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GROUND STATE ENERGY OF THE LOW DENSITY BOSE GAS
WITH THREE-BODY INTERACTIONS

PHAN THANH NAM, JULIEN RICAUD, AND ARNAUD TRIAY

ABSTRACT. We consider the low density Bose gas in the thermodynamic limit
with a three-body interaction potential. We prove that the leading order of the
ground state energy of the system is determined completely in terms of the scat-
tering energy of the interaction potential. The corresponding result for two-body
interactions was proved in seminal papers of Dyson (1957) and of Lieb—Yngvason
(1998).

Dedicated to the memory of Freeman J. Dyson (1923-2020)

1. INTRODUCTION

The Bose-Einstein condensation (BEC) is the phenomenon where many bosonic
particles occupy a common one-body quantum state. It was predicted in 1924 [4]
11, 12] and experimentally observed in 1995 [IJ, 9], but the rigorous derivation of the
BEC from first principles remains a major question in quantum physics. In fact, the
pioneer works of Bose [4] and Einstein [I1] [12] are rigorous, but they concern only
the non-interacting gas. The interactions between particles are essential to explain
several phenomena such as superfluidity [16] and quantized vortices [29], but they
complicate the analysis dramatically.

In general, a genuine many-body interaction potential of the form U(z1,...,xN),
where N is the number of particles, is too difficult for practical computations. In
dilute Bose gases, which are most relevant to the experiments in [Il 9], the range
of the interaction is much smaller than the average distance between particles, and
hence the interaction is often described by an effective potential depending only on
few variables. Due to its simplicity, the two-body interaction is most assumed in the
literature. In this context, the mathematical theory of interacting Bose gases goes
back to Bogoliubov’s 1947 paper [3] where excited particles (the particles outside
of the condensate) are treated as if they were quasi-free, leading to a prediction of
the ground state energy and the excitation spectrum. In particular, Bogoliubov’s
theory gives a qualitative explanation of Landau’s criterion for superfluidity [16].
However, as already noticed in [3], when applied to dilute Bose gases, Bogoliubov’s
approximation does not capture correctly the two-body scattering process of parti-
cles. Mathematically, this means that the usual mean-field approximation admits a
subtle correction due to the correlation between particles.

While the emergence of the scattering length can be heuristically derived using
perturbation methods [I5] 18], the rigorous understanding from first principles is
highly nontrivial. In a seminal paper in 1957 [10], Dyson proved rigorously that the
ground state energy per volume in the thermodynamic limit satisfies

Cysap(1+ 0(1) s 0) < en(p) < 4map(L + 0(1) s o) 1)
1
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Here p is the density of the system and a is the scattering length of the two-body
interaction; the condition pa® — 0 places us in the dilute regime. In [10], Dyson
focused on a hard-sphere gas, but his argument can be translated to include general,
positive potentials of finite range. Thus the significance of (1)) is the universality,
namely the leading order of the complicated many-body energy can be determined
in terms of only the scattering length of the interaction (any other details of the
interaction potential is irrelevant). It turns out that the upper bound in () is
sharp, while the lower bound is about 14 times smaller than the correct one. It took
some 40 years until Lieb—Yngvason [24] proved the matching lower bound, thus
concluding

e25(p) = dmap?(1 + o(1) o s0) (2)
The proof in [24] also uses Dyson’s important idea from [I0] of substituting a soft
potential for the original one by sacrificing the kinetic energy. This argument, often
referred to as Dyson’s lemma, plays an important role in various dilute models, e.g.
the Gross—Pitaevskii limit studied in [23] 20, 21} 26]. See [32, 2} 13| 14] for rigorous
results on the next order correction to (2)).

Although the two-body interaction is enough for many applications, in some cases
the three-body correction is not negligible [5], 30]. They contribute significantly, for
example, to the computation of the binding energy of water [25]. In ultracold quan-
tum gases, they can also be artificially enhanced by external fields, in a similar way
to how the two-body scattering length is tuned by Feshbach resonance, and are ex-
pected to give rise to exotic physics like Pfaffian states [30]. On the mathematical
side, it is unclear how Bogoliubov’s approximation should be modified in the dilute
regime. In particular, to our knowledge, there is still a notable absence of heuristic
discussion on the emergence of the three-body scattering process, let alone the rig-
orous understanding from first principles. The time-dependent problem, with the
mean-field type potential N65_2V(Nﬁ(x -y, T — z)) for 5 > 0 small, has already
been studied [8] 6 33} [7, 17, 28], [19], and in a recent work [27] we derived the leading
order of the ground state energy in the Gross—Pitaevskii limit 5 = 1/2. The main
purpose of the present paper is to extend the analysis to the thermodynamic limit,
thus proving an analogue of (2]) for the low density Bose gases with three-body
interactions.

