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GROUND STATE ENERGY OF THE LOW DENSITY BOSE GAS

WITH THREE-BODY INTERACTIONS

PHAN THÀNH NAM, JULIEN RICAUD, AND ARNAUD TRIAY

Abstract. We consider the low density Bose gas in the thermodynamic limit
with a three-body interaction potential. We prove that the leading order of the
ground state energy of the system is determined completely in terms of the scat-
tering energy of the interaction potential. The corresponding result for two-body
interactions was proved in seminal papers of Dyson (1957) and of Lieb–Yngvason
(1998).

Dedicated to the memory of Freeman J. Dyson (1923-2020)

1. Introduction

The Bose–Einstein condensation (BEC) is the phenomenon where many bosonic
particles occupy a common one-body quantum state. It was predicted in 1924 [4,
11, 12] and experimentally observed in 1995 [1, 9], but the rigorous derivation of the
BEC from first principles remains a major question in quantum physics. In fact, the
pioneer works of Bose [4] and Einstein [11, 12] are rigorous, but they concern only
the non-interacting gas. The interactions between particles are essential to explain
several phenomena such as superfluidity [16] and quantized vortices [29], but they
complicate the analysis dramatically.

In general, a genuine many-body interaction potential of the form U(x1, . . . , xN ),
where N is the number of particles, is too difficult for practical computations. In
dilute Bose gases, which are most relevant to the experiments in [1, 9], the range
of the interaction is much smaller than the average distance between particles, and
hence the interaction is often described by an effective potential depending only on
few variables. Due to its simplicity, the two-body interaction is most assumed in the
literature. In this context, the mathematical theory of interacting Bose gases goes
back to Bogoliubov’s 1947 paper [3] where excited particles (the particles outside
of the condensate) are treated as if they were quasi-free, leading to a prediction of
the ground state energy and the excitation spectrum. In particular, Bogoliubov’s
theory gives a qualitative explanation of Landau’s criterion for superfluidity [16].
However, as already noticed in [3], when applied to dilute Bose gases, Bogoliubov’s
approximation does not capture correctly the two-body scattering process of parti-
cles. Mathematically, this means that the usual mean-field approximation admits a
subtle correction due to the correlation between particles.

While the emergence of the scattering length can be heuristically derived using
perturbation methods [15, 18], the rigorous understanding from first principles is
highly nontrivial. In a seminal paper in 1957 [10], Dyson proved rigorously that the
ground state energy per volume in the thermodynamic limit satisfies

CDysaρ
2(1 + o(1)ρa3→0) ≤ e2B(ρ) ≤ 4πaρ2(1 + o(1)ρa3→0) . (1)
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Here ρ is the density of the system and a is the scattering length of the two-body
interaction; the condition ρa3 → 0 places us in the dilute regime. In [10], Dyson
focused on a hard-sphere gas, but his argument can be translated to include general,
positive potentials of finite range. Thus the significance of (1) is the universality,
namely the leading order of the complicated many-body energy can be determined
in terms of only the scattering length of the interaction (any other details of the
interaction potential is irrelevant). It turns out that the upper bound in (1) is
sharp, while the lower bound is about 14 times smaller than the correct one. It took
some 40 years until Lieb–Yngvason [24] proved the matching lower bound, thus
concluding

e2B(ρ) = 4πaρ2(1 + o(1)ρa3→0) . (2)

The proof in [24] also uses Dyson’s important idea from [10] of substituting a soft
potential for the original one by sacrificing the kinetic energy. This argument, often
referred to as Dyson’s lemma, plays an important role in various dilute models, e.g.
the Gross–Pitaevskii limit studied in [23, 20, 21, 26]. See [32, 2, 13, 14] for rigorous
results on the next order correction to (2).

Although the two-body interaction is enough for many applications, in some cases
the three-body correction is not negligible [5, 30]. They contribute significantly, for
example, to the computation of the binding energy of water [25]. In ultracold quan-
tum gases, they can also be artificially enhanced by external fields, in a similar way
to how the two-body scattering length is tuned by Feshbach resonance, and are ex-
pected to give rise to exotic physics like Pfaffian states [30]. On the mathematical
side, it is unclear how Bogoliubov’s approximation should be modified in the dilute
regime. In particular, to our knowledge, there is still a notable absence of heuristic
discussion on the emergence of the three-body scattering process, let alone the rig-
orous understanding from first principles. The time-dependent problem, with the
mean-field type potential N6β−2V

(
Nβ(x− y, x− z)

)
for β ≥ 0 small, has already

been studied [8, 6, 33, 7, 17, 28, 19], and in a recent work [27] we derived the leading
order of the ground state energy in the Gross–Pitaevskii limit β = 1/2. The main
purpose of the present paper is to extend the analysis to the thermodynamic limit,
thus proving an analogue of (2) for the low density Bose gases with three-body
interactions.

Acknowledgments. We received funding from the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
(EXC-2111-390814868). J.R. also acknowledges financial support from the French
Agence Nationale de la Recherche (ANR) under Grant No. ANR-19-CE46-0007
(project ICCI).

