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Abstract An original strategy for the design of large-scale
composite sandwich structures is developed. Such struc-
tures are typical of launcher and spacecraft structures, but
the methodology remains applicable to any thin-walled
sandwich structure (such as aircraft fuselage panels or wa-
tercraft hulls). The method hinges on multi-step strate-
gies devised for variable-stiffness laminates. Indeed, lam-
inate optimization problems corresponds to large combi-
natorial design spaces and their efficient approximate so-
lutions often combine continuous relaxation and meta-
heuristics. Typically, the first step consists of a gradient-
based optimization that handles the large number of va-
riables with a continuous representation of the composite
mechanical behavior. In our work, this continuous repre-
sentation is adapted to the specific features of laminated
sandwich composites. In particular, we modeled the de-
pendency of the material transverse shear stiffness on the
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design variables (composite skins and core) by employing
a machine learning based approximation. The face sheet
laminates are then determined in a second step using an
evolutionary algorithm with stacking sequence tables to
represent thickness variations. Finally, we introduce a third
optimization step to overcome the design feasibility issues
related to the use of a stiffness matching method for the
determination of the layups of the face sheet laminates.
The method is applied to the minimization of the overall
weight of a load-carrying structure similar to the Ariane 5
dual-launch system, under several launcher-specific me-
chanical constraints.

Keywords Composite laminate · Lamination parameters ·
Transverse shear stiffness · Multi-step optimization
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Nomenclature

m = total mass of the structure
tc = sandwich core thickness
ts = sandwich skin thickness
tp = elementary layer thickness
θ = ply orientations of a skin laminate
n = number of layers in a skin lami-

nate

VA,B,D
i=1,...,4 = in-plane, coupling and bending

lamination parameters
A = membrane stiffness matrix
B = membrane/bending coupling

stiffness matrix
D = bending stiffness matrix
F = transverse shear stiffness matrix
N = membrane forces
M = bending moments
T = transverse shear forces
ε0 = in-plane strains of the laminate

midplane
κ = curvatures of the laminate mid-

plane
γ = transverse strains of the laminate

midplane
Q = reduced stiffness matrix of the ply
Γi=0,...,4 = in-plane material parameters of

the ply
Λi=0,...,2 = transverse material parameters of

the ply
g = mechanical design constraints
q = laminate design guidelines
d(A1, A2) = KL-divergence between matrices

A1 and A2

KFz , KFy , KMx = SYLDA global stiffness compo-
nents

λi = i -th buckling factor

1 Introduction

Carbon fiber reinforced plastics (CFRP) are widely used in
launcher structures. Many critical parts are made of sand-
wich materials with CFRP skins and honeycomb or foam
core material. In particular, most launcher structures are
typically quite large and are cylindrically or conically sha-
ped, so that using skins with a variable thickness is often
the most efficient way to minimize their overall mass. De-
signing such structures, however, is a challenging task.

While the literature about the optimization of CFRP
monolithic structures is extensive [17,16,4], articles deal-
ing with the optimal design of laminated sandwich com-
posites are less abundant. Classical design of sandwich struc-
tures focuses on the optimization of the thickness of the

core and metallic face sheets with fixed materials [5,20].
The method was later adapted to composite skins using
one thickness design variable per layer of the laminate,
such as in [41].

Design variables related to the choice of the core and
skin materials have been progressively introduced in the
literature. Choosing the constituent materials for a sand-
wich structure is intrinsically a discrete problem. One way
to solve such a problem is to use continuous parameters
to describe the material database, which thus provides the
derivatives of the objective and constraint functions. Tri-
antafillou and Gibson [39] gave the closed-form solution
for the mass minimization of sandwich beams and plates
subjected to strength constraints using the thickness of
the core and skin and the core material density as design
variables. Wennhage [45] used thickness and density de-
sign variables to minimize the mass of a sandwich panel
under structural and acoustic requirements using the me-
thod of moving asymptotes (MMA) [37]. Derivative-free
optimization methods may also be used. Hudson et al. [21]
used an ant colony algorithm to explore the trade-offs be-
tween mass and cost minimization for a rail vehicle floor
panel. Wang et al. [43] and Leite et al. [28] both used ge-
netic algorithms (thereafter GA) to search databases in-
cluding different kinds of materials, among which some
were laminates.

Derivative-free optimization algorithms may also be
used for the stacking sequence optimization of the lami-
nate skins. However, these methods are generally penal-
ized by the large number of design evaluations required to
reach convergence. Thus, most of the time they were used
in combination with a closed-form evaluation of the per-
formance of the structure (e.g. [12,43,21,28,11,14]). But
when finite element analyses (FEA) of the solutions are
required, the overall computational cost can often be in-
tractable. To face this issue, several authors have proposed
to combine GA with approximation techniques and have
applied their methods to the optimization of laminated
sandwich structures. Kodiyalam et al. [26] combined a GA
with a linear approximation method to minimize compu-
tational cost. The method was applied to minimize the th-
ermally-induced surface distortion of a satellite reflector
structure and to minimize the mass of a solar array sub-
strate. Gantovnic et al. [15] developed a GA with mem-
ory and spline interpolation of the fitness function value
to minimize the mass of a sandwich panel under buckling
and strength constraints.

The most advanced optimization approaches for com-
posite laminates are multi-step methods. These methods
have been developed for large monolithic structures, in
particular for variable-stiffness structures [16]. The first at-
tempt at extending the two-step approach to laminated
sandwich structures was performed by Balabanov et al.
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[6]. In the first optimization step, the thickness and macro-
scopic stiffness distributions of the laminated sandwich
composites are optimized using continuous design vari-
ables and gradient based optimization. Both the skin thick-
ness and the stiffness are design variables, together with
the core material density and its orientation. The macro-
scopic stiffness of the laminate skin is parametrized us-
ing lamination parameters [18]. The layup of the skin is
retrieved in a second optimization step using an analyti-
cal solution for a specific class of laminates. The method
was used to minimize the mass of a sandwich plate under
in-plane loading with strength and buckling constraints,
using closed-form solutions. Silva and Meddaikar [36] ex-
tended the lamination parameters scheme used in the first
optimization step for sandwich panel and hybrid laminate
design. Catapano and Montemurro [8,9] proposed another
two-step strategy, further developed in [31]. During the first
optimization step, the polar parametrization is used to de-
scribe the macroscopic elastic properties of the laminate
skins. The properties of the core material are obtained us-
ing a multiscale FE homogenization method. Design vari-
ables are related to both the laminate skins and the siz-
ing of the unit cell of the honeycomb core. A GA is used to
solve step 1 due to the high non-linearity and non-convexity
of the problem. A GA is also used at the second optimiza-
tion step to retrieve the laminates that match the target
properties obtained from step 1.

Only a few studies have focused on the optimization
of variable-thickness laminate skins for sandwich struc-
tures, mainly because it is mostly relevant for large struc-
tures. Velea at al. [41] designed a composite sandwich car
body using gradient-based optimization and a multi-step
approach. Fan et al. [14] developed a specific genetic algo-
rithm to handle ply drops in the laminate skins.

In the present work, a multi-step optimization strategy
is proposed for the design of launcher structures made of
laminated sandwich materials. The method is able to deal
with thickness variations of the laminate skins obtained
by adding or terminating plies. It is applicable to large FE
models using shell elements to represent the laminated
sandwich composites, in accordance with the usual mod-
eling practice at CNES. Section 2 presents the optimiza-
tion strategy. The homogenization method for the sand-
wich composites is detailed in Section 3. Section 4 gives
further details about each optimization step and their con-
sistency. Finally an application is presented in Section 5
with the mass minimization of a dual-launch system un-
der stiffness, buckling and strength constraints, submitted
to a variety of load cases.