Acknowledgments. We received funding from the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
(EXC-2111-390814868). J.R. also acknowledges financial support from the French
Agence Nationale de la Recherche (ANR) under Grant No. ANR-19-CE46-0007
(project ICCI).

2. MAIN RESULT

2.1. Model. We consider N bosons in 2 = [~ L/2, L/2]3 for some L > 0, interacting
via a non-negative potential V : R? x R? — [0,00). The system is described via the
Hamiltonian

N
HN,L :Z_A$i + Z V(xi—mj,xi—mk) (3)
=1 1<i<j<k<N

acting on the bosonic space L2(Q") where —A denotes the Laplacian with Neumann
boundary conditions on . Since Hy 1, has to let L2(QY) invariant, this imposes
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the following three-body symmetry on the interaction potential
V(CE,y)ZV(y,CC) and V(m—y,x—z):V(y—x,y—z):V(z—y,z—x). (4)

The thermodynamic ground state energy per volume is defined as

VU, Hy ¥
esg(p) := lim inf M (5)
N—oo [w)2,=1 L3
N/L3—p L

That the limit exists and does not depend on the boundary conditions is well-known,
see for instance [31]. We will estimate esg(p) in terms of the scattering energy of
the interaction potential V.

2.2. Scattering energy. Let d > 3 and 0 < v € L®(R?) be compactly supported.
We define the zero-scattering energy of v by

bo)i= inf [ (TP + ool - 9o P) e, ()
peH!(RY) /R4
Here H'(R?) is the space of functions g : R? — C vanishing at infinity with [Vg| €
L?(R%). Equivalently, we can also write b(v) = limp_,00 br(v) where bgr(v) is the
energy in the ball B(0, R) with the boundary condition ¢ = 0 on {|z| = R} (see [22]
Appendix C] for the latter definition). Contrarily to [22] however, we do not need to
assume that v is radially symmetric. As proved in [27], the variational problem ({&l)
has an optimizer w = 1 — f where f solves the scattering equation
—2Af(x) +v(x)f(x) =0, VxeR? and |l‘im flx)=1.
X|—00

Integrating the above equation against w(x) = 1 — f(x), one obtains an alternative
expression for the modified scattering energy

b(v) = /Rd v(x)f(x) dx.

Note that if we formally insert the hard-sphere potential

0 X <a
vhs(x):{ . |x]

0, x| > a

in (@), then we find that b(vys) = cqa® 2. For example b(vyps) = 8ma when d = 3.
Thus b(v)l/ (@=2) plays the role of the scattering length, up to a universal factor.
In particular, for three-dimensional particles with three-body interactions (d = 6),
the limit

pb(v)3/* = 0
corresponds to the dilute regime, where the length of the interaction (~ b(v)/%) is
much smaller than the mean distance between particles (~ p~1/3).

2.3. Modified scattering energy. We now focus on the Hamiltonian in (3]). It
turns out that the leading order of esg(p) will be given in terms of a modified
scattering energy of V, instead of the usual one as in (@]). Introducing M : R? xR3 —

R3 x R? given by
Mo L <\/§+1 \/3—1>
22 \V3-1 V3+1)’

we define the modified scattering length of V' as
bpm (V) :=b(V(M-))det M.

(7)
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Equivalently, we can express it similarly to (@) as
V)= int [ (MVeP VeI eGP) dx (8)
weH(RS) JRd

The matrix M naturally appears when the problem (8) is posed in terms of reduced
coordinates. Indeed, the change of coordinates

T1:§($1+$2+$3), ro=x1 —x9, and Tr3=z1— T3,

leads to
- Al‘l - Amg - Am;g + V(xl —T2,T1 — 1’3)
1 2 1 2 1 2
=3P +Dry + 0y | F 3P~ Pra + 3P~ Prs +V(r1,m2)
_ 1l 9(p2 2 %
—3m+(%+mﬁmww+(mm% (9)

where we have denoted p, = —iV,. The last two terms, which are independent of
the first one, lead to the minimization problem (8). The matrix M has been chosen

so that
1/2 1
2—_
M —2<1 2>. (10)

As proved in [27], the variational problem (8) has an optimizer w = 1 — fy( where
fm satisfies the three-body symmetry () and solves the scattering equation
2AMmfm(X) F V() fm(x) =0, VxRS and lim f(x)=1,

|x|—00

with —A = M - V|?. Then the modified scattering energy can be written as
V) = [ V) faalx) dx.