2. Main result

2.1. Model. We consider N bosons in Ω = [−L/2, L/2]3 for some L > 0, interacting
via a non-negative potential V : R3 ×R

3 → [0,∞). The system is described via the
Hamiltonian

HN,L =
N∑

i=1

−∆xi
+

∑

1≤i<j<k≤N

V (xi − xj , xi − xk) (3)

acting on the bosonic space L2
s(Ω

N ) where −∆ denotes the Laplacian with Neumann
boundary conditions on Ω. Since HN,L has to let L2

s(Ω
N ) invariant, this imposes
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the following three-body symmetry on the interaction potential

V (x, y) = V (y, x) and V (x− y, x− z) = V (y−x, y− z) = V (z− y, z−x) . (4)

The thermodynamic ground state energy per volume is defined as

e3B(ρ) := lim
N→∞

N/L3→ρ

inf
‖Ψ‖2

L2=1

〈Ψ,HN,LΨ〉
L3

. (5)

That the limit exists and does not depend on the boundary conditions is well-known,
see for instance [31]. We will estimate e3B(ρ) in terms of the scattering energy of
the interaction potential V .

2.2. Scattering energy. Let d ≥ 3 and 0 ≤ v ∈ L∞(Rd) be compactly supported.
We define the zero-scattering energy of v by

b(v) := inf
ϕ∈Ḣ1(Rd)

ˆ

Rd

(
2|∇ϕ(x)|2 + v(x)|1 − ϕ(x)|2

)
dx . (6)

Here Ḣ1(Rd) is the space of functions g : Rd → C vanishing at infinity with |∇g| ∈
L2(Rd). Equivalently, we can also write b(v) = limR→∞ bR(v) where bR(v) is the
energy in the ball B(0, R) with the boundary condition ϕ ≡ 0 on {|x| = R} (see [22,
Appendix C] for the latter definition). Contrarily to [22] however, we do not need to
assume that v is radially symmetric. As proved in [27], the variational problem (6)
has an optimizer ω = 1− f where f solves the scattering equation

−2∆f(x) + v(x)f(x) = 0 , ∀x ∈ R
d and lim

|x|→∞
f(x) = 1 .

Integrating the above equation against ω(x) = 1− f(x), one obtains an alternative
expression for the modified scattering energy

b(v) =

ˆ

Rd

v(x)f(x) dx .

Note that if we formally insert the hard-sphere potential

vhs(x) =

{
∞, |x| < a

0, |x| > a

in (6), then we find that b(vhs) = cda
d−2. For example b(vhs) = 8πa when d = 3.

Thus b(v)1/(d−2) plays the role of the scattering length, up to a universal factor.
In particular, for three-dimensional particles with three-body interactions (d = 6),
the limit

ρb(v)3/4 → 0

corresponds to the dilute regime, where the length of the interaction (∼ b(v)1/4) is

much smaller than the mean distance between particles (∼ ρ−1/3).

2.3. Modified scattering energy. We now focus on the Hamiltonian in (3). It
turns out that the leading order of e3B(ρ) will be given in terms of a modified
scattering energy of V , instead of the usual one as in (6). IntroducingM : R3×R

3 →
R
3 × R

3 given by

M =
1

2
√
2

(√
3 + 1

√
3− 1√

3− 1
√
3 + 1

)
, (7)

we define the modified scattering length of V as

bM(V ) := b(V (M·)) detM .
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Equivalently, we can express it similarly to (6) as

bM(V ) = inf
ϕ∈Ḣ1(R6)

ˆ

Rd

(
2|M∇ϕ(x)|2 + V (x)|1 − ϕ(x)|2

)
dx . (8)

The matrix M naturally appears when the problem (8) is posed in terms of reduced
coordinates. Indeed, the change of coordinates

r1 =
1

3
(x1 + x2 + x3) , r2 = x1 − x2 , and r3 = x1 − x3 ,

leads to

−∆x1 −∆x2 −∆x3 + V (x1 − x2, x1 − x3)

=

(
1

3
pr1 + pr2 + pr3

)2

+

(
1

3
pr1 − pr2

)2

+

(
1

3
pr1 − pr3

)2

+ V (r1, r2)

=
1

3
p2r1 + 2(p2r2 + p2r3 + pr2pr3) + V (r2, r3) , (9)

where we have denoted px = −i∇x. The last two terms, which are independent of
the first one, lead to the minimization problem (8). The matrix M has been chosen
so that

M2 =
1

2

(
2 1
1 2

)
. (10)

As proved in [27], the variational problem (8) has an optimizer ω = 1 − fM where
fM satisfies the three-body symmetry (4) and solves the scattering equation

−2∆MfM(x) + V (x)fM(x) = 0 , ∀x ∈ R
6 and lim

|x|→∞
f(x) = 1 ,

with −∆M = |M · ∇|2. Then the modified scattering energy can be written as

bM(V ) =

ˆ

R6

V (x)fM(x) dx .

Since bM(V ) and b(V ) have the same order of magnitude, bM(V )1/4 is propor-
tional to the length of the interaction and the diluteness is still encoded in the limit
ρbM(V )3/4 → 0 (see also Section 2.2).