2 Global optimization strategy

The optimization problem at hand can be stated as fol-
lows:

min
{θ,tc,ts}

m(tc,ts)

subject to:



g j (θ,tc,ts) ≤ 0 with j = 1, . . . , J
ql (θ) ≤ 0 with l = 1, . . . , L,
θ ∈Θ
tc ∈

[
t mi n

c , t max
c

]nz

ts ∈
[
t mi n

s , t max
s

]nz

,
(1)

where m is the mass of the structure. tc is the core thick-
ness and ts the thickness of the skin. In this work, only
sandwich plates that are symmetrical with respect to their
mid-plane are considered. As a result, both their skins are
assumed identical. They are built from the same elemen-
tary layer, with a given material and thickness. Thus, only a
single skin thickness variable is required, which is directly
related to the number of plies in the skin. The materials
of the core and of the elementary layer of the skins are
fixed throughout the entire optimization process and thus
are not considered as design variables. θ is the function
of ply orientation of the laminate skin. Thus, θ is a piece-
wise constant function of z, defined in the thickness of the
laminate, with z the out-of-plane coordinate. The ply ori-
entations can take any value within the predefined set Θ.

The design variables {θ,tc,ts} can be defined for the
whole composite structure, or for each of its sub-regions,
so as to define a constant stiffness optimization or a vari-
able stiffness optimization respectively. nz is the number
of sub-regions. The design constraints g j are related to the
mechanical responses of the structure. The constraints ql

correspond to the laminate design guidelines commonly
used in the aeronautical industry (e.g. laminate balance,
symmetry or 10 % rule [3]).

Figure 1 illustrates the general principle of the propo-
sed optimization strategy. In the first step, the compos-
ite material is seen as an equivalent homogenized mate-
rial. The optimization consists in finding the local stiff-
ness and thickness distributions that minimize the mass
of the structure, while satisfying design constraints that
most of the time directly derive from the specifications of
the structure. The design variables are considered as con-
tinuous and taking values in a convex space. As a result,
gradient-based optimization algorithms shall be used.
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Input FE model – initial design
(homogenized description of the sandwich composites)

Step 1: continuous optimization 
of the sandwich composite 

thickness and stiffness distributions

Step 2: discrete optimization 
Laminate skin stacking sequence retrieval 

using a stiffness matching method

Step 3: continuous thickness optimization 
and thickness rounding

Restoring feasibility w.r.t step 1 constraints

Output FE model – optimized design
(layer-by-layer description of the sandwich composites)

Target stiffness and 
thickness distributions

Optimized stacking
sequence table

Fig. 1 Workflow of the optimization strategy.

Step 1 optimization problem can then be stated as follows:

min
{v,tc,ts}

m(tc,ts)

subject to:



g j (v,tc,ts) ≤ 0 with j = 1, . . . , J
q ′

l (v) ≤ 0 with l = 1, . . . , L′,
v ∈ V
tc ∈

[
t mi n

c , t max
c

]nz

ts ∈
[
t mi n

s , t max
s

]nz

,
(2)

where v is a vector of continuous design variables used to
parametrize the homogenized stiffness of the skin mate-
rial. The two different sets of parameters most commonly
used for that purpose are the polar parameters and the
lamination parameters, which are used in this work. The
constraints q ′

l are a transcription, in terms of lamination
parameters, of the subset of the design guidelines ql that
are still applicable to an equivalent homogenized mate-
rial.

The search for the optimal stacking sequence of the
skins is performed in the second step. The objective is to
fit the optimal stiffness distribution found in step 1, while
taking into account all laminate design guidelines :

min
{θ,n}

d(S(v∗,ts
∗),S(θ,n))

subject to:


ql (θ) ≤ 0 with l = 1, . . . , L,
θ ∈Θ
n ∈ �nmi n ; nmax�nz

,
(3)

where n is the vector of the number of plies, S represents
the laminate homogenized stiffness and v∗ and ts

∗ are the

solutions of problem (2). When the structure is divided
into several design sub-regions, step 2 corresponds to a
laminate blending optimization problem. The blended la-
minates are described using SSTs, or stacking sequence ta-
bles. The SST defines a stacking sequence for each num-
ber of plies between nmax and nmi n . These bounds are set
with respect to the maximum and minimum thickness in
ts

∗, rounded to an integer number of plies. If several inde-
pendent structures are simultaneously optimized, an in-
dependent SST is associated to each structure. Problem (3)
is solved using the evolutionary algorithm found in [24]
(see section 4.2 for more details).

The discrete and combinatorial optimization in step 2
is based on analytical models with low computational cost
– compared to the structural analyses performed during
step 1 – which enables using appropriate algorithms (i.e.
metaheuristics). However, such analytical models cannot
take into account the design constraints g j based on the
mechanical responses of the structure.

Since the minimization of the mass of the structure
at step 1 will eventually activate at least one design con-
straint, it is most likely that the solution returned by step 2
is non feasible with respect to some of the constraints g j .
Hence, a third step is proposed here, in order to restore the
feasibility of the solution.

In step 3, the design space is explored in the vicinity of
the design found from step 2, to retrieve an acceptable so-
lution. The following optimization problem is considered:

min
{tc,ts}

m(tc,ts)

subject to:


g j (v,tc,ts) ≤ 0 with j = 1, . . . , J
v = f (θ∗,ts)
ts ∈ tp ×�mi n(n∗)−1 ; max(n∗)+1�nz

tc ∈
[
t mi n

c , t max
c

]nz

,

(4)

with n∗ and θ∗ the solutions of problem (3) and tp the
thickness of the ply.

The step 3 optimization problem is a structural opti-
mization problem, very similar to step 1, since it shares
the same objective and constraint functions g j . Nonethe-
less, the only design variables handled at step 3 are the
thickness of the skin ts and the thickness of the core ma-
terial tc. The thickness of the skin is considered first as a
continuous design variable which is later forced to con-
verge to discrete values corresponding to integer number
of plies. Indeed, the purpose of step 3 is solely to add or
remove some plies in order to restore feasibility with re-
spect to the optimization constraints g j , if needed. The
optimization performed in step 3 is based on the stacking
sequences found in step 2, which satisfy all the laminate
design guidelines ql . Precisely, thanks to the use of SSTs,
admissible stacking sequences are known for any num-
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ber of plies between mi n(n∗)−1 and max(n∗)+1. There-
fore, based on these stacking sequences, one can build an
approximation f of the homogenized material stiffness of
the shell element as a function of the number of plies. This
approximation function is used to evaluate the skin mate-
rial properties during optimization (see section 4.3). The
thickness of the core material is also considered as a de-
sign variable in order to widen the design space and com-
pensate for the possible discrepancy between the lami-
nates obtained at step 2 and the target from step 1. Step 3
returns a final design described, in the case of a sandwich
structure, in terms of skin and core thickness distributions,
and stacking sequences of the laminate skins. The latter
are fully described by the stacking sequence table, closely
similar to the draping plans that are used in the industry
for manufacturing composite structures.

3 Material stiffness parametrization

Both step 1 and step 3 of the proposed optimization strat-
egy (see Figure 1) make use of a continuous parametriza-
tion of the composite sandwich homogenized stiffness.

3.1 First order shear deformation theory

Composite sandwich structures are generally modelled u-
sing thick shells. In such a case, the first order shear defor-
mation theory (FSDT) can be used to obtain the general
behaviour law of the shell [35]:


N
M
T

=
A B 0

B D 0
0 0 F


ε0

κ

γ

 . (5)

where N, M et T are, respectively, the membrane forces, the
bending moments and the transverse shear forces, while
ε0, κ et γ are the in-plane strains, curvatures, and trans-
verse shear strains at the laminate mid-plane. The local
stiffness of the material is governed by the set of stiffness
tensors (A,D,F), which represent respectively the mem-
brane, bending, and transverse stiffnesses, as well as ten-
sor B, which governs the interactions between membrane
and bending effects. When the material is a laminate made
out of layers with orthotropic behaviour, the stiffness ten-

sors can be defined as follows :

Ai j =
N∑

k=1
Q(k)

i j (zk − zk−1),

Bi j = 1

2

N∑
k=1

Q(k)
i j (z2

k − z2
k−1),

Di j = 1

3

N∑
k=1

Q(k)
i j (z3

k − z3
k−1),

Fi j =
N∑

k=1
C(k)

i j (zk − zk−1), (i , j = 4,5).

