, in Fig. 5, shows that the shift in the distri
bution toward unrealistic small throat sizes depends on the network 
height, i.e., the distance between the inlet and the outlet measured in 
lattice spacing unit corresponding to the number of elements (pores or 
throats) over the network height. The greater the height, the more 
pronounced is the shift. This is consistent with the above consideration 
on the wrong use of Eq. (1) since the greater the height the greater the 
inlet pressure must be to displace the menisci near the outlet. This is an 
indication that the commonly used FFDP TSD extraction method should 
not be used, in particular for the characterisation of thick porous 
materials. 

The results presented in Fig. 5 and Table 2 are consistent with the 
fluid distributions and the pressure profiles depicted in Figs. 2 and 3. As 
discussed previously, the existence of the pressure drop across the 
network is not consistent with the identification of a single throat size 
from the Young-Laplace equation, as assumed in the commonly used 
FFDP procedure. In order to fully invade the network, the pressure dif
ference between the two fluids in the outlet region of the network must 
be comparable to (slightly greater than) the throat capillary pressure 
thresholds. Since the displacing fluid pressure is significantly higher in 
the network inlet region, using the inlet pressure Pi together with the 
Young-Laplace equation leads necessarily to underestimate the throat 
sizes. Since the viscous pressure drop increases with the network height, 
greater inlet pressures are necessary to fully invade the network when its 
height is increased. This is consistent with the increase in the shift to
ward smaller throat sizes with an increasing network size reported in 
Fig. 5. 

6. Alternative method for the FFDP TSD extraction

6.1. Method of solution

Owing to the serious shortcomings inherent to the commonly used 
FFDP TSD extraction procedure, the question arises as to whether a 
better procedure can be devised. As shown in the previous section, the 
standard and commonly used FFDP TSD extraction procedure does not 
allow determining the real TSD from the Qi(ΔP) curve. The main reason 
explaining this unsatisfactory estimation lies in the fact that throats of 
various sizes are invaded when the pressure is incremented due to the 
displacing fluid pressure variation across the porous medium whereas 
only a single throat size is assigned via the Young-Laplace Eq. (2) to all 
the newly invaded throats with the commonly used FFDP procedure, 
regardless of their actual sizes. This notably introduces a shift toward 
(unrealistic) small throat sizes. 

In order to improve the estimation, the TSD identification problem is 
addressed as an inverse problem. The direct problem is the determina
tion of the Qi(ΔP) curve for a given microstructure. The inverse problem 
consists in identifying the TSD from the Qi(ΔP) curve and is treated with 
an optimization procedure in what follows. The general idea is to 
gradually modify the microstructure (more precisely the sizes assigned 
to the throats for a given network structure) so as to retrieve the Qi(ΔP)
curve accurately. To this end, the method presented in Maalal et al. 
(2021) is used. In this reference, the objective was to identify the TSD 
from the displacing fluid relative permeability and the retention curve 
whereas here, the objective is to identify the TSD from the FFDP curve. 
As in the previously mentioned work, it is assumed that the pore 
network structure is known. This means that the optimization procedure 
is performed for a given type of network, i.e., a square network in the 
present study. Again, the unknown is the TSD. The pore body sizes are 
not considered in the optimization procedure on the ground that the 
FFDP flow is essentially controlled by the throats. Thus, the pore size is 
taken as constant (equal to 80 µm) in what follows. A particular reali
zation of the network, with specified p.d.f. parameters, is used as the 
reference network whose TSD is hence known. This reference network is 
the equivalent of the porous medium to be characterized in practice, that 
is, the one for which the experimental measurement of Qi(ΔP) would 
have been performed in practice and whose TSD is to be determined. 

The optimization procedure is actually fully identical to the one 
described in Maalal et al. (2021), considering χ as defined by Eq. (12) in 
place of Qn in the latter reference. For this reason, the optimization al
gorithm is not described again here. The reader is referred to the 
above-mentioned article for the details. In essence, the procedure con
sists in gradually modifying the throat sizes in the network so as the 
FFDP curve of the optimized network matches the FFDP curve of the 
reference network using a hybrid genetic and hill climbing algorithm. 

Table 2 
Comparison between the real TSD and the TSD obtained from the commonly 
used FFDP procedure (Eq. (6)), i.e., the FFDP TSD. Mean values and standard 
deviations were computed over the 100 realizations.   