2.4. Main result. We can now state our main theorem.

Theorem 1. Let V : R3 × R
3 → [0,∞) be bounded, compactly supported namely

SuppV ⊂ {|x| ≤ R0} for some R0 > 0, and satisfy the three-body symmetry (4).

Then in the dilute limit Y := ρbM(V )3/4 → 0, the thermodynamic ground state
energy per volume in (5) satisfies

e3B(ρ) =
1

6
bM(V )ρ3(1 +O(Y ν))

for some constant ν > 0.

Remark 2. Our proof of the lower bound is easily extendable to hard-core poten-
tials, and the error O(Y ν) is uniform in V as long as its range stays bounded or even
increases slowly. For the upper bound, however, the error is uniform in V assuming
that R0/bM(V )1/4, ‖V ‖L1bM(V )−1 and ‖V ‖L∞bM(V )1/2 stay bounded. Those con-
ditions come from the error estimate in Lemma 7 and could be easily improved, see
also the end of Section 5. We believe the result to be true for hard-core potentials
too, as Dyson proved it for two-body interactions, but we are unfortunately not able
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to adapt Dyson’s analysis of the upper bound and our proof only works for bounded
potentials. △

The proof of Theorem 1 occupies the rest of the paper. In Section 3, we recall a
Dyson’s lemma for the three-body interaction potential. This ingredient is similar
to that of [27], except that in the present paper we have to take into account the
boundary condition carefully since we will apply the lemma to bounded sets. In
Section 4, we prove the lower bound e3B(ρ) ≥ (1/6)bM(V )ρ3(1+O(Y ν)) by following
the localization method of Lieb–Yngvason [24]; more precisely we will use a many-
body version of Dyson’s lemma and the Temple inequality on small boxes. The upper
bound e3B(ρ) ≤ (1/6)bM(V )ρ3(1 + O(Y ν)) essentially follows from our analysis in
the Gross–Pitaevskii limit in [27], and the details will be explained in Section 5.

3. Dyson’s lemma

Lemma 3 (Dyson Lemma for non-radial potentials). Let d ≥ 3, R2/2 > R1 > R0 >
0 and {|x| ≤ R2} ⊂ Ω ⊂ R

d be an open set. Let 0 ≤ v ∈ L∞(Rd) with Supp v ⊂
{|x| ≤ R0}. Then there exists 0 ≤ U ∈ C(Rd) with SuppU ⊂ {R1 ≤ |x| ≤ R2} and
´

Rd U = 1 such that the following operator inequality holds on L2(Ω)

−2M∇x1{|x|≤R2}M∇x + v(x) ≥ bM(v)

(
1− CdR0

R1

)
U(x) ,

with a constant Cd > 0 depending only on the dimension d.

Proof. The proof is a simple extension of the one in [27] to general domains, we
sketch the main steps.

Step 1: Removing the M dependence. We see that by the change of variable
x = My, it is enough to prove that under the same assumptions

−2∇y1{|My|≤
√

2/3R2}
∇y + v(My) ≥ b(v(M·))

(
1− CdR0

R1

)
U(My) on L2(Ω) .

We assume R1 > 2R0 without loss of generality as, otherwise, the claim holds
with Cd = 2. Using that

√
1/2 ≤ M ≤

√
3/2, we obtain {|y| ≤

√
2/3R2} ⊂

{|My| ≤ R2} and Supp v(M·) ⊂ {|x| ≤
√
2R0}. So it is sufficient to prove the

original claim for M = 1, R′
0 =

√
2R0, R

′
1 =

√
2R1 and R′

2 =
√

2/3R2.

Step 2: The case M = 1. We abuse notation and omit the prime in R′
i for

0 ≤ i ≤ 2. As proved in [27], there exists a solution f to the scattering equation

0 < f(x) ≤ 1, −2∆f(x) + v(x)f(x) = 0 , ∀x ∈ R
6 , and lim

|x|→∞
f(x) = 1 .

Then for any ϕ ∈ C∞(Ω) compactly supported, we define η = ϕ/f , and for any
R ∈ [R1, R2], using the equation satisfied by f , we obtain

ˆ

B(0,R2)

(
2|∇ϕ|2 + v|ϕ|2

)

≥
ˆ

B(0,R)

(
2|∇ϕ|2 + v|ϕ|2

)
=

ˆ

B(0,R)
2f2|∇η|2 +

ˆ

∂B(0,R)
2|ϕ|2f−1∇f · ~n

≥ 2

ˆ

∂B(0,R)
|ϕ|2f−1∇f · ~n ,
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where ~nx = x/|x| is the outward unit normal vector on the sphere ∂B(0, R). Now
using that |Sd−1|−1|x|d−1 is the Green function of the Laplacian on R

d, we obtain

∇f(x) · ~nx ≥ 1

2|Sd−1|

ˆ

Rd

v(y)f(y)

|x|d−1

(
1− Cd

R0

|x|

)
dy =

b(v)

2|Sd−1||x|d−1

(
1− CdR0

|x|

)
.