(6)

where the Q(k)
i j terms correspond to the reduced stiffness

matrix of the elementary layer, and the C(k)
i j terms corre-

spond to the full 3D stiffness matrix of said layer. In the
general case, the core material orientation is not necesar-
rily aligned with the reference axes of the sandwich plate.
As such, the terms Ci j are expressed as a function of the
transverse shear stiffness moduli G13 and G23 of the core
material as follows:

C44 = G23 cos2δ+G13 sin2δ,

C45 = (G13 −G23)sinδcosδ,

C55 = G23 sin2δ+G13 cos2δ,

(7)

with δ the rotation angle from the plate reference axes to
the material orthotropy axes, in the plane of the plate.

3.2 Laminate face sheets

The lamination parameters (thereafter LP) bring a con-
densed and practical representation of the stiffness ma-
trices A,B and D of composite laminates [40]. This repre-
sentation connects a set of four continuous dimensionless
parameters to each of those matrices. Each one of these
parameters is defined as a trigonometrical sum of the ma-
terial orientation θ(z) over the thickness of the plate:

VA
[1,2,3,4] =

∫ 1/2

−1/2
[cos2θ(z),sin2θ(z),cos4θ(z),sin4θ(z)]d z̄,

VB
[1,2,3,4] = 4

∫ 1/2

−1/2
z̄[cos2θ(z),sin2θ(z),cos4θ(z),sin4θ(z)]d z̄,

VD
[1,2,3,4] = 12

∫ 1/2

−1/2
z̄2[cos2θ(z),sin2θ(z),cos4θ(z),sin4θ(z)]d z̄,

(8)

where z̄ is the normalized out-of-plane dimension, i.e. z̄ =
z/ts .

Equation 9 shows that the total macroscopic stiffness
matrix of the laminate — disregarding transverse shear ef-
fects — is a linear function of the LP, of the total thickness
t of the laminate, and of the elementary matrices Γi=0,...,4
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which are characteristic of the elementary ply and as such
are considered constant during the optimization process.

A = ts
(
Γ0 +Γ1VA

1 +Γ2VA
2 +Γ3VA

3 +Γ4VA
4

)
,

B = t 2
s

2

(
Γ0 +Γ1VB

1 +Γ2VB
2 +Γ3VB

3 +Γ4VB
4

)
,

D = t 3
s

12

(
Γ0 +Γ1VD

1 +Γ2VD
2 +Γ3VD

3 +Γ4VD
4

)
.

(9)

Thus, this representation allows to determine the full me-
chanical response of a laminated plate using 12 lamina-
tion parameters and the thickness ts , irrespective of the
number of plies. That is 13 variables as opposed to the 18
components of the A,B and D tensors in the general case.
On top of that, these 13 variables vary continuously, and
as such are suitable for use in a gradient-based algorithm,
contrary to the discrete orientations of the layers, or the
number of plies.

This representation runs under a few limiting assump-
tions. First, the lamination parameters are restricted to the
case of composite laminates, as opposed to a general a-
nisotropic material. Second, they can only be used to pa-
rametrize the reduced stiffness matrices of the material,
and thus are not suitable for use in compliance-based op-
timization problems. Third, the direction of the axes of or-
thotropy of the homogenized material is fixed and is not
considered as an optimization variable. However, such an
additional design variable can easily be introduced in the
lamination parameters framework (see [19]). Whenever a-
ny of the previous three limitations come into play, the
more generally applicable polar representation can be us-
ed with the same purpose as the lamination parameters.
Finally, it is assumed that the laminate is made out of iden-
tical plies (same material properties). Thus, as such, the
representation used here may not be used for hybrid lam-
inates (two or more different kinds of layers). An extension
of the lamination parameters scheme for hybrid laminates
is presented in [36].

3.3 Symmetrical sandwich plates with laminate skins

The present work focuses on the case of symmetrical sa-
ndwich plates, with a thick core surrounded by two mir-
rored laminated sheets called the skins. In this case, one
may apply equation 6 by considering the core as an ad-
ditional layer with its own material. Under this premise,
relation 5 still applies, and the components of the four ho-

mogenized stiffness tensors are now given by Eq. 10 [7]:

Ai j = 2A(s)
i j + tc Q(c)

i j ,

Bi j = 0,

Di j = 1

2
A(s)

i j

[
(ts + tc )2 + t 2

s

3

]
+Q(c)

i j

t 3
c

12
,

Fi j = 2F(s)
i j + tc G(c)

i j ,

(10)

where A(s)
i j are the components of the membrane stiffness

of a single skin (see equation 5), Q(c)
i j are the components

of the reduced stiffness matrix of the core material, G(c)
i j are

the transverse shear moduli of the core material, and tc is
the core total thickness.

3.4 Transverse shear stiffness

The transverse shear stiffness F of the sandwich plate de-
fined in equation 6 can be parametrized using two in-pla-
ne lamination parameters:

F = t
(
Λ0 +Λ1VA

1 +Λ2VA
2

)
, (11)

where the elementary matricesΛi=0...2 are computed from
the transverse shear stiffness of the skin material:

Λ0 = 1

2
(G13 +G23)

[
1 0
0 1

]
,

Λ1 = 1

2
(G23 −G13)

[
1 0
0 −1

]
,

Λ2 = 1

2
(G13 −G23)

[
0 1
1 0

]
.

(12)

It is thus possible to parametrize the transverse shear stiff-
ness of the sandwich composites in equation 10 with two
membrane lamination parameters only.

In practice, commercial FE tools do not use the def-
inition given in equation 6 for the transverse shear stiff-
ness. As a matter of fact, the FSDT gives a simplistic ap-
proximate of F with constant shear stresses through the
thickness of the ply that do not satisfy the local equilib-
rium. Moreover, the transverse shear stress resulting from
equation 5 is discontinuous between the layers and is not
null on the top and bottom surface of the laminate, which
should be the case in the absence of applied tangential
forces. Several modifications of the expression of F have
been proposed in the past decades (for a deeper insight
on the topic, see [35]). Corrective factors ki j thus appear
in the definition of transverse shear stiffness, such that:{

Ty

Tx

}
=

[
H44 H45

H45 H55

]{
γy z

γxz

}
, (13)

where:

Hi j = ki j Fi j , with i , j = 4,5. (14)
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A general optimization strategy for composite sandwich structures 7

Weckner and Balabanov [44] studied the influence of the
shear correction factors on the buckling of a thick sand-
wich plate, showing significant influence.

The determination of these corrective factors is com-
plex and varies across different commercial FE softwares.
For instance, Nastran reference manual [2] presents a tra-
nsverse shear theory in which the corrected homogenized
transverse shear stiffness Hi j is not related to the trans-
verse shear stiffness Fi j of the FSDT using equation 14. In
every case though, one may observe a strong dependence
of the factors Hi j on the stacking sequence of the lami-
nates and, in the case of sandwich materials, on the ratio
between the core thickness and the skin thickness. The de-
pendence to the ply stacking order is significant for lami-
nates, but decreases with the ratio ts /tc for symmetrical
sandwich plates.

Such dependence is difficult to take into account in the
optimization. On one hand, our homogenization scheme
must mimic the homogenization procedure of the FE soft-
ware in order to produce consistent results. On the other
hand, an adequate parametrization of H is needed. Equa-
tions 9, 10 and 11 show that in the framework of the FSDT,
the elastic behaviour of the sandwich material can fully
be parametrized using only six variables, namely VA

1 , VA
2 ,

VA
3 , VA

4 , ts and tc . But equation 14 also means that addi-
tional parameters are required to capture the influence of
the stacking order on the transverse shear stiffness correc-
tion factors.

