
An Overview of Hardware Implementation of Membrane
Computing Models

GEXIANG ZHANG∗, Chengdu University of Technology, China and Southwest Jiaotong University, China
ZEYI SHANG, Southwest Jiaotong University, China and Université Paris-Est Créteil Val de Marne, France
SERGEY VERLAN, Université Paris-Est Créteil Val de Marne, France
MIGUEL Á. MARTÍNEZ-DEL-AMOR, Universidad de Sevilla, Spain
CHENGXUN YUAN, Southwest Jiaotong University, China
LUIS VALENCIA-CABRERA, Universidad de Sevilla, Spain
MARIO J. PÉREZ-JIMÉNEZ, Universidad de Sevilla, Spain

The model of membrane computing also known under the name of P systems is a bio-inspired large-scale
parallel computing paradigm having a good potential for the design of massively parallel algorithms. For its
implementation it is very natural to choose hardware platforms that have important inherent parallelism,
like field-programmable gate arrays (FPGAs) or compute unified device architecture (CUDA)-enabled graphic
processing units (GPUs). This paper performs an overview of all existing approaches of hardware implementa-
tion in the area of P systems. The quantitative and qualitative attributes of FPGA-based implementations and
CUDA-enabled GPU-based simulations are compared to evaluate the two methodologies.

CCS Concepts: • Hardware → Simulation and emulation; Transaction-level verification; Semi-formal
verification.

Additional Key Words and Phrases: Membrane Computing, P Systems, Hardware Implementation, Field
Programmable Gate Array (FPGA), Compute Unified Device Architecture (CUDA), Graphic Processing Unit
(GPU)

ACM Reference Format:
Gexiang Zhang, Zeyi Shang, Sergey Verlan, Miguel Á. Martínez-del-Amor, Chengxun Yuan, Luis Valencia-
Cabrera, andMario J. Pérez-Jiménez. 2020. AnOverview of Hardware Implementation ofMembrane Computing
Models. ACM Comput. Surv. 1, 1 (June 2020), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗Corresponding author

Authors’ addresses: Gexiang Zhang, Chengdu University of Technology, No.1, Dongsan Road, Erxianqiao, Chenghua District,
Chengdu, 610059, China, Southwest Jiaotong University, 999 Xián Rd, Chengdu, 611756, China, zhgxdylan@126.com; Zeyi
Shang, Southwest Jiaotong University, 999 Xi‘an Rd, Chengdu, 611756, China, Université Paris-Est Créteil Val de Marne,
61 av. du général de Gaulle, Créteil, 94010, France, zeyi.shang@lacl.fr; Sergey Verlan, Université Paris-Est Créteil Val de
Marne, 61 av. du général de Gaulle, Créteil, 94010, France, verlan@u-pec.fr; Miguel Á. Martínez-del-Amor, Universidad de
Sevilla, Avda. Reina Mercedes S/N, Seville, 