Then, using f−1 > 1, we have for all R ∈ [R1, R2],
ˆ

B(0,R2)

(
2|∇ϕ|2 + v|ϕ|2

)
≥ b(v)

|Sd−1|Rd−1

(
1− CdR0

R

)
ˆ

∂B(0,R)
|ϕ|2.

Now letting U(R) = |{R1 ≤ |x| ≤ R2}|−1
1R16R6R2 , multiplying by |Sd−1|Rd−1 on

both sides, and integrating over [R1, R2], one obtains the desired result. �

4. Lower bound

In this section we prove the lower bound

e(ρ) ≥ 1

6
bM(V )ρ3(1 +O(Y ν)) , when Y := ρbM(V )3/4 → 0 .

We follow the strategy of [24] and estimate the energy of the box [−L/2, L/2]3 by the
sum of the energy on smaller boxes [−ℓ/2, ℓ/2]3 with Neumann boundary conditions.
The interaction among the boxes is discarded (here the positivity of the potential
is crucial) and the number of particles in each box is controlled by a sub-additivity
argument. Let us introduce the Hamiltonian

H̃n,ℓ =
n∑

i=1

−∆xi
+

∑

1≤i<j<k≤n

ℓ2V (ℓ(xi − xj , xi − xk)) on L2
s

(
[−1/2, 1/2]3N

)
,

where −∆ is the Neumann Laplacian on L2([−1/2, 1/2]3) and ℓ > 0. Denoting

UΨ = ℓ3n/2Ψ(ℓ·), one has Hn,ℓ = ℓ−2U∗H̃n,ℓU acting on L2
s([−ℓ/2, ℓ/2]3N ), where

we recall that Hn,ℓ is defined in (3). We have the following result.

Proposition 4 (Energy at short length scales). Let

1

3
< α <

3

5
, ℓ ∼ bM(V )1/4

(
ρbM(V )3/4

)−α
and 0 ≤ n ≤ 10ρℓ3 .

Then we have

H̃n,ℓ ≥
bM(V )

6ℓ4
n(n− 1)(n − 2) +O

(
ρ3bM(V )ℓ5Y ν

)
,

for some constant ν > 0.

Remark 5. By analogy to the two-body case, one can define the parameter a =
bM(V )1/4 that plays the role of a scattering length. Using the scaling properties of

bM(V )1/4, one can rewrite the potential

ℓ2V (ℓ(x− y, x− z)) =

(
ℓ

a

)2

Ṽ

(
ℓ

a
(x− y, x− z)

)
,

with bM(Ṽ ) = 1. In [27], the Gross–Pitaevskii regime was studied where the po-

tential scaled like nṼ (n1/2(x − y, x − z)) for a potential Ṽ with fixed scattering
energy. Assuming that there are approximately n ≃ ρℓ3 particles in the box, this
corresponds to taking

(
ℓGP

a

)2

= ρℓ3GP ⇐⇒ ℓGP =
a

ρa3
.
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We will however consider length scales much shorter than in the Gross–Pitaevskii
regime. More precisely, we will choose ℓ ∼ a(ρa3)−α ∼ bM(V )1/4Y −α for some
α < 1. For those length scales the gap of kinetic operator is large enough to apply
the Temple inequality. △

4.1. Proof of Proposition 4. We will replace the singular potential ℓ2V (ℓ·) by a
softer one N−2R−6U(R−1·) and then use the Temple inequality to conclude. For the
trapped systems in R

3 considered in [27], the renormalization of the potential was
implemented using [27, Lemma 8]. This result holds on the whole R

3 and cannot
be directly applied to our case because of the presence of the boundary. However, a
very simple adaptation of it gives the following result, for which we define

Λη = (1− η)[−1/2, 1/2]3 , for η > 0 .

Lemma 6 (Many-body Dyson lemma in a finite box). Let 0 ≤ W ∈ L∞(R6) be
supported in B(0, R0) and satisfy the symmetry (4). Define U as in Lemma 3, with
SuppU ∈ {R1 ≤ |x| ≤ R2} and UR = R−6U(R−1·) for R > 0. Then, for all R, η > 0
such that η > R2R and R1R > R0, the following holds on L2

s(Λ
N )

N∑

i=1

p2i +
1

6

∑

1≤i,j,k≤N
i 6=j 6=k 6=i

W (xi − xj, xi − xk)

≥ bM(W )

6

(
1− CR0

R

)
×

×
∑

1≤i,j,k≤N
i 6=j 6=k 6=i

UR(xi − xj, xi − xk)1Λη(xi)
∏

l 6=i,j,k

θ2R

(
xi + xj + xk

3
− xl

)
.

Here C > 0 is a universal constant (independent of W,R,U,N, η).