In this work, a neural network (NN) is used to approxi-
mate the components of the tensor H, using nine variables
for symmetrical sandwich composite plates: four mem-
brane lamination parameters of the skin, four bending la-
mination parameters of the skin and the core-to-skin thi-
ckness ratio. A database of 5480 preliminary analyses is
built using MSC Nastran homogenization module. The de-
sign space is sampled using a set of 548 symmetrical 8-
ply laminates made of two ply orientations θ1 and θ2 tak-
ing values in the set {−75,60, . . . ,75,90}. These laminates
are then combined with a core with a thickness ratio tc /ts

in the set {0.5,1,2,3,4,5,6,8,10,20}. Half of the database is
used to train the neural network, the other half being used
for validation. The metamodel is built for a fixed couple of
materials for the skin elementary layer and for the core.

Figure 2 shows the dispersion graph of H44 based on
all 5480 points. The material properties used here corre-
spond to the application case detailed in section 5. The er-
ror between the approximated values of H44 and the refer-
ence data is less than 10%, in absolute value, for more than
99% of the points, with a 12% maximal error. Similar ap-
proximation quality is obtained for H55 and H45. The val-
ues of H44 computed with Altair OptiStruct (OS) homoge-
nization module are given in the figure for comparison. It
is interesting to note that both FE code are in rather good

Fig. 2 Dispersion graph of the corrected transverse shear stiffness
term F44 (NN: Neural Network approximation, OS: OptiStruct ho-
mogenization module).

agreement, even if some discrepancies can be observed.
With 98% of the points showing an error inferior to 10%
with respect to the OptiStruct reference, we consider in the
following that the metamodel is consistent with both FE
software. Note that the mean error in absolute value be-
tween F44 and H44 is about 560% which justifies the use
of the metamodel, rather than the classical formulation
(eq. 12).

4 From stiffness-based to ply-by-ply description

The overall performance of the strategy pictured in Fig-
ure 1 strongly depends on the consistency between the
stiffness-based representation of the sandwich compos-
ite plate and its ply-by-ply representation. This section ex-
plains how, step by step, the accuracy of the mechanical
modeling is improved as more information gets available
about the laminates.

4.1 Step 1: feasible domain of the lamination parameters

The link between step 1 and the subsequent steps lies in a
set of constraints imposed on the lamination parameters.
These constraints are twofold. A first set of constraints aims
at defining the feasible region V for the lamination param-
eters v (see problem (2)), i.e. the region of the design space
that does correspond to actual laminates. The feasible do-
main for the four in-plane lamination parameters is de-
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8 François-Xavier Irisarri et al.

fined by [19]:

2(VA
1 )2(1−VA

3 )+2(VA
2 )2(1+VA

2 )+ (VA
3 )2 + (VA

4 )2...

...−4VA
1 VA

2 VA
4 É 1,

(VA
1 )2 + (VA

2 )2 É 1,
−1 ≤ VA

i É 1 (i = 1, . . . ,4).

(15)

Taking into account the approximation of the transverse
shear stiffness presented in section 3.4 in the optimization
requires introducing the four bending lamination param-
eters as additional variables for each optimization region
of the structural model. The feasible space for the coupled
in-plane and bending parameters can be described using
the set of inequalities proposed in [13]. However, in the
homogenization scheme described in section 3 the bend-
ing lamination parameters only influence the transverse
shear stiffness of the sandwich material, which, in turn,
only has a second order influence on the constraints of
the optimization problem described in section 2. Hence,
adding the bending parameters as additional design vari-
ables present a risk of hampering the optimization in step 1.
Instead, we propose to use in step 1 the following sim-
plifying assumption: VD

i = VA
i (i = 1, . . . ,4). By doing so,

the accuracy of the approximation of the transverse shear
stiffness using the neural network devised in section 3.4 is
slightly reduced. The proportion of the validation database
with an absolute error less than 10%, with respect to ref-
erence data, is 96%, while the maximal error increases to
27%, which is deemed acceptable. Overall, this approach
provides a reasonable balance between the accuracy of the
approximation of the transverse shear stiffness of the plate,
and the performance of the first optimization step. The
design variables used at step 1 are the membrane lamina-
tion parameters VA

i (i = 1, . . . ,4), the skin thickness ts and
the core thickness tc .

A second set of constraints q ′
l incorporates some of

the laminate design guidelines ql (see problem (1)) into
step 1. These constraints can help to improve the consis-
tency between step 1 and the subsequent optimization steps.
Examples of such guidelines are:

– Searching for balanced laminates, which are orthotropic
in membrane with VA

2 = VA
4 = 0. Let us note however

that balancing the stacking sequence is only a suffi-
cient condition for in-plane orthotropy, and reduces
the design space of the stacking sequences. It is how-
ever common industrial practice to use such laminates
and thus this guideline is widely enforced in the litera-
ture.

– The 10%-rule, which can be stated, in a stiffness-based
description, as a minimal in-plane stiffness requirement
in all directions [3].

– In case of variable thickness optimization, blending de-
sign guidelines may be taken into account using a set

of blending constraints. Such constraints have been ex-
pressed in the lamination parameter space [29] as well
as using the polar representation [32,34].

4.2 Step 2: stacking sequence tables

Step 2 is based on a ply-by-ply representation of the sand-
wich material and its laminate skins. The discrete opti-
mization step is based on an evolutionary algorithm spe-
cialized for stacking sequence tables [24]. The notion of a
stacking sequence table (thereafter SST) comes from cur-
rent industrial manufacturing practice, is easily interpreted
in terms of the draping plan of a part and simplifies the
transition between design and manufacturing. Addition-
ally, a SST is a very general formulation of the problem,
since the ply orientations as well as the positions of the
ply-drops within the stack are all design variables. More-
over, it has the advantage that many industrial design guide-
lines can be conveniently enforced using such a represen-
tation.

A SST assigns a given stacking sequence to any num-
ber of plies within a given interval �nmi n ;nmax�. Hence,
for a known distribution of thickness over the structure,
the SST gives the stacking sequence corresponding to the
number of plies assigned to each zone. The entire stack-
ing sequence information of a blended panel is encoded
through a SST using a three chromosome genotype, hence
making it possible to optimize the structure using a mini-
mal number of design variables.

– The first chromosome Xs represents the stacking se-
quence of the thickest laminate in the SST.

– The second chromosome Xi represents the order of in-
sertion of the plies within the laminate.

– The third chromosome Xn represents the number of
plies in each region of the structure.

The first two chromosomes are integer vectors of length
nmax . They completely define the SST. Figure 3 illustrates
the SST defined by Xs = [45 90 75 90 -75 -45 0 0 -45 -75 90 75
90 45] and Xi = [0 5 4 0 1 0 0 0 0 2 0 3 6 0]. A 0 value in Xi in-
dicates that the ply is always present in the table, from the
thinnest to the thickest laminate. The third chromosome,
Xn , is an integer vector of length nz , the number of regions
over the structure. In step 2, Xn is obtained by rounding
the optimal thickness distribution ts

∗ from step 1. Round-
ing can be performed by following a fixed rule (e.g. round-
ing to the nearest integer), in which case Xn is fixed. Al-
ternatively, rounding can be considered as part of the op-
timization problem itself and the components of Xn may
vary within a user-defined integer interval centered on the
continuous optimum ts

∗.
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A general optimization strategy for composite sandwich structures 9

Fig. 3 Example of stacking sequence table.

Step 2 optimization problem (see problem (3)) con-
sists in finding the SSTs that minimize the distance be-
tween the target stiffness distribution S(v∗,ts

∗) from step 1
and the distribution corresponding to the discrete design.
If several independent structures are simultaneously op-
timized, an independent SST is associated to each struc-
ture. In the case of sandwich plates, with a fixed core thick-
ness t∗c , the stiffness distribution S is completely defined
by the thickness and the stiffness properties of the skins.
In this work, the symmetrized Kullback-Leibler (KL) [30,
23] divergence is used to measure the difference between
two symmetric positive-definite stiffness tensors A1 and
A2:

d(A1,A2) = tr (A−1
1 A2 +A1A−1

2 −2I). (16)

The distances are computed for each region of the struc-
ture and aggregated through a weighted sum. The weight
of each zone is the ratio of its area over the total area of the
structure.