Since bpa(V) and b(V) have the same order of magnitude, ba(V)/4 is propor-
tional to the length of the interaction and the diluteness is still encoded in the limit
pba (V)34 = 0 (see also Section 22).

2.4. Main result. We can now state our main theorem.

Theorem 1. Let V : R? x R® — [0,00) be bounded, compactly supported namely
SuppV C {|x| < Ry} for some Ry > 0, and satisfy the three-body symmetry ).
Then in the dilute limit Y = pr(V)3/4 — 0, the thermodynamic ground state
energy per volume in (Bl) satisfies

1
e3(p) = cbm(V)p(1+O(Y"))
for some constant v > 0.

Remark 2. Our proof of the lower bound is easily extendable to hard-core poten-
tials, and the error O(Y") is uniform in V' as long as its range stays bounded or even
increases slowly. For the upper bound, however, the error is uniform in V' assuming
that Ro/by(V)Y4 ||V piba(V) ™ and ||V || oo bpg (V)12 stay bounded. Those con-
ditions come from the error estimate in Lemma [7] and could be easily improved, see
also the end of Section Bl We believe the result to be true for hard-core potentials
too, as Dyson proved it for two-body interactions, but we are unfortunately not able
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to adapt Dyson’s analysis of the upper bound and our proof only works for bounded
potentials. A

The proof of Theorem [l occupies the rest of the paper. In Section [ we recall a
Dyson’s lemma for the three-body interaction potential. This ingredient is similar
to that of [27], except that in the present paper we have to take into account the
boundary condition carefully since we will apply the lemma to bounded sets. In
Section @ we prove the lower bound esg(p) > (1/6)ba(V)p3(1+O(Y")) by following
the localization method of Lieb—Yngvason [24]; more precisely we will use a many-
body version of Dyson’s lemma and the Temple inequality on small boxes. The upper
bound esp(p) < (1/6)ba(V)p3(1 + O(Y")) essentially follows from our analysis in
the Gross—Pitaevskii limit in [27], and the details will be explained in Section Bl

3. DYSON’S LEMMA

Lemma 3 (Dyson Lemma for non-radial potentials). Let d > 3, Ry/2 > Ry > Ry >
0 and {|x| < Ry} € Q C RY be an open set. Let 0 < v € L>®°(R%) with Suppv C
{|x| < Ro}. Then there exists 0 < U € C(R?) with SuppU C {R; < |x| < Ra} and
fRd U = 1 such that the following operator inequality holds on L?(£2)

CyqR
—2MV 51 {x|<r3MVx + v(x) > by (v) <1 - ]d% 0> U(x),
1

with a constant Cy > 0 depending only on the dimension d.

Proof. The proof is a simple extension of the one in [27] to general domains, we
sketch the main steps.

Step 1: Removing the M dependence. We see that by the change of variable
x = My, it is enough to prove that under the same assumptions

C,R
2T ey U+ 0OMY) 2 800 (1= SR ) UaMy) on 2@,

We assume R; > 2Ry without loss of generality as, otherwise, the claim holds

with Cq = 2. Using that /1/2 < M < /3/2, we obtain {|y| < v/2/3Ra2} C
{IMy| < Ry} and Suppv(M-) C {|x| < v2Rp}. So it is sufficient to prove the
original claim for M = 1, R = v/2Ry, R} = v2R; and R, = \/2/3Rs.