Proof. The proof is similar to that of [27, Lemma 8], we will just recall the main
steps. First, we denote χR = 1{|x|≤R} = 1−θR for x ∈ R

3. For (x1, . . . , xM ) ∈ (R3)M

and i, j, k ∈ {1, 2, . . . ,M} with i 6= j 6= k 6= i, we define

Fijk := χR(xi − xj)χR(xi − xk)χR(xj − xk)
∏

l 6=i,j,k

θ2R

(
xi + xj + xk

3
− xl

)
. (11)

This cut-off is such that for every 1 ≤ i ≤ M , there could be at most one pair j, k
such that Fijk = Fikj 6= 0. Thus we have the “no four-body collision” bound

∑

1≤j,k≤M
i 6=j 6=k 6=i

Fijk ≤ 2. (12)

Multiplying it by pi on both sides, summing over 1 ≤ i ≤ N , we obtain

N∑

i=1

p2i +
1

6

∑

1≤i,j,k≤N
i 6=j 6=k 6=i

W (xi − xj, xi − xk)

≥ 1

6

∑

1≤i,j,k≤N
i 6=j 6=k 6=i



∑

q∈{i,j,k}

pqFijkpq +W (xi − xj, xi − xk)


 .
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Now, we focus on the summand inside the square brackets. Let us change coordinates
as in (9) and apply Lemma 3. It gives

∑

q∈{i,j,k}

pqFijkpq +W (xi − xj , xi − xk)

≥
[
2Mprij1{|rjk|≤R/2}Mprij +W (rjk)

] ∏

l 6=i,j,k

θ2R(ri − xl)1Λη(ri)

≥ (1− CR0/R)bM(W )UR(rjk)
∏

l 6=i,j,k

θ2R(ri − xl)1Λη(ri) ,

where we used the notation rjk = (rj, rk) ∈ R
6. This finishes the proof. �

Let α, β > 0 and let us define ℓ and R via

Y = ρbM(V )3/4,
bM(V )1/4

ℓ
= Y α and R = Y β.

We also use the notations T =
∑n

i=1−∆xi
and

WU =
bM(V )

6ℓ4

(
1− CR0

R

)
×

×
∑

1≤i,j,k≤n
i 6=j 6=k 6=i

UR(xi − xj , xi − xk)1Λη(xi)
∏

l 6=i,j,k

θ2R

(
xi + xj + xk

3
− xl

)
.

Then for η = 2R > 4R0 = CbM(V )1/4/ℓ and ε > 0, applying Lemma 6 we obtain

Hn ≥ εT + (1− ε)WU .

We now use the Temple inequality. Let us consider εT as the unperturbed Hamil-
tonian. Its ground state, associated to λ0 = 0, is Ψ0 = 1 and its second eigenvalue
is λ1 = επ. The perturbation (1− ε)WU is non-negative thence, as long as

λ1 − λ0 > 〈Ψ0, (1 − ε)WUΨ0〉 , (13)

it holds by the Temple inequality that

E0 ≥ λ0 + 〈Ψ0, (1− ε)WUΨ0〉 − (1− ε)2
〈Ψ0,W2

UΨ0〉 − 〈Ψ0,WUΨ0〉2
λ1 − λ0 − (1− ε)〈Ψ0,WUΨ0〉

. (14)

We need to control 〈Ψ0,WUΨ0〉 and 〈Ψ0,W2
UΨ0〉 and to obtain a good lower bound

for (1− ε)〈Ψ0,WUΨ0〉. A simple computation yields

〈Ψ0,WUΨ0〉 ≤ C
bM(V )

ℓ4
n3 ≤ CY 3−5α.

Therefore, taking ε & Y 3−5α, we ensure that (14) is valid. In order to estimate
〈Ψ0,W2

UΨ0〉, we use the pointwise bound

∑

1≤i,j,k≤n
i 6=j 6=k 6=i

UR(xi−xj , xi−xk)1Λη(xi)
∏

l 6=i,j,k

θ2R

(
xi + xj + xk

3
− xl

)
≤ C‖U‖L∞R−6n ,

from which we obtain

〈Ψ0,W2
UΨ0〉 ≤ C

(
nR−6 bM(V )

ℓ4

)2

≤ CY 2+2α−12β .
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Consequently, the last term in (14) is estimated by

(1− ε)2
〈Ψ0,W2

UΨ0〉 − 〈Ψ0,WUΨ0〉2
λ1 − λ0 − (1− ε)〈Ψ0,WUΨ0〉

≤ Cε−1 Y 2+2α−12β

1− Cε−1Y 3−5α

≤ Cε−1ρ3bM(V )ℓ5Y 7α−12β−1.

We now estimate by below the second term in (14). Using that

∏

l 6=i,j,k

θ2R

(
xi + xj + xk

3
− xl

)
≥ 1−

∑

l 6=i,j,k

(
1− θ2R

(
xi + xj + xk

3
− xl

))
,

we obtain

〈Ψ0,WUΨ0〉 ≥
bM(V )

6ℓ4
n(n− 1)(n − 2)

(
1− CnR3

)
(1− η)

(
1− CbM(V )1/4

ℓR

)

≥ bM(V )

6ℓ4
n(n− 1)(n − 2)

(
1− C

(
Y 1−3(α−β) + Y β + Y α−β

))
.

Thus the Temple inequality (14) leads to

E0 ≥
bM(V )

6ℓ4
n(n− 1)(n − 2)

− Cρ3bM(V )ℓ5
(
Y 1−3(α−β) + Y β + Y α−β + ε+ ε−1Y 7α−12β−1

)
.