4.3 Step 3: continuous representation of a SST

The best SST obtained at the end of step 2 contains all
the information needed to fully describe the discrete evo-
lution of the homogenized stiffness as a function of the
number of plies in the skin. Thus, the relation between the
number of plies and the homogenized in-plane stiffness
of the skin is completely defined. This relation can easily
be extended to continuous thickness variations. Indeed,
each newly added ply can be progressively introduced in
the laminate by increasing its thickness from zero to the
full ply thickness. For a given SST, this enables comput-
ing all the skin laminate stiffness properties as a function
of the laminate thickness ts , and in turn, the equivalent
sandwich plate properties. This SST representation is core
to step 3, since it allows to match directly the number of
layers of the skin, which is one of the design variables in
step 3 (see eq. 4), to a given stacking sequence provided
by the SST. This operation does not require an additional

Fig. 4 Continuous representation of the SST shown in figure 3. Evo-
lution of the membrane and bending lamination parameters as a
function of the local laminate thickness.

search for the orientation of the added layer, or for the po-
sition of the layer to be removed, and is thus very efficient.
Figure 4 shows the evolution of the membrane and bend-
ing lamination parameters with respect to the laminate
thickness for the SST depicted in figure 3.

The transverse shear stiffness of the sandwich com-
posite can also be computed using the neural network ap-
proximation presented in section 3.4. However, contrary
to step 1, the exact values for all the membrane and bend-
ing lamination parameters of the skin are known, since the
stacking sequences are described throught the SST. Thus,
the accuracy of the approximation of the transverse shear
stiffness is improved with respect to step 1 (see section
4.1). Finally, at the end of step 3, the sandwich plate is
described layer by layer, and it is this description that is
used to evaluate the final design performance. At the end
of step 3, the only possible discrepancy between the ho-
mogenized description of the material and its explicit de-
scription (using a single thick shell element) comes from
the approximation of the transverse shear stiffness with
the metamodel.

4.4 Enforcing strength constraints

Failure criteria for composite laminates are usually defined
at ply scale. Thus, incorporating a strength constraint into
the lamination parameter optimization process is not str-
aightforward. Ijsselumuiden et al. [22] derived the equa-
tions of a conservative first-ply failure envelope based on
the Tsaï-Wu failure criterion. The failure envelope is for-
mulated on the macroscopic in-plane strains. The failure
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10 François-Xavier Irisarri et al.

safe region corresponds to the region in strain space that is
safe regardless of the ply angle. Thus, the failure envelope
can be used with an homogenized description of the lam-
inates. Alternatively, Catapano et al. have derived the rela-
tionship between the polar parameters of the stiffness and
strength matrices of the laminate, for a variety of strength
criteria [10].

Conservative failure envelopes can be computed, ei-
ther numerically or as closed-form solutions of the com-
posite failure criteria. Depending on the chosen failure cri-
terion, the equations of the conservative envelope can be
difficult to obtain, and subsequently difficult to use for a
strength-related optimization constraint. A more pragma-
tic method consists in sampling the ply orientations and
computing the corresponding in-plane failure envelopes.
The conservative failure envelope then corresponds to the
boundary of the intersection of all the failure safe regions
obtained this way. This conservative envelope can then
be approximated using an ellipsoid. Either the maximum
volume inscribed ellipsoid or the minimum volume en-
closing ellipsoid can be chosen, depending on the desired
level of conservativeness. It is then the equation of the el-
lipsoid that is used to define the optimization constraint.
Thus, the strength constraint can be expressed as follows:

(ε−c)TΞ(ε−c) ≤ 1, (17)

where ε corresponds to the macroscopic strains of the lam-
inate.Ξ is the matrix of the ellipsoid and c its centre. In or-
der to take into account the bending of the structure, the
failure criteria has to be evaluated on both outer surfaces
of the laminates, where the in-plane strains are the high-
est.

In section 5, a conservative failure envelope based on
the modified Tsaï-Hill failure criterion [25] is used. At ply
scale, in the material axes, this criterion can be expressed
as:(σ11

X∗
)2

− σ11σ22

Xt Xc
+

(σ22

Y∗
)2

+
(τ12

S∗
)2

≤ 1, (18)

where X∗ (resp. Y∗) has to be substituted either by the lon-
gitudinal tensile strength Xt or compressive strength Xc

(resp. Yt or Yc in the transverse direction) , depending on
the sign of the associated stress componentσ11 (resp.σ22).
S∗ is the shear strength of the ply and τ12 the shear stress.
Figure 5 shows the conservative failure envelope computed
for the Tsaï-Wu failure criterion using the method found
in [22], along with the conservative failure envelop com-
puted for the modified Tsaï-Hill failure criterion using the
method described in this section. It is interesting to note
that the conservative failure envelop inherits some features
of the criterion on which it is based. Here, the conserva-
tive envelop of the Tsaï-Wu criterion is much less conser-
vative than the Tsaï-Hill failure criterion in biaxial com-
pression, which is a well-known limitation of the Tsaï-Wu

Fig. 5 Conservative failure envelops computed for the Tsaï-Wu and
the Tsaï-Hill failure criteria. Wire frame view of the minimum vol-
ume enclosing ellipsoid of the Tsaï-Hill conservative envelop.

criterion. The minimum volume enclosing ellipsoid of the
modified Tsaï-Hill failure envelope – which is used to de-
fine the strength constraints in section 5 – is also shown in
the figure.

Failure of a sandwich composite does not come down
to the in-plane failure of the facesheet laminates. Sand-
wich panels can fail through a large variety of mechanisms,
including crushing of the core, shear failure of the core,
and instabilities such as shear crimping, face sheet wrin-
kling, or intra-cell dimpling [1,42]. These phenomena stem
from complex interactions between the core and the skins.
As such, they depend on the nature of the core and skin
material [38,33]. The present study focuses on the global
design of the structure. The sandwich laminates are mod-
eled using thick shell elements, which are not well suited
for the accurate evaluation of the sandwich local failure
phenomena. Given that, most of the time, aerospace struc-
tural designs are stiffness dominated rather than strength
dominated, we choose to ignore all the specific sandwich
failure modes during the optimization, and only take face
sheet failure into account. However, shear crimping, face
sheet wrinkling, and intra-cell dimpling will be reviewed
on the final design of the structure, using classical engi-
neering criteria devised for the rapid sizing of sandwich
structures.

5 Optimization of a generic Dual-Launch System

The case study is derived from a typical spatial structure,
the Ariane 5 Dual-Launch System (SYLDA). Figure 6 shows
a general view of the model of the structure. The test case
has the dimensions of the real structure, with a central
cylinder of approximately 5 m long and 4.5 m in diame-
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Fig. 6 General view of the test case.

ter. The model is divided into three sections, namely the
lower cone (thereafter LC), the central cylinder (CC) and
the upper cone (UC). Each of these substructures is made
of a sandwich composite material. They are manufactured
separately and assembled to form the final part using hy-
brid composite/metal flanges that are not optimized in this
work.

In the following, the proposed optimization method is
applied to a change of configuration of the SYLDA. The
composite lay-ups of the reference design, used as the start-
ing point of the optimization, correspond to a shorter ver-
sion of the SYLDA structure. The purpose is to design and
optimize a new version of the SYLDA, corresponding to
the geometry shown in Figure 6, considering the specifi-
cations detailed in the following section. Note that, in the
framework of this paper, we do not expect to mimic the
whole design process of a large and complex part like the
SYLDA. The potential gains in terms of mass can not be di-
rectly interpreted as gains that will be achieved on the real
structure, but it is still relevant to show that the proposed
strategy was able to produce such gains.