Step 2: The case M = 1. We abuse notation and omit the prime in R] for
0 <i < 2. As proved in [27], there exists a solution f to the scattering equation

0< f(x)<1, —2Af(x)+v(x)f(x)=0, VxeRS, and lim f(x)=1.

|x|—00

Then for any ¢ € C°°(2) compactly supported, we define n = ¢/f, and for any
R € [Ry, Rs], using the equation satisfied by f, we obtain

[ (Ve + ool
B(0,R2)

> [ Vel = [ 2P [ ey
B(0,R) B( (0,R)

) )

> 2/ W2f IV f
dB(0,R)
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where 7y = x/|x| is the outward unit normal vector on the sphere 0B(0, R). Now
using that [S?1|7!|x|?~! is the Green function of the Laplacian on R%, we obtain

. 1 v(y)f(y) Ry _ b CaRo
V160 gy [ R (1 G ) @ = e (1- )

]

Then, using f~! > 1, we have for all R € [Ry, Rs),

b(?}) CdRo 2
2IVp|? +v|p|?) > (1 - )/ .
/B(O,Rg)( Vel i ) |Sd-1| Rd-1 R dB(0,R) i

Now letting U(R) = [{R; < |x| < Ro}| ‘1R, <r<r,, multiplying by |ST"}R4! on
both sides, and integrating over [Ri, Rs|, one obtains the desired result. U

4. LOWER BOUND

In this section we prove the lower bound
1
e(p) = cbm(V)p*(1+0(Y")),  when Y := pbu(V)** = 0.

We follow the strategy of [24] and estimate the energy of the box [—L/2, L/2]3 by the
sum of the energy on smaller boxes [—£/2, £/2]? with Neumann boundary conditions.
The interaction among the boxes is discarded (here the positivity of the potential
is crucial) and the number of particles in each box is controlled by a sub-additivity
argument. Let us introduce the Hamiltonian

Hoyp=> Do+ > OV (Ui —zj,0—x))  on L([=1/2,1/2]*Y),
=1

1<i<j<k<n

where —A is the Neumann Laplacian on L?([-1/2,1/2]3) and ¢ > 0. Denoting
UT = (372 (¢.), one has H, o = (72U*H, A acting on L2([—£/2,£/2]3V), where
we recall that H, ; is defined in (B]). We have the following result.

Proposition 4 (Energy at short length scales). Let

1 e
g <ac< %, 0~ by (V)4 (pr(V)3/4> and 0 <n <10pf.
Then we have
7 bM(V) _ _ 3 5y v
H, o> n(n —1)(n —2) + O(p b (V)2Y"),

604
for some constant v > 0.

Remark 5. By analogy to the two-body case, one can define the parameter a =
b M(V)l/ 4 that plays the role of a scattering length. Using the scaling properties of
br(V)/4, one can rewrite the potential

CV Uz —y,x—2)) = <£)217 <§(m—y,x—z)> :

a

with ba (V) = 1. In [27], the Gross—Pitaevskii regime was studied where the po-

tential scaled like nV (nY/2(z — y,z — z)) for a potential V with fixed scattering
energy. Assuming that there are approximately n ~ pf3 particles in the box, this
corresponds to taking

lap 2 3 a
— | =plgp = lop = —.
<a> Ptap GP Py
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We will however consider length scales much shorter than in the Gross—Pitaevskii
regime. More precisely, we will choose £ ~ a(pa’)™® ~ by (V)/4Y~* for some
a < 1. For those length scales the gap of kinetic operator is large enough to apply
the Temple inequality. A

4.1. Proof of Proposition @ We will replace the singular potential 2V (¢-) by a
softer one N"2R~SU(R~!.) and then use the Temple inequality to conclude. For the
trapped systems in R3 considered in [27], the renormalization of the potential was
implemented using [27, Lemma 8]. This result holds on the whole R? and cannot
be directly applied to our case because of the presence of the boundary. However, a
very simple adaptation of it gives the following result, for which we define

Ay =(1—n)[-1/2,1/2*, forn>0.

Lemma 6 (Many-body Dyson lemma in a finite box). Let 0 < W € L>®(R®) be
supported in B(0, Ry) and satisfy the symmetry ). Define U as in Lemmal3, with
SuppU € {R; < x| < Ry} and Up = R™SU(R™!) for R > 0. Then, for all R,n > 0
such that 1 > RoR and R1R > Ry, the following holds on L2(AN)

N
1

E p22+6 E W(x; — xj,2; — x1)

i=1

1<i,j k<N
g ot
b
> mW) ([ CRoY
6 R
x; +x; + xp
x> Un(wi —aj,mi —ap)la, (@) [] 62r <% — xl> .
1<i, JE<N Ik
ikt

Here C > 0 is a universal constant (independent of W, R,U, N,n).