We now take α and β to satisfy the conditions

1

3
< α <

3

5
and α− 1

3
< β <

7α− 1

12
,

for which the range for β is non empty. With this choice of parameters and choosing
ε = Y (7α−12β−1)/2 ≫ Y 3−5α, we conclude the proof of Proposition 4. �

4.2. Proof of the lower bound in Theorem 1. Let us divide Ω = [−L/2, L/2]3

in M(N,L)3 boxes of size ℓ(N,L) > 0, where M ∈ N. We therefore have the relation
L = Mℓ. More precisely, we parametrize M = ⌊LY α⌋, for some 1/3 < α < 3/5, so
that

lim
N→∞

N/L3→ρ

ℓ(L,N) =
bM(V )1/4

Y α
.

Let (Bi)1≤i≤M3 be the boxes and let us use the notation A = R
3\A. For Ψ ∈ L2

s(Ω
N )

and 1 ≤ k ≤ N , we define

ck =
1

M3

ˆ

ΩN

M3∑

i=1

δk,
∑N

n=1 1Bi
(xn)

|Ψ|2 = 1

M3

(
N

k

) M3∑

i=1

ˆ

Bk
i ×Bi

N−k
|Ψ|2 ,

where the second equality is obtained by expanding 1 = (1Bi
+ 1Bi

)N and using

the symmetry of Ψ. The quantity M3ck is the expected number of boxes containing
exactly k particles. Using that

´

|Ψ|2 = 1, we obtain

N∑

k=0

ck =
1

M3

ˆ

ΩN

M3∑

i=1

N∑

k=0

δk,
∑N

n=1 1Bi
(xn)

|Ψ|2 =
ˆ

ΩN

|Ψ|2 = 1
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and

N∑

k=0

kck =
1

M3

ˆ

ΩN

M3∑

i=1

kδk,
∑N

n=1 1Bi
(xn)

|Ψ|2 = 1

M3

ˆ

ΩN

N |Ψ|2 = ρℓ3.

Let us now deal with the energy. Using again the symmetry of Ψ we obtain

〈Ψ,HNΨ〉

= N

ˆ

ΩN

|∇1Ψ(x1, . . . , xN )|2

+
N(N − 1)(N − 2)

6

ˆ

ΩN

V (x1, x2, x3)|Ψ(x1, . . . , xN )|2

≥
M3∑

i=1

N

ˆ

Bi×ΩN−1

|∇1Ψ|2 + N(N − 1)(N − 2)

6

ˆ

B3
i ×ΩN−3

V (x1, x2, x3)|Ψ|2

≥
M3∑

i=1

N−1∑

k=0

N

(
N − 1

k

)
ˆ

B1+k
i ×Bi

N−1−k
|∇1Ψ|2

+
M3∑

i=1

N−3∑

k=0

N(N − 1)(N − 2)

6

(
N − 3

k

)
ˆ

B3+k
i ×Bi

N−3−k
V (x1, x2, x3)|Ψ|2

≥
M3∑

i=1

N−1∑

k=0

k

(
N

k

)
ˆ

Bk
i ×Bi

N−k
|∇1Ψ|2

+

M3∑

i=1

N−3∑

k=0

k(k − 1)(k − 2)

6

(
N

k

)
ˆ

Bk
i ×Bi

N−k
V (x1, x2, x3)|Ψ|2

≥ M3
N∑

k=0

ckE(ℓ, k) , (15)

where E(ℓ, k) = inf σ(Hℓ,k) and V (x1, x2, x3) := V (x1 −x2, x1 − x3) is symmetric in
x1, x2, x3. Here, we used that

k

ˆ

Bk
i ×Bi

N−k
|∇1Ψ|2 + 1

6
k(k − 1)(k − 2)

ˆ

Bk
i ×Bi

N−k
V (x1, x2, x3)|Ψ|2

= TrHBi

k γi,k ≥ E(ℓ, k)Tr γi,k ,

where HBi

k is the translation of Hk,ℓ to the box Bi and the γi,k’s, defined as

γi,k(x1, . . . , xk; y1, . . . , yk)

:=

(
N

k

)
ˆ

Bk
i ×Bi

N−k
Ψ(x1, . . . , xk, zk+1, . . . , zN )Ψ(y1, . . . , yk, zk+1, . . . , zN )dz ,

satisfy
∑M3

i=1Tr γi,k = M3ck. We now use that for k ≤ 10ρℓ3, by Proposition 4, we
have

E(ℓ, k) ≥ bM(V )

6ℓ6
k(k − 1)(k − 2) + o

(
ρ3bM(V )ℓ3

)
.
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By the convexity of t 7→ t(t− 1)(t− 2) and denoting x =
∑

k≤10ρℓ3 kck ≤ ρℓ3,

∑

k≤10ρℓ3

ckE(ℓ, k) ≥ bM(V )

6ℓ6
x(x− 1)(x− 2) +O

(
ρ3bM(V )ℓ3Y ν

)
(16)

holds for some ν > 0 as in Proposition 4. On the other hand, using that E(ℓ, k+k′) ≥
E(ℓ, k) +E(ℓ, k′), we obtain