StatisticalMoments 
(μm) 

Real 
TSD 

FFDP 
TSD 

RelativeError 
(%) 

Uniform p.d.f. 50 
× 5 network 

Mean 39.95 4.21 89.47 
Standard 
deviation 

5.74 1.67 70.83 

Gaussian p.d.f. 50 
× 5 network 

Mean 39.97 1.44 96.41 
Standard 
deviation 

10.28 1.1 89.29 

Uniform p.d.f. 50 
× 25 network 

Mean 40.01 0.88 97.8 
Standard 
deviation 

5.76 0.34 94.1 

Gaussian p.d.f. 50 
× 25 network 

Mean 40.02 0.34 99.16 
Standard 
deviation 

10.2 0.22 97.82 

Uniform p.d.f. 30 
× 30 network 

Mean 39.99 0.31 99.23 
Standard 
deviation 

5.75 0.12 97.89 

Gaussian p.d.f. 30 
× 30 network 

Mean 40.01 0.15 99.62 
Standard 
deviation 

10.29 0.12 98.86  
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6.2. Results 

A reference network, with a Gaussian TSD having a mean radius of 
40 μm and a standard deviation of 10 μm, is first considered. The cor
responding reference TSD is shown in the inset of Fig. 6a. Note that the 
initial network population in the optimization process is generated with 
uniform distributions, thus with a type of p.d.f. different from the 
Gaussian distribution of the reference network. 

As shown in Fig. 6b, the optimization procedure leads to an almost 
perfect agreement between the χ(ΔP) curves for the reference and 
optimized networks. Compared to the commonly used FFDP procedure 
(Fig. 5), the identified TSD is much closer to the reference TSD. There is 
no shift toward unrealistic small throat sizes and the distribution is much 
closer to a Gaussian distribution. However, one can note a slight positive 
skewness. The values for the first four moments of the distribution re
ported in Table 3 are also in much better agreement with the corre
sponding values of the real TSD (as can be seen from the comparison 
with the values reported in Table 2 obtained for the commonly used 
FFDP procedure). 

As reported in Fig. 7 and Table 3, somewhat similar results are ob
tained when the reference p.d.f. is uniform. In both cases, it can be seen 
that a few throat sizes greater than the largest throat size in the reference 
distribution are obtained through the optimization procedure. This is 
due to the specification of the maximum throat size in the optimization 
procedure. As explained in Maalal et al. (2021), the maximum throat 
radius is approximately specified by multiplying by a factor 1.3 the 
radius corresponding to the first pressure step at which the displaced 
fluid saturation is no longer equal to one. The factor 1.3 is introduced 
because the biggest throat at the inlet can be expected to be smaller than 
the biggest throat in the whole network. Nevertheless, the fraction of 
throat sizes in this too large range is quite low. This is an indication that 
the optimization procedure should lead to still better results with a more 
refined estimate of the maximum throat radius (via smaller pressure 
steps for example). 

7. TSD extraction combining FFDP and retention curves

7.1. Method of solution

It was shown in Maalal et al. (2021) that the inversion optimization 
procedure, considering the displacing fluid relative permeability and the 
retention curve, led to better results than when only the displacing fluid 
relative permeability was considered. Thus, one can wonder whether 
considering the retention curve in addition to the FFDP curve could 
improve the TSD identification in the case under study here. The 

retention curve corresponds to a series of capillary quasi-static equilibria 
within the porous medium and is a classical characterization of the 
material, also for thin porous media of special interest in the present 
study (see e.g. Fairweather et al., 2010). However, this implies in 
practice to perform an additional experiment since the FFDP devices are 
typically not adapted to measure the retention curve. Examples of spe
cific measurement devices adapted to thin porous media are described 
for instance in Fairweather et al. (2010) and Gostick et al. (2008). To 
obtain the drainage retention curve, the procedure is somewhat similar 
to the FFDP procedure. The porous medium is initially saturated by a 
wetting fluid. Then a non-wetting fluid is injected through a series of 
pressure steps. An important difference compared to the FFDP devices is 
the presence of a porous membrane with smaller pores than in the me
dium of interest at the outlet, preventing the non-wetting fluid to exit the 
porous medium. Thus, contrary to the FFDP, there is no displacing fluid 
flow in the porous medium when an equilibrium is reached. An impor
tant difference lies also in the fluid-fluid distribution. In the case of the 
retention curve, the fluid-fluid distributions are quasi-static, only 
controlled by capillary effects. By contrast, as illustrated in Fig. 2, the 
fluid-fluid distributions are affected by the viscous pressure drop in the 
displacing fluid in the case of the FFDP. The retention curve is the graph 
of the pressure difference, Pc = Pnw –Pw, between the two fluids as a 
function of the wetting fluid saturation, S, Pnw and Pw being respectively 
the pressure in the non-wetting and wetting fluids, whereas S is the 
volume fraction of the pore space occupied by the wetting fluid. It 
should be clear that the wetting fluid (the non-wetting fluid, respec
tively) corresponds to the displaced fluid (the displacing fluid, respec
tively) in the FFDP. The couple of fluids is, however, not necessarily the 
same in the FFDP and the retention curve measurement since two 
separate measurement devices are used. In what follows, it is therefore 
assumed that both the FFDP curve, χ(ΔP), and the retention curve, Pc(S), 