Proof. The proof is similar to that of [27, Lemma 8], we will just recall the main
steps. First, we denote xg = L{j;j<ry = 1 -0 forx € R3. For (x1,...,15) € (R3)M
and 4,5,k € {1,2,..., M} with i # j # k # i, we define

Ti+ x5 + Tk
Fije = xr(@i — z;)xr(ri — 2p)xr(z; —2x) [] O2r <% - 351) - (11)
I#i,5,k

This cut-off is such that for every 1 < ¢ < M, there could be at most one pair j, k
such that Fjj, = Fj; # 0. Thus we have the “no four-body collision” bound

Z Fijp < 2. (12)
1<) k<M
i#j#hAi

Multiplying it by p; on both sides, summing over 1 <7 < N, we obtain

N
1

E P?*‘g E W(x; — x5, 2; — xy)

i=1

1<i,j k<N
H ik

1
=z 6 Z Z PeFijipg + Wz — x5, — o)
IS/LJJCSN qe{l,],k}
i#j#k#i
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Now, we focus on the summand inside the square brackets. Let us change coordinates
as in (@) and apply Lemma[3l Tt gives

Z peLijkpg + W (xi — zj, 2 — )

q€{i,j .k}
{2Mpr”]l{|rj,€|<3/z}/\/lpr” + W(rj ] H O2r(ri — z1)1a, (i)
1#1,5,k
> (1= CRo/R)bpa(W)Ur(xjr) [] b2r(ri — z)la,(rs),
I#4,5,k
where we used the notation rj; = (rj,r;) € RS This finishes the proof. O

Let «, 8 > 0 and let us define ¢ and R via

b (V)M
14
We also use the notations 7 = > | —A,, and

Wy = b (V) <1 _ CRO> "

Y = pbag (V)4 =Y® and R=Y"

604 R
T+ T;+ T
X Z Ur(z; — zj, 2 — xp)1a, (24) H Oor ( - ] xl>.
1<i,j,k<n 1#1,5,k
iFjFkF

Then for n = 2R > 4Ry = Cbp (V)4 /0 and e > 0, applying Lemma [f we obtain

We now use the Temple inequality. Let us consider €7 as the unperturbed Hamil-
tonian. Its ground state, associated to \g = 0, is ¥y = 1 and its second eigenvalue
is A; = em. The perturbation (1 — €)Wy is non-negative thence, as long as

A1 — )‘0 > <\II0’ (1 - 6)VVU\I]O> ) (13)
it holds by the Temple inequality that
(Wo, Wi W) — (W, Wy ¥Pp)?
A= Ao — (1= e){Wo, Wylo)

We need to control (¥, Wy ¥g) and (¥, WIZJ\I’0> and to obtain a good lower bound
for (1 —e)(¥o, WirUy). A simple computation yields

Eo > Mo + (T, (1 — )Wy ¥g) — (1 —¢)? (14)

o, W) < ctmlV) < Qy3-oe,
64

Therefore, taking ¢ > Y375% we ensure that (I4]) is valid. In order to estimate
(P, WIZJ\I’(]), we use the pointwise bound

T +x; + T _
g Ur(zi—xj, zi—xp) 1A, (T5) H Oor (%—xo <C|U| =R 6p,
1<ij k<n I#i,j,k
A ik

from which we obtain

2
(W, WETg) < C <nR—6 ngﬁV)) < Oy?2t20-126,
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Consequently, the last term in (I4]) is estimated by

o (W, W) — (¥, Wy )2 < get y2+20-128
AL — Ao — (1= &)(Wo, Wi ¥g) — 1—Ce 1y 5a

< CEfIPBbM(V)£5y7a712671.

(1—¢)

We now estimate by below the second term in (I4]). Using that

itz +2x itz +2x
H 92R<+k—961>21— Z <1—92R<+k—$1>>7

14,5,k 10,k
we obtain
1/4
(Uo, W) > b/\géy)n(n -1(n-2)(1- CnR3) (1-17) (1 _ %)

bﬂgéy)n(ﬂ )n-2) (1 _C <Y173(a76) +Y7 + Ya*5)> :

v

Thus the Temple inequality (I4)) leads to

bm(V)

E
0 604

v

nin—1)(n—2)
— CpPom(V)E (Y1—3(a—ﬁ) LYPpye B ey 6—1y7o¢—12ﬁ—1> ‘

We now take o and § to satisfy the conditions

1 3 1 Ta—1

§<a<g and a—§<ﬁ< TER
for which the range for 5 is non empty. With this choice of parameters and choosing
e =Y (7a=128-1)/2 5, y3-5a e conclude the proof of Proposition Fl O