∑

k>10ρℓ3

ckE(ℓ, k) ≥ 1

2

k

10ρℓ3
E
(
ℓ, 10ρℓ3

)

≥ ρℓ3 − x

12

{(
10ρℓ3 − 1

) (
10ρℓ3 − 2

)
+O

(
ρ2bM(V )Y ν

)}
. (17)

Summing up (16) and (17), we notice that the minimum is attained for x = ρℓ3.
Recall that we choose ℓ ∼ aY −α so that ρℓ3 ∼ Y 1−3α ≫ 1 for α > 1/3. We obtain

〈Ψ,HNΨ〉
L3

≥ M3

L3

(
bM(V )

6ℓ6
ρℓ3
(
ρℓ3 − 1

) (
ρℓ3 − 2

)
+O

(
ρ3bM(V )ℓ3Y ν

))

≥ 1

6
ρ3bM(V )

(
1− 3Y 3α−1 +O(Y ν)

)
,

where we used that L = ℓM . �

5. Upper bound

Let us define

H̃Dir
n :=

n∑

i=1

−∆Dir
xi

+
∑

1≤i<j<k≤n

nW
(
n1/2(xi − xj, xi − xk)

)

acting on L2
s([−1/2, 1/2]3n), where −∆Dir is the Laplacian with Dirichlet boundary

condition. A simple adaptation of [27] gives the following result.

Lemma 7. We have,

inf
‖Ψ‖

L2=1

〈Ψ, H̃Dir
n Ψ〉
n

≤ 1

6
bM(W )

(
1 + CbM(W )−1/2

)

+Cn−1/3(bM(W ) + 1)12 (1 + ‖W‖L1 + ‖W‖L∞)2 ,

where the constant C does not depend on W .

Proof. Following the proof of [27, Corollary 19], we have for all ϕ ∈ H2
0 ([−1/2, 1/2]3)

the bound

inf
‖Ψ‖

L2=1

〈Ψ, H̃Dir
n Ψ〉
n

≤
(
ˆ

Ω
|∇ϕ|2 + 1

6
bM(W )

ˆ

Ω
|ϕ|6

)
+ C(‖ϕ‖L2 , ‖ϕ‖L∞)n−1/3(bM(W ) + 1)3×

× ‖ϕ‖6H2 (1 + ‖W‖L1 + ‖W‖L∞)2 .

Now, for ε > 0 small enough, let us choose ϕ ∈ H2
0 ([−1/2, 1/2]3) such that 0 ≤ ϕ ≤ 1,

‖ϕ‖L2 = 1, ϕ ≡ 1 on (1 − ε)[−1/2, 1/2]3 , |∇ϕ| ≤ Cε−1 and |∆ϕ| ≤ Cε−2. Then

we have ‖∇ϕ‖2L2 ≤ Cε−1 and ‖ϕ‖H2 ≤ C(ε−3 + 1). Choosing ε = bM(W )−1/2, we
obtain the claim. �
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Let us introduce again the effective scattering length a = bM(V )1/4, let ρ > 0 and
let us denote Y = ρa3 the diluteness parameter. We will create a trial state made of
collections of Dirichlet minimizers of boxes of size ℓ ≃ KℓGP slightly bigger than the
Gross–Pitaevskii length scale, that is K ≫ 1. Hence the localization error will be
subleading. We parametrize K = Y −α for some α > 0 that we will take sufficiently
small, and we define n = ⌊K3Y −2⌋ ∼ Y 3α−2 the number of particles that we put in

each box. We consider boxes of size ℓ := an1/2K−1/2 ∼ aKY −1. With this choice
of parameters, we have

nℓ−3 = ρ
(
1 +O

(
Y 2−3α

))
,

as Y = ρa3 → 0. Moreover denoting again UΨ = ℓ3n/2Ψ(ℓ·), in the sense of quadratic

forms on
∨N

s H1
0 ([0,M(ℓ +R0)]

3) one has Hn,ℓ = ℓ−2U∗H̃Dir
n,ℓ U , with

W (x, y) = a2K−1V
(
aK−1/2(x, y)

)

and where we recall that Hn,ℓ is defined in (3). Note that bM(W ) = K2.
For M ≥ 1 and z ∈ J0,M − 1K3, we denote Bz = (ℓ + R0)z + [0, ℓ]3 and Ψz

the normalized ground state of U∗H̃Dir
n,ℓ U in Bz. Thanks to the Dirichlet boundary

condition, we can extend Ψz by 0 outside Bz. Then, taking N = nM3, the bosonic
state Ψ :=

∨
z∈J0,M−1K3 Ψz ∈ L2

s([0,M(ℓ+R0)]
3N ) is normalized and since the boxes

are at distance R0 apart from each other, its reduced density matrices satisfy

Γ
(1)
Ψ =

∑

z

Γ
(1)
Ψz

and TrV (x− y, x− z)Γ
(3)
Ψ =

∑

z

TrV (x− y, x− z)Γ
(3)
Ψz

.