Fig. 6. Results of the optimization procedure for a case where the reference p.d.f. is Gaussian. (a) TSD of the optimized network (the inset shows the reference TSD). 
(b) FFDP curve for the reference network and the optimized network.

Table 3 
Comparison between the reference TSD and the optimzed TSD. Case where the 
reference TSD is the Gaussian TSD depicted in the inset in Fig. 6a.   

Gaussian uniform   
Optimized network   Optimized network 

Statistical 
Moments 
(μm) 

Real 
TSD 

Obtained 
TSD 

Relative 
Error 
(%) 

Real 
TSD 

Obtained 
TSD 

Relative 
Error 
(%) 

Mean 42.05 43.65 3.8 41.16 42.8 3.98 
Standard 

deviation 
10.2 13.16 33.33 6.08 7.19 18.25 

Skewness -0.22 0.41 - -0.6 -0.34 - 
Kurtosis 2.71 2.95 8.86 1.81 1.71 5.44  
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were measured and are available. For the present study, this means that 
the curve Pc(S) can be computed for the reference network as well as for 
all the networks generated during the optimization procedure. The al
gorithm for computing the retention curve in a network is described in 
Maalal et al. (2021) and therefore is not further again reported here. The 
optimization procedure is completely analogous to the one described in 
this reference when both the retention curve and the relative perme
ability curve is used. The sole modification is the use of χ (Eq. (12)) in 
place of Qn in Maalal et al. (2021). 

7.2. Results 

In Fig. 8, the results on the retention curve, the FFDP curve and the 
TSD resulting from the optimization procedure are reported together 
with the corresponding quantities for the reference network. 

As can be seen from the comparison between Figs. 6 and 8, using 
both the retention and FFDP curves in the optimization process leads to 
significantly better results. This is also confirmed by the results reported 
in Table 4. It can be noted in Fig. 8a and b that the retention and FFDP 
curves resulting from the optimization procedure reproduce very well 
the corresponding curves of the reference case. As shown earlier (Maalal 
et al., 2021), it is of course possible to develop the inverse optimization 
procedure using only the retention curve. For completeness, the results 
obtained with this strategy are also indicated in Table 4. As can be seen, 
results when only the retention curve is used are slightly better than 
when only the FFDP curve is employed. However, the best results are 
obtained when both the retention and the FFDP curves are used. 

In Fig. 9 and Table 5, results obtained for the case of the uniform 
distribution depicted in the inset of Fig. 9c are reported. A comparison of 
Fig. 9 with Fig. 7 shows that here, again, significantly better results are 
obtained when the FFDP curve is used in conjunction with the retention 
curve in the optimization process. However, results for the uniform 
distribution can be judged as slightly less satisfactory than for the 
Gaussian distribution. In particular, it can be noticed that the procedure 
leads to identify a few throat sizes greater than the greatest throat size in 
the reference distribution. Again, this can be attributed to the procedure 
used to estimate the maximum radius of the distribution with the factor 
1.3, as mentioned at the end of Section 6.2. 

Nevertheless, to further illustrate the capabilities of the inverse 
optimization procedure as above described, two additional tests were 
performed considering a reference Log-normal distribution (as depicted 

in Fig. 10a) and the expected more challenging bimodal distribution 
depicted in Fig. 11a. For these cases, only the full optimization pro
cedure, i.e., the one combining both the Pc(S) and χ(ΔP) curves was 
used. As can be seen from Figs. 10 and 11, respectively corresponding to 
the Log-normal and bimodal distributions, and from Table 6, results are 
quite satisfactory. Here also, the match between the reference capillary 
pressure and FFDP curves and the curves resulting from the optimization 
procedure is excellent although they are not reported here for the sake of 
brevity. Finally, from the four reference TSD tested in this study, the less 
satisfactory results were obtained for the uniform TSD, mainly because 
of the uncertainty associated with the specification of the upper bound 
radius of the distribution. 