4.2. Proof of the lower bound in Theorem [I. Let us divide Q = [-L/2,L/2]
in M (N, L)3 boxes of size £(N, L) > 0, where M € N. We therefore have the relation
L = M/{. More precisely, we parametrize M = |LY“|, for some 1/3 < o < 3/5, so
that

1/4
lim ((L,N) = V)7
N—oo Yo
N/L3—p

Let (B;);<i<ns be the boxes and let us use the notation A = R3\ A. For ¥ € L2(QV)
and 1 < k < N, we define

M3 M3
Ck:i/ 25 N |\1;|2:i N Z/ 0|2
M3 Jon P k.3 =1 1B;(zn) M3\ k | g BNk ’

where the second equality is obtained by expanding 1 = (1p, + ]IE)N and using
the symmetry of U. The quantity M?3c;, is the expected number of boxes containing
exactly k particles. Using that [|¥|> = 1, we obtain

M3 N
M3 QN k’znzl ILBZ' (zn) QN

k=0 i=1 k=0

N
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and

N 1 M3 1

— 2 _ 2 3
chk M3 /QN Zkék,erLl ﬂBi(xn)’\I}’ M3 /&’;N N’\I}’ - p€ ’
k=0 i=1

Let us now deal with the energy. Using again the symmetry of ¥ we obtain

(U, HN V)
=N [ |Vi¥(z1,...,2N)]
QN
N(N —1)(N -2
R L S e
QN
M3 N(N —1)(N —2)
DTN [
— B, xQN~1 6 B3xQN-3
M3 N-1
N -1 / 2
> N A\VARY4
; ;} < ]{7 > Bi1+k><FiN_l_k ‘ ’
M3 N-3
N(N-1)(N-2)(N-3
+ ( 6)( )< k >/3+k —N-3-k V(xl’x2’x3)|\ll|2
i=1 k=0 BB
M3 N-1
N
> k( > / V0|2
im0 R JenEt
M3 N-3
k(k—1)(k—2) (N
N ( é( )<k>/ s V (21, 2, m3)[ V|
i=1 k=0 BfXBi
N
> MBZCkE(& k)’ (15)
k=0

where E({, k) = inf o(Hyy) and V (21, 22, 23) := V(21 — 22,21 — x3) is symmetric in
x1, T2, 3. Here, we used that

1
k U2 4 Zk(k—1)(k -2 o
/BfXEN_k|V1 | +6 ( )( )/BZkXEN_k V($1,$2,x3)| |
= TrH;fi’Yz‘,k > B k)Tr vk,
where H,fi is the translation of Hj ¢ to the box B; and the v; ;’s, defined as

Vi (X1, s TR YL, - Yk)

N
= <k> / o Y@ s AN) Y (YL Yk, 2R -, 2N)d 2
BExB;

satisfy ZZJ‘Q Tr; . = M3c,. We now use that for k < 10p¢3, by Proposition @, we
have

bm(V)

E(l,k) > k(k —1)(k —2) + o(p b (V)E3) .
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By the convexity of ¢ — t(t — 1)(t — 2) and denoting @ =}, 10, kcx < pl3,

Z cE(l k) > b/\gég/)x(x —1)(z —2) + O(p*bm(V)EPY™) (16)

k<10p¢3

holds for some v > 0 as in Propositiond On the other hand, using that E(¢, k+k") >
E(l, k) + E(L, k'), we obtain

1 k

S aBk) > 5B (0 10p6°
e 210p03 ( )
3 _
> pgm = {(10p6° 1) (10p6° ~ 2) + O(Pbu(V)Y")}. (A7)

Summing up (I6) and (I7), we notice that the minimum is attained for = = pf3.
Recall that we choose £ ~ aY =% so that pf3 ~ Y1732 > 1 for a > 1/3. We obtain

(U, HyW) M3 (bM(V)

73— 2 73 (g Pl (000 1) (o =2) + 0 (Pst(V)EBY”»
> ép?’bM(V) (1-3Y** 1+ 0(Y")),

where we used that L = /M. O

5. UPPER BOUND
Let us define
n
ADF =3 -aDr S W (012w — i — )
i=1 1<i<j<k<n

acting on L2([-1/2,1/2]>"), where — AP is the Laplacian with Dirichlet boundary
condition. A simple adaptation of [27] gives the following result.