Here we have used the notations

Γ
(k)
Ψ (x1, . . . , xk; y1, . . . , yk)

=

(
N

k

)
ˆ

[0,M(ℓ+R0)]3(N−k)

Ψ(x1, . . . , xk, zk+1, . . . , zN )Ψ(y1, . . . , yk, zk+1, . . . , zN ) dz

and

Γ
(k)
Ψz

(x1, . . . , xk; y1, . . . , yk)

=

(
n

k

)
ˆ

B
(n−k)
z

Ψz(x1, . . . , xk, zk+1, . . . , zn)Ψz(y1, . . . , yk, zk+1, . . . , zn) dz .

Therefore, combining the above with Lemma 7, we obtain

〈Ψ,HN,LΨ〉
M3(ℓ+R0)3

=
1

M3(ℓ+R0)3

∑

z

Tr (−∆)Γ
(1)
Ψz

+TrV (x− y, x− z)Γ
(3)
Ψz

≤ 1

M3(ℓ+R0)3

∑

z

n

ℓ2

(
1

6
bM(W ) + CbM(W )1/2

+ Cn−1/3(bM(W ) + 1)12 (1 + ‖W‖L1 + ‖W‖L∞)2
)

≤ 1

(1 +R0a−1Y 1−2α)3
n

ℓ3
1

ℓ2

(
1

6
K2 + CK

+ C
K24

n1/3

(
1 +K2a−4‖V ‖L1 +K−1a2‖V ‖L∞

)2
)

≤ 1

6
ρ3bM(V )

(
1 + CV

(
Y α + Y 2/3−27α + Y 2−3α + Y 1−2α

))
,
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where CV depends only on R0a
−1, ‖V ‖L1a−4, and ‖V ‖L∞a2 (recall a := bM(V )1/4).

Moreover we used that, with our choice of ℓ and n, we have

K2

ℓ2
=

ρ2a4

1 + ⌊K3Y −2⌋/K3Y −2
= ρ2a4

(
1 +O

(
Y 2−3α

))
.

Taking 0 < α < 2/81 finishes the proof of the upper bound. �

References

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,
Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, 269 (5221) (1995),
pp. 198–201.

[2] G. Basti, S. Cenatiempo, and B. Schlein, A new second order upper bound for the ground

state energy of dilute Bose gases, Forum Math. Sigma, 9 (2021), E74.
[3] N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR), 11 (1947), pp. 23–32.
[4] S. N. Bose., Plancks Gesetz und Lichtquantenhypothese, Z. Phys., 26 (1924), pp. 178–181.
[5] H. P. Buchler, A. Micheli, and P. Zoller, Three-body interactions with cold polar

molecules, Nature Physics 3 (2007), pp. 726–731.
[6] X. Chen, Second order corrections to mean field evolution for weakly interacting bosons in the

case of three-body interactions, Arch. Ration. Mech. Anal., 203 (2012), pp. 455–497.
[7] X. Chen and J. Holmer, The derivation of the T

3 energy-critical NLS from quantum many-

body dynamics, Invent. math., 217 (2019), pp. 433–547.
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Gas and its Condensation, Birkhäuser-Verlag, Basel, 2005, pp. viii+208.
[23] E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the

Gross–Pitaevskii energy functional, Phys. Rev. A, 61 (2000), p. 043602.
[24] E. H. Lieb and J. Yngvason, Ground state energy of the low density Bose gas, Phys. Rev.

Lett., 80 (1998), pp. 2504–2507.
[25] E. M. Mas, R. Bukowski and K.Szalewicz, Ab initio three-body interactions for water. II.

Effects on structure and energetics of liquid. J.Chem. Phys., 118 (2003), pp. 4404–4413.



THE LOW DENSITY BOSE GAS WITH THREE-BODY INTERACTIONS 14

[26] P. T. Nam, N. Rougerie, and R. Seiringer, Ground states of large bosonic systems: The

Gross–Pitaevskii limit revisited. Analysis & PDE 9 (2016), pp. 459–485.
[27] P. T. Nam, J. Ricaud, and A. Triay, The condensation of a trapped dilute Bose gas with

three-body interactions, arXiv:2110.08195.
[28] P. T. Nam and R. Salzmann, Derivation of 3D Energy-Critical Nonlinear Schrödinger Equa-

tion and Bogoliubov Excitations for Bose Gases, Commun. Math. Phys., 375 (2020), pp. 495–
571.

[29] L. Onsager, Statistical hydrodynamics, Il Nuovo Cimento (1949), 6(2), pp. 279–287.
[30] D. S. Petrov, Three-body interacting bosons in free space, Phys. Rev. Lett., 112 (2014),

p. 103201.
[31] D. Ruelle, Statistical mechanics. Rigorous results, Singapore: World Scientific. London: Im-

perial College Press, 1999.
[32] H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose gas,

J. Stat. Phys., 136 (2009), pp. 453–503.
[33] J. Yuan, Derivation of the Quintic NLS from many-body quantum dynamics in T

2, Comm.
Pure Appl. Anal., 14 (2015), p. 1941

Department of Mathematics, LMU Munich, Theresienstrasse 39, 80333 Munich, and

Munich Center for Quantum Science and Technology, Schellingstr. 4, 80799 Munich,

Germany

Email address: nam@math.lmu.de
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