8. Discussion

The TSD identification based on the optimization procedure clearly
leads to much better results than the conventional FFDP approach. 
However, several simplifications were introduced. The displacement 
was computed neglecting the viscous pressure drop in the displaced fluid 
during the transient period occurring right after the inlet pressure in
crease until a new steady–state (equilibrium) is reached. As explained 
before, this approximation was made because the FFDP procedure is 
based on small inlet pressure increments, corresponding to a few 
meniscus displacements between two successive pressure steps. Never
theless, it would be interesting to test the quality of the approximation 
from comparisons with more advanced models, such as dynamic pore 
networks for instance, (see e.g., Joekar-Niasar et al., 2010; Joekar-Nia
sar and Hassanizadeh, 2012). Trapping was neglected because it is 
exacerbated in 2D networks compared to 3D networks. In this respect, it 
would be interesting to consider 3D networks with trapping. It may be 
expected that some pore sizes are unidentified because of trapping since 
the trapped regions cannot be visited by the menisci probing the pore 
space.  

Also a network of identical structure, i.e., a square network, was 
considered for the reference network and the networks generated in the 
optimization procedure. Obviously, this is a serious limitation. Howev
er, the idea was to first test the procedure for this particular case where 
the network structure is known. The next step would be to test the 
procedure considering a reference network structure different from the 
one used in the optimization procedure and explore whether it is still 
possible to reasonably identify the TSD. In this respect, the connectivity, 

Fig. 7. Results of optimization procedure for a case where the reference p.d.f. is uniform. (a) FFDP curve for the reference network and the optimized network. (b) 
TSD of the optimized network (the inset shows the reference TSD). 
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i.e., the number of adjacent pores connected to a given pore, appears as
an important parameter (Meyers et al., 2001; Mourhatch et al., 2011).
This suggests to include the connectivity as a parameter to be identified
in the optimization procedure. Some of the above elements were also
discussed in Maalal et al. (2021) where complementary aspects can be
found. In this reference, it was concluded that the combined use of the
retention and displacing fluid relative permeability curves leads to
better results than the use of the relative permeability curve alone. A
similar conclusion is reached here since the combined use of the

retention and FFDP curves leads to the best results for all the distribu
tions tested. 

The combined use of the retention curve and FFDP curves is thus 
recommended. For the TSD identification of thin porous media with 
throats in the micronic range, such as the diffusion medium used in fuel 
cells for example (Fairweather et al., 2010; Gostick et al., 2008; Park 
et al., 2012), obtaining both curves should not be a problem. For thin 
nanoporous media, the combined approach could be more difficult to 
use because measurement of the retention curve can be a challenging 

Fig. 8. Results of the optimization procedure when both the FFDP and the retention curves are used for a case where the reference p.d.f. is Gaussian (the mean radius 
and standard deviation are respectively equal to 40 μm and 10 μm). (a) retention curve and (b) FFDP curve for the reference network and the optimized network. 
Note that ΔP = Pi − Po corresponds to Pc. (c) TSD of the optimized network (the inset shows the reference TSD). 

Table 4 
Comparison between the reference TSD and the TSD obtained from the optimization procedure. Case where the reference TSD is the Gaussian TSD depicted in the inset 
of Fig. 8c.    

Pc only FFDP only  both FDDP and Pc

Statistical 
Moments 
(μm) 

Real TSD Obtained 
TSD 

Relative 
Error 
(%) 

Obtained 
TSD 

Relative 
Error 
(%) 

Obtained 
TSD 

Relative 
Error 
(%) 

Mean 42.05 41.11 2.3 43.65 3.8 41.96 0.21 
Standard 

deviation 
10.2 10.3 0.9 13.16 33.33 10.14 0.59 

Skewness -0.22 -0.42 - 0.41 - -0.36 - 
Kurtosis 2.71 2.93 7.66 2.95 8.86 2.86 5.54  
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task. In practice, the retention curve measurement implies to place a 
porous membrane at the outlet of the porous medium of interest. The 
pores in the outlet membrane must be smaller than the pores in the 
porous medium to be characterized in order to prevent the non-wetting 
fluid to exit the sample. Using a membrane with the required pore size 
when the pores in the porous medium of interest are in the nanometer 
range may be a difficulty in practice. This problem is not encountered 
with the FFDP technique. Also, the FFDP technique can be performed 
using a pair of immiscible liquids with a relatively low interfacial ten
sion so as to generate the displacement with reasonably low-pressure 

differences even in the presence of nano-pores. Thus, in that case, the 
FFDP technique combined with the optimization procedure is an inter
esting option to characterize the TSD. 