Lemma 7. We have,

(v, Hyr) < %bM(W) (1 + CbM(W)_l/z)

inf
¥ 2=1 n

+ Cn B bp (W) + D) (L Wl + W z)
where the constant C' does not depend on W.

Proof. Following the proof of [27, Corollary 19], we have for all ¢ € H3([-1/2,1/2]?)
the bound

o (U HP)
m —
9]l 2=1 n
1 _
< ([ 1908 + oaaw) [ 161) + Clllzn. lllm)n b (9) + 1)

X [lellrz (L4 W lzs + [[W|ze)?.

Now, for ¢ > 0 small enough, let us choose ¢ € HZ([—1/2,1/2]®) such that 0 < ¢ < 1,
lollre =1, ¢ = 1on (1 —¢e)[-1/2,1/2]3, |Ve| < Ce™! and |Ayp| < Ce~2. Then
we have ||V, < Ce™! and [|¢||g2 < C(e7® +1). Choosing ¢ = b (W)~Y2 ) we
obtain the claim. O
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Let us introduce again the effective scattering length a = b M(V)l/ 4 let p > 0 and
let us denote Y = pa? the diluteness parameter. We will create a trial state made of
collections of Dirichlet minimizers of boxes of size ¢ ~ K/qp slightly bigger than the
Gross—Pitaevskii length scale, that is K > 1. Hence the localization error will be
subleading. We parametrize K = Y~ for some « > 0 that we will take sufficiently
small, and we define n = | K3Y ~2| ~ Y3%=2 the number of particles that we put in
each box. We consider boxes of size £ := an'/?K~1/2 ~ aKY~'. With this choice
of parameters, we have

ne—?) =) (1 + O(y?—?)a)) ,

as Y = pa® — 0. Moreover denoting again YU = ¢3/ 2y (¢-), in the sense of quadratic
forms on \/i,v H([0, M (¢ + Ry)]?) one has H, , = (~2U* HPTU, with

W(z,y) = aQK_lV(aK_l/Q(x,y)>
and where we recall that H, ¢ is defined in [3)). Note that by (W) = K2.
For M > 1 and z € [0,M — 1]?, we denote B, = (¢ + Rg)z + [0,4]® and ¥,

the normalized ground state of U *H Tl?iﬂ/l in B,. Thanks to the Dirichlet boundary

condition, we can extend ¥, by 0 outside B,. Then, taking N = nM?3, the bosonic
state W :=\/_cgo ar_1p2 V= € L2([0, M (£+ Ro)]*Y) is normalized and since the boxes
are at distance Ry apart from each other, its reduced density matrices satisfy

) = 3 ry) and T V(z—yz— 2l = Y TrV(z—y,x- 2Ty

Here we have used the notations
k
L3 (@1, z g1, ur)

N _
— <k> / U (1, ey Ty Zhtts s ZN)Y(YLy - ooy Yks 2ty - - - 2N ) dZ
[0,M (£+Ro)]3(N k)

and

k
Ffpz)(:ﬁ,---,xk;yh---,yk)
n —
- (kﬁ) / \I]Z('Ily' oy Ly R+1y - - - 7Zn)\llz(yla ey Yk Rk4+1y - - - azn) dz.
Bgn—k)

Therefore, combining the above with Lemma [7] we obtain
(U, Hn V) 1
Mg(g + R0)3 N Mg(g + R0)3

Z Tr (—A)FSIB +TrV(r—y,z— z)Fg’z

P R
=B+ Ry ZZ 12 <6bM(” )+ Com(W)

+ Cn7 B op(W) + 1) (1 [W]pe + HWHLoo)2>

1 nl /1
< —— | =K?+CK
- (1 +R0a—1yl—2a)3 /3 2 <6 +
K24 9
+C—p (1+ K?a V|1 + K|V 1) >
n

< =P (V) (1 Oy (Ya 1 y?2/3-27a | y2-3a | Y172a)) ,

=
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where Cy depends only on Roa™ !, ||V | 1a~%, and ||V || pea? (recall a := by (V)'/4).
Moreover we used that, with our choice of £ and n, we have

K’ prat 2 4
— = = 1+0(Y>)).
2 1+ [K3Y 2|/K3Y 2 pra (1+0( )
Taking 0 < o < 2/81 finishes the proof of the upper bound. O
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