Each substructure in the reference design is made of
a constant stiffness sandwich composite. In the following,
m0 is mass of the reference design, t 0

s(LC) is the thickness

of the skin of the lower cone and t 0
c is the thickness of the

core material which is the same in the three substructures,
with t 0

c /t 0
s(LC) ≈ 19. The length of the structure is aligned

with the z-axis. The 0° material orientation is defined by
the projection of the z-axis on the surface of the shell ele-
ments. The model provided by CNES has about 82,000 de-
grees of freedom.

The optimization strategy described in Figure 1 has been
implemented as an interactive optimization tool using Python.

The Python tool can call either MSC Nastran or Altair Op-
tiStruct for step 1 and step 3 optimizations, through text
files. The results presented in the following are obtained
using OptiStruct. Step 2 calls for an evolutionary algorithm
implemented in Matlab. All data transfer and input and
output files preparation and writing are fully automated.
Between each step, the user can check the results from the
previous optimization step and decide whether to continue
to the next step or repeat the previous optimization with
modified parameters.

5.1 Formulation of the optimization problem

The objective of the overall design problem is to minimize
the weight of the structure while satisfying:

– Global stiffness constraints.
– Buckling constraints.
– Strength constraints in the composite skins.

Seven load cases are considered in total , out of which three
are elementary unit load cases used to evaluate the global
stiffness of the structure. Two other cases correspond to
the take-off sequence of the Ariane 5 launcher, where the
SYLDA structure will withstand the acceleration and then
deceleration of the launcher. The final two load cases cor-
respond to a situation where the launcher experiences a
major gust of wind during flight, in two different direc-
tions.

The global stiffness constraint is evaluated through the
three unit load cases (axial load along z-axis Fz , shearing
load along y-axis Fy and bending moment about the x-axis
Mx ). The structure is clamped at its lower end. Loads and
moment are applied at a reference node located at the top
of the structure, along its central axis, and transferred to
the top of the upper cone using rigid body elements. The
corresponding displacements are monitored at the refer-
ence node and used to infer a global stiffness matrix. The
stiffness constraints themselves are bounding conditions
on three components of this matrix, as follows:

Kmi n
Fz

≤ KFz ≤ Kmax
Fz

,

Kmi n
Fy

≤ KFy ≤ Kmax
Fy

,

Kmi n
Mx

≤ KMx .

(19)

where KFz is an axial stiffness term, KFy a transverse stiff-
ness term and KMx is a bending stiffness term. Note that
the reference solution does not satisfy this set of global
stiffness constraints.

The four load cases related to the flight of the launcher
are introduced through super elements, located on the lower
and upper ends of the SYLDA, that represent the global
stiffness of the whole launcher structure and payload. Among
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these four load cases, two may generate buckling. Con-
sidering that for an axially-compressed thin elastic cylin-
drical shell made of an isotropic material, the linearised
buckling equations lead to a critical load that is indepen-
dent from the length of the cylinder [27], it is assumed here
that the reference design inherits satisfying buckling be-
haviour from the original configuration. Thus, the buck-
ling load factors are constrained to be higher or equal to
those of the reference design. In practice, for each load
case, the first twenty buckling modes are constrained to
take into account mode switching during the optimiza-
tion. Finally, a strength criterion is applied to the face sheet
laminates, using the macroscopic strain envelope discussed
in section 4.4.

All things considered, the optimization problem of the
SYLDA structure is stated as follows:

min
{θ,tc,ts}

m(tc,ts)

subject to:



Kmi n
Fz

≤ KFz (θ,tc,ts) ≤ Kmax
Fz

,

Kmi n
Fy

≤ KFy (θ,tc,ts) ≤ Kmax
Fy

,

Kmi n
Mx

≤ KMx (θ,tc,ts)

λ(1)
i ≥ λ(1)

0 , with i = 1, . . . ,20

λ(2)
i ≥ λ(2)

0 , with i = 1, . . . ,20
(ε−c)TΞ(ε−c) ≤ 1
ql (θ) ≤ 0 with l = 1, . . . , L,
θ ∈Θ
tc ∈

[
t mi n

c , t max
c

]nz

ts ∈
[
t mi n

s , t max
s

]nz

,
(20)

where λ( j )
i is the buckling factor of the i -th buckling mode

for load case j and λ( j )
0 is the critical buckling factor of the

reference solution.

5.2 Constant-stiffness optimization

Each substructure is assigned a single set of design vari-
ables, i.e. each substructure is made of a uniform sand-
wich composite (nz = 3). Taking into account this design
choice, step 1 optimization has 18 design variables, namely,
for each substructure, the four in-plane lamination param-
eters of the skin VA

1 , VA
2 , VA

3 , VA
4 , the skin thickness ts and

the core thickness tc .
It is interesting to compare the optimal design obtained

when taking into account the stiffness constraints only (see
figure 7), the buckling constraints only (see figure 8), and
both constraints simultaneously, as the optimizations con-
verge towards very different designs. In the stiffness-con-
strained case, the core thickness is reduced in every sub-
structure, since the structural global stiffness is mostly driven
by the membrane behaviour of the skins. In the buckling-
constrained case, the influence of the core thickness is much
more significant since buckling is driven by the bending

behaviour of the sandwich composites. Thus the skin thick-
nesses are lower than in the stiffness-constrained case, while
the core thicknesses are much higher. The total mass re-
duction is about 12.2% in the stiffness-constrained case
and 18.5% in the buckling-constrained case.

Step 1 optimization with both stiffness and strength
constraints is performed using the multi-model optimiza-
tion feature of OptiStruct. Figure 9 presents the evolution
of mass and thickness. The optimal design combines fea-
tures of the optimal solution of the stiffness-constrained
case, with thick skins, and of the buckling-constrained case,
with thick cores. The optimal design is thus heavier than
both previous solutions. The total mass reduction is about
5.0% with respect to the reference mass m0. Figure 10 shows
the anisotropy shapes of the skins in each substructure,
and for each solution. It shows that the stiffness properties
of the skins in the optimal design with all constraints en-
forced are closer to that of the stiffness-constrained case
than that of the buckling-constrained case.

At step 2, each substructure is represented by a SST.
The SST is innately a representation of variable thickness
laminates, thus it is not the most efficient representation
of the solution for constant stiffness matching. Nonethe-
less, the results obtained turned out to be acceptable, as it
is shown in the following. The ply orientations vary by a 5°
step. Membrane orthotropy of the laminates is required.
Note that the principal orthotropy direction is not a de-
sign variable in this work. Based on the symmetries of the
problem at hand, it is assumed that the optimal orthotropy
direction will be aligned with the longitudinal axis of the
structure, i.e. the reference frame of the laminates. In that
case, the design guideline on the balance of the skin lami-
nates provides a sufficient condition to achieve membrane
orthotropy and as such was enforced at step 2, in spite of
the loss of optimality that may result from it, as discussed
in section 4.1. However, let us note that in the SST repre-
sentation, this is introduced as a "soft" constraint, since
adding or removing a single ply will necessarily break the
balance of the stacking sequence, but is still allowed here.
The influence on the overall behaviour of the sandwich
plate is expected to be small. No guideline on the sym-
metry of the laminates was enforced. The evolutionary
algorithm was run 10 times using 100 generations of 30
individuals each and the best design out of the 10 runs
was selected for step 3. Since no structural computation
is done at step 2, the overall computational cost is negligi-
ble, which allows for a large number of evaluations.

Step 3 makes use of the SST from step 2 to parametrize
the link between the skin thickness and the skin stiffness.
The discrete variable optimization feature provided by Op-
tiStruct is used to round the skin thickness to actual ply
numbers at the end of step 3. The step-by-step results of
the three optimizations are summarized in Table 1. Step 2
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Fig. 7 Step 1 optimization. Constant stiffness substructures. Stiffness constraints only. Convergence plot and evolution of the thickness design
variables.

Fig. 8 Step 1 optimization. Constant stiffness substructures. Buckling constraints only. Convergence plot and evolution of the thickness design
variables.

Fig. 9 Step 1 optimization. Constant stiffness substructures. Stiffness and buckling constraints are enforced. Convergence plot and evolution
of the thickness design variables.

output corresponds to the results of the FE analysis of the
initial design of step 3. The shift in mass between the out-
puts of steps 1 and 2 is due to the rounding of the skin
thickness to the nearest discrete ply number. Between step 2
and 3, the mass variation can be explained by variations
of the numbers of plies of the skins, but also by contin-
uous variations of the core thickness. Step 3 output cor-
responds to the results of the final FE analysis performed

using a layer-by-layer description of the sandwich com-
posites, so that all the stiffness matrices A, B, D and H are
computed using OptiStruct homogenization module and
are fully consistent.

In the stiffness-constrained case, one can note that the
final result is lighter than the step 1 result, although step 1
optimization is much less constrained than step 3 opti-
mization. This indicates that the result found at step 1 is
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LC CC UC

Fig. 10 Step 1 optimization. Constant stiffness substructures. Polar plot of the evolution of the apparent Young’s modulus of the skin laminates.

suboptimal. As a matter of fact, the complexity of the op-
timization problem at hand is twofold. First, the objec-
tive function is only related to the thickness design vari-
ables. The material anisotropy only influences the value of
the constraints. Second, the stiffness constraints are diffi-
cult to handle since two stiffness terms have both a lower
bound and an upper bound.

In the buckling-constrained case, step 2 optimization
returns a design which is far from satisfying the buckling
constraints. This difficulty is typical for buckling optimiza-
tion, since small bending stiffness differences can trigger
new buckling modes and have significant influence on the
critical buckling loads. Thus, step 3 optimization fails to
retrieve a feasible design within the imparted design do-
main, which is restricted here to ±1 ply around the skin
thicknesses from step 1. A correction of the design based
on engineering judgement allows to find a feasible solu-
tion by adding one central 0° ply to the skin of the lower
cone. This highlights a limitation of the method proposed
at step 3. Indeed, if the skin laminate thickness grows higher
than the maximum thickness obtained by rounding step 1
results, the choice of the orientation of the additional ply is
driven by the laminate design guidelines only. The choice
between all the ply orientations that satisfy the guidelines
results from the stochastic process of the evolutionary al-
gorithm used at step 2.

When all the constraints are enforced, the optimisa-
tion process returns a feasible final design, that is 2.7%
heavier than the initial, non-feasible, solution. The opti-
mization problem (20) corresponds to a change of con-
figuration of the SYLDA. Thus, by finding a feasible de-
sign, the optimization is successful. When starting from
the sandwich composites used for a shorter version of the
structure, adding some mass to find a feasible design for
the new configuration makes sense. Figure 10 shows the
shape of anisotropy of the skin laminates at the end of
step 3. The quantity shown in this figure is the apparent
Young’s modulus of the skin, which is characteristic of the

in-plane stiffness matrix A of the skin. The corresponding
laminates are, for the lower cone [15 10 -65 -10 5 -15 -5 65],
for the central cylinder [-15 -50 90 -40 50 15 0 40], and for
the upper cone [55 5 55 5 -55 -5 -55]. The fit to the target
stiffness from step 1 is not perfect. Besides the use of SST
for constant-stiffness matching, this discrepancy can be
partly explained by the low number of plies, which leads
at step 2 to a coarse discretization of the design space with
respect to step 1.

It is interesting to note that with constant-stiffness sub-
structures, there is a significant weight penalty for adding
one ply to the skin laminates. For instance, with respect to
the initial design, adding one ply to the lower cone leads
to a 0.8% mass increase. The weight penalty is 1.3% for the
upper cone and 5.6% for the central cylinder. This is due
to the relative sizes of the substructures and to the fact
that the sandwich plates are symmetrical. Hence adding
one ply to the skin laminate means adding two plies to the
structure itself. Thus, variable thickness skin laminates are
necessary to reduce the structural mass.

5.3 Variable-thickness optimization

The composite part of the structure is now divided into
48 zones along its circumference and 21 zones along its
length, 2 in the lower cone, 15 in the central cylinder and 4
in the upper cone. The loading and boundary conditions
being symmetrical with respect to the (x,z)-plane and the
(y,z)-plane, these symmetries are enforced in the defini-
tion of the design regions by grouping symmetrical zones.
Thus, the lower cone is divided into 24 independent de-
sign regions, the central cylinder into 180 design regions
and the upper cone into 48 design regions. Each substruc-
ture is still assigned to a single value of core thickness, since,
practically, a sandwich plate with varying core thickness is
unfeasible. Thus, there are 1263 design variables required
for step 1, i.e. the four membrane lamination parameters
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Stiffness-constrained Mass Maximum constraint
optimization m/m0 violation (%)
Initial design 1.000 25.92
Step 1 output 0.878 0.86
Step 2 output 0.859 4.16
Step 3 output 0.859 0.24 (∗)
Buckling-constrained Mass Maximum constraint
optimization m/m0 violation (%)
Initial design 1.000 25.92
Step 1 output 0.815 0.71 (∗)
Step 2 output 0.818 30.8
Step 3 output 0.876 3.2 (failed)
Corrected design 0.886 0.00
All constraints Mass Maximum constraint
optimization m/m0 violation (%)
Initial design 1.000 25.92
Step 1 output 0.950 0.65 (∗)
Step 2 output 0.960 2.32
Step 3 output 1.027 0.00

Table 1 Constant stiffness case. Summary of the optimization re-
sults. (∗) A 1% tolerance is applied on the maximal constraint vio-
lation.

and the skin thickness for each of the 252 design regions,
and the core thickness in each substructure.

Step 1 results are illustrated in Figure 11. The figure
shows the convergence of the optimization towards a fea-
sible design that is 10.6% lighter than the initial non-fea-
sible solution. The skin laminates of the initial design are
balanced, thus VA

2 and VA
4 are null over the entire structure.

Their values do not evolve significantly during the opti-
mization, therefore their final distributions are not shown
in the figure. This confirms that the optimal laminates tend
to be orthotropic, with their orthotropy axes aligned with
the longitudianl axis of the SYLDA. This in turn further
justifies the choice of working with balanced laminates in
step 2. The skin thickness distribution shows two sym-
metrical thick zones along the length of the central cylin-
der. Their locations on the circumference of the structure
correspond to the location of the maximum axial load due
to the booster thrust. The top of the upper cylinder is stiff-
ened by thick skin laminates, due to the presence of the
payload.

Figure 12 illustrates the results of the stacking sequence
retrieval at step2 and the final thickness and anisotropy
distributions after step 3. At step 2, the variable-thickness
skin laminate of each substructure is described by a SST.
The figure shows the scattering of the skin stiffness terms
A11/A0

11 and A22/A0
11 over the 180 regions of the central

cone after step 1 optimization, where A0
11 corresponds to

the tensor A of the skin laminate of the initial design. Be-
tween step 1 and step 2, the skin thickness are rounded.
Thus, the feasible design space is discretized with respect
to ts . The convex hull of the feasible design space of the
laminate stiffness is shown for integer number of plies only.

All constraints Mass Maximum constraint
optimization m/m0 violation (%)
Initial design 1.000 25.92
Step 1 output 0.890 0.00
Step 2 output 0.892 14.97
Step 3 output 0.951 0.00

Table 2 Variable skin thickness case. Summary of the optimization
results.

This figure highlights a possible limitation of the SST
representation. Indeed, in this particular case, no laminate
blending constraint is enforced at step 1. Thus, different
stiffness properties can be found for regions with the same
thickness. However, the use of SSTs at step 2 constrains
the design so that a unique laminate is defined for a given
number of plies, i.e. a given thickness, even though it might
not be justified from a mechanical perspective. Neverthe-
less, the figure shows how the SST found at step 2 com-
pares with the target from step 1.