9. Conclusion

Pore network simulations were developed in order to evaluate the
fluid-fluid displacement porosimetry (FFDP) technique. It was suggested 
that two types of microstructure elements, namely pore bodies and pore 
throats, must be distinguished in the pore space. It was argued that the 

Fig. 9. Results of the optimization procedure when both the FFDD and retention curves are used for a case where the reference p.d.f. is uniform (the maximum and 
minimum radius are respectively 50 μm and 30 μm). (a) retention curve and (b) FFDP curve for the reference network and the optimized network. Note that ΔP = Pi 

− Po corresponds to Pc. (c) TSD of the optimized network (the inset shows the reference TSD). 

Table 5 
Comparison between the reference TSD and the TSD obtained from the optimization procedure. Case where the reference TSD is the uniform TSD depicted in the inset 
in Fig. 9c.    

Pc only FFDP only  both FFDP and Pc

Statistical 
Moments 
(μm) 

Real TSD Obtained 
TSD 

Relative 
Error 
(%) 

Obtained 
TSD 

Relative 
Error 
(%) 

Obtained 
TSD 

Relative 
Error 
(%) 

Mean 41.16 41.25 0.21 42.8 3.98 40.96 0.49 
Standard 

deviation 
6.08 6.14 1.01 7.19 18.25 5.85 3.78 

Skewness -0.6 -0.04 - -0.34 - -0.49 - 
Kurtosis 1.81 2.9 60.17 1.71 5.44 2.6 43.65  
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distribution commonly obtained with the FFDP technique was the throat 
size distribution (TSD) rather than the pore body size distribution 
(PBSD) in accordance with the physical process at play (drainage). 
Direct Pore network simulations indicate that the commonly used FFDP 
procedure for identifying the TSD from the FFDP curve introduces a bias 

toward unrealistic small sizes as a consequence of the viscous pressure 
drop in the displacing fluid. The thicker the porous medium, the greater 
is the bias. In practice, this means that the results obtained with the 
commonly used FFDP procedure should not be regarded as representa
tive of the real TSD when the pore space structure is significantly 
different from a system of straight non-interconnected quasi-cylindrical 
pores. 

A significantly more sophisticated procedure, combining pore 
network simulations of the immiscible displacement and an optimiza
tion technique based on a hybrid genetic and hill climbing algorithm 
recently reported in the literature was then tested to improve the TSD 
identification from the FFDP raw data. This procedure leads to much 
better results than the usual FFDP interpretation and allows eliminating 
the bias toward unrealistic small throats. Furthermore, it was shown that 
the TSD identification could be still improved by considering the 
retention curve in addition to the FFDP curve in the optimization 
procedure. 

The efficiency of the method proposed here is to the cost of a 
significantly less simple procedure than the commonly used FFDP 
interpretation technique. The latter is analytical whereas the 

Fig. 10. Reference Log-normal TSD (a)) and TSD obtained from the optimization procedure using both the FFDP and capillary pressure curves as target data (b)). 30 
× 30 square network. 

Fig. 11. Reference bimodal TSD (a)) and TSD obtained from the optimization procedure using both the FFDP and capillary pressure curves as target data (b)). 30 ×
30 square network. 

Table 6 
Comparison between the reference TSD and the TSD obtained from the opti
mization procedure making use of both the capillary pressure and FFDP curves 
as target data. Cases where the reference TSD is the Log-normal TSD depicted in 
Fig. 10a and the bimodal TSD depicted in Fig. 11a.   

Log-normal TSD Bimodal TSD 

Statistical 
Moments 
(μm) 

Real 
TSD 

Obtained 
TSD 

Relative 
Error 
(%) 

Real 
TSD 

Obtained 
TSD 

Relative 
Error 
(%) 

Mean 40.84 41.38 1.31 36.16 36.23 0.19 
Standard 

deviation 
9.33 10.01 7.25 16.06 14.63 8.92 

Skewness 0.05 0.08 - -0.22 0.11 - 
Kurtosis 2.62 2.73 4.13 1.37 1.69 23.33  
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optimization procedure implies repeated numerical simulations of the 
immiscible displacements in the pore space. In addition, several sim
plifications were introduced to test the improved optimization proced
ure. In particular, identical network structure and size were considered 
in the reference network and the various networks generated during the 
optimization procedure. The variability in the pore size was neglected, 
considering only the throat size distribution. Owing to these simplifi
cations, solving the problem consisting in identifying the TSD (and the 
PBSD) from macroscopic data such as the FFDP and capillary pressure 
curves clearly requires further work. 
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