ATOMIC FORCE MICROSCOPY ON MICROBIAL SURFACES

Audrey BEAUSSART & Sofiane EL-KIRAT-CHATEL

LIEC, UMR 7360, NANCY LCPME, UMR 7564, NANCY

Atomic Force Microscopy (AFM)

 This microscope works by touching objects with a sharp tip instead of looking at them »

The Nobel Prize in physics 1986

Gerd Binnig

Heinrich Rohrer

Atomic Force Microscopy (AFM)

Atomic Force Microscopy (AFM)

Geometry:	Poteted (Symmetric)
Tip Height (h):	2.5 - 8.0µm
Front Angle (FA):	15 ± 2.5°
Back Angle (BA):	25 ± 2.5 °
Side Angle (SA):	17.5 + 2.5 °
Tip Radius (Nom):	10 nm
Tip Radius (Max):	40 mm
Tip SetBack (TSB)(Nom):	4 µm
Tip Set Back (TSB)(RNG):	0 - 7 µm

Classical AFM

<image>

AFM mounted on an optical system

Imaging mode : principle

Imaging mode : contact vs peak force tapping

Contact

Peak force tapping

Color code

Immobilization techniques

Mammalian cells

(tend to naturally spread on the surface)

Micro-organisms

(round, difficult to deform)

AFM imaging of microbes

- Mechanically trapped in membrane
- Imaged under small force (100 pN)
- In physiological conditions (liquid)

Imaging mode : examples

Yeast

Candida albicans

Fungus

Aspergillus fumigatus Hydrophobic rodlets

Bacteria Lactococcus lactis peptidoglycan

Imaging artefacts

• Tip radius of curvature

B2*

A2

0.5 1.0

1.5

2.0

0.5 1.0 1.5 2.0 2.5 3 0 um

0.0

-750 nm

Imaging artefacts

• Tip contamination

Force Spectroscopy

Force-distance curves

Deflection sensitivity (nm/V)

Cantilever spring constant (N/m)

Hooke's law : $F = -k \times d$

Force-distance curves

Force-distance curves

Tip functionalisation

Mapping of individual molecules

Mapping of individual molecules

- Distribution
- Mechanical properties
- Dynamics

Single Cell Force Spectroscopy

Analytical Methods

A. Beaussart, P. Herman et al., 2013

Chemical force microscopy

Macroscopic measurements

Water contact angle

• Nanoscale measurements Chemical force microscopy

Macroscopic measurements

0.5

Chemical force microscopy of A. fumigatus

D. Alsteens et al., 2013

Nitzschia palea

- Photosynthetic microalgae
- Fresh water
- Motile
- Silica frustule with pores
- Adhere to surfaces and form mixed biofilms with other species
- Production of extracellular polymeric substances: EPS
- Bioindicator of water quality

What are the adhesive mechanisms of *N. palea* towards surfaces of different chemistry?

Chemical force microscopy of Nitzschia palea

M. Laviale, A. Beaussart, S. El-Kirat-Chatel, 2019

Adhesion of *Nitzschia palea*

Adhesion of *Nitzschia palea*

> Single cell force spectroscopy

> Single molecule probing by chemical force spectroscopy

CFM of Nitzschia palea

CFM of Nitzschia palea

Raman of Nitzschia palea

(Glyco)-lipids are the major EPS of *N. palea*

Proteins

Applications of AFM to green microalgae: Chlorella vulgaris

Applications of AFM to green microalgae: Chlorella vulgaris