Figure 12 shows the final distributions of tc and ts and
of the lamination parameters VA

1 and VA
3 . Compared to the

distributions shown in Figure 11, the skin laminates are
thicker. The corresponding weight penalty is partly bal-
anced by the reduction of the core thickness in the lower
cone and central cylinder. The VA

1 distributions are very
close between the end of step 1 and the final design. The
final distribution of VA

3 shows similar, though shallower,
variations when compared to step 1.

Table 2 summarizes the optimization results after each
optimization step. The final design is about 4.9% lighter
than the initial design and 7.4% lighter than the constant
stiffness solution. The design is driven by the stiffness and
buckling constraints. Although very conservative, the fail-
ure criterion was never activated in step 1 or step 3. With a
computational time of about 10 s for the FE evaluation of
the stiffness criterion and 3 min 40 s for the buckling crite-
rion, the total optimization process lasts about 2 h 30 min.
The SST returned by the optimization process are detailed
in appendix C. The values of design criteria at the end of
each optimization step are given in appendix B. The de-
tail of the design criteria shows that the design is stiffness
dominated. Shear crimping, face sheet wrinkling, and intra-
cell dimpling are assessed on the final design of the struc-
ture, using the closed-form solutions given by [42]. The
values of the criteria associated to face sheet wrinkling,
and intra-cell dimpling show that these local failure modes
clearly are not critical with a margin over 100% everywhere
in the design area and for all the considered load cases.
The minimal margin with respect to shear crimping is about
35%, which is deemed acceptable at this stage of the sizing
process.
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Fig. 11 Step 1 optimization. Variable skin thickness substructures. Convergence plot and design variables output distributions. The output
distributions of VA

2 and VA
4 are not shown since they are uniformly close to 0: VA

2 ranges from -0.110 to 0.113 and VA
4 ranges from -0.075 to

0.075.

Fig. 12 Step 2 and step 3 optimizations. Variable skin thickness substructures. Comparison between step 1 and step 2 outputs in terms of skin
laminate stiffness terms A11 and A22. Output distributions of the skin and core thicknesses and VA

1 and VA
3 .

6 Conclusion

This paper presents a three-step optimization strategy for
the optimization of sandwich composite structures. The
overall process is based on a well-established two-step strat-
egy for laminate optimization to which the present work
brings three main novelties.

– First, the lamination parameters scheme is extended
to sandwich composites, taking into account the trans-
verse shear stiffness and using a response surface ap-
proximation to mimic the homogenization methods
implemented in commercial FE software.

– Second, an additional optimization step is proposed
to overcome the design feasibility issues related to the
use of a stiffness matching method for the retrieval of
the stacking sequence of the skins.

– Finally, a numerical procedure is proposed to build an
approximate failure envelop formulated on the macro-
scopic in-plane strains. The method can be applied to
any first-ply failure criterion.

The whole strategy has been automated with seamless calls
to MSC Nastran or Altair OptiStruct for the structural op-
timization tasks, the purpose being to provide engineers
with a comprehensive design tool.
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The efficiency of the proposed approach is shown on
a dual-launch system (SYLDA) structure. Starting from the
definition of the sandwich composites of reference design,
a longer version of the structure is optimized, for mass
minimization and feasibility with respect to complex global
stiffness requirements, buckling and strength constraints
under several load cases. Both constant-stiffness and vari-
able skin thickness optimizations are performed, showing
the capabilities of the proposed method on a complex in-
dustrial test case.

Replication of Results

A detailed description of the proposed optimization strat-
egy has been provided in this paper, along with the com-
prehensive implementation details. The authors are thus
confident that the overall methodology can be reproduced
and, as such, have decided not to publish the code. Due to
the particularities of the space industry, some of the data
about the application case is omitted. Readers interested
in the Python or Matlab scripts are encouraged to contact
the corresponding author.
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Appendix

A Variable stiffness optimization case: stacking
sequences

At the end of step 2, the SST of the lower cone (LC) is defined by (see
Figure 13):
Xs = [20 0 90 30 -20 80 90 -30 0 -80 20 -20],
Xi = [ 0 3 2 0 4 6 8 0 1 7 5 0].
At the end of step 3, the number of plies of the skin laminate ranges
from 5 to 8 in the lower cone.

The SST of the central cylinder (CC) is defined by (see Figure 14):
Xs = [25 40 -5 55 0 -40 0 -55 5 -55 55 -25],
Xi = [ 0 4 8 0 2 3 1 0 7 5 6 0].
At the end of step 3, the number of plies of the skin laminate ranges
from 5 to 8 in the central cylinder.

Finally, the SST of the upper cone (UC) is defined by (see Fig-
ure 15):
Xs = [-50 -35 20 -40 -5 -35 40 35 -20 35 5 50],
Xi = [ 0 7 0 3 1 6 4 8 0 5 2 0].
At the end of step 3, the number of plies of the skin laminate ranges
from 6 to 10 in the upper cone.

B Variable stiffness optimization case: design criteria

Table 3 details the results of the variable stiffness optimization case.
The values of the design criteria are given for the initial design and

Design criterion Initial design Step 1 Step 2 Step 3
Mass m/m0 1.000 0.893 0.893 0.951
Kmi n

Fz
/KFz 0.873 1.000 1.028 0.903

KFz /Kmax
Fz

1.005 0.877 0.854 0.972

Kmi n
Fy

/KFy 1.350 1.000 1.064 0.980

KFy /Kmax
Fy

0.648 0.875 0.823 0.892

Kmi n
Mx

/KMx 0.788 0.721 0.779 0.692

λ(1)
0 /λ(1)

1 0.958 1.002 1.175 0.973
λ(3)

0 /λ(3)
1 0.970 0.991 1.175 0.984

f (1)
TW 0.034 0.031 0.042 0.031

f (2)
TW 0.044 0.041 0.040 0.031

f (3)
TW 0.035 0.032 0.043 0.031

f (4)
TW 0.030 0.031 0.028 0.023

Table 3 Variable skin thickness case. Detail of the optimization re-
sults.

the solution at the end of each optimization step. The values indi-
cated for step 2 corresponds to the initial FE analysis performed at
the beginning of step 3. Two load cases only induce compression in
the SYLDA structure, and buckling is evaluated for these two cases

only. f ( j )
T W represents the critical value of the failure constraint (see

equation 17) over the design regions of the structure for load case j .
The overall design clearly is stiffness dominated.

C Variable stiffness optimization case: sandwich failure
modes

Shear crimping, face sheet wrinkling, and intra-cell dimpling are checked
on the final design of the structure. Proper estimation of these local
failure modes would require a detailed finite element analysis, espe-
cially in the case of anisotropic face sheet laminates. Following the
usual engineering practice, we use here the closed-form solutions
derived for uniaxially loaded sandwich panels given by [42].

The local load at which shear crimping occurs is estimated as:

Ncr = Gc tc , (21)

where Gc is the effective transverse shear stiffness of the core mate-
rial.

The critical value of the local stress for the face wrinkling insta-
bility is given by:

σwr =
 2

3

ts

tc

Ec

√
E(s)

x E(s)
y

(1−ν(s)
x yν

(s)
y x )

1/2

, (22)

with Ec the core effective transverse stiffness, E(s)
x (resp. E(s)

y ) is the
macroscopic elastic modulus of the skin laminate in the x-direction
(resp. y-direction) and ν(s)

x y and ν(s)
y x are its in-plane Poisson coeffi-

cients.

Finally, the critical stress for the face dimpling instability can be
written as:

σdi =
2
√

E(s)
x E(s)

y

(1−ν(s)
x yν

(s)
y x )

(
ts

s

)2

, (23)

with s the cell size of the honeycomb.
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Fig. 13 View of the SST found at step 2 for the lower cone.

Fig. 14 View of the SST found at step 2 for the central cylinder.

Fig. 15 View of the SST found at step 2 for the upper cone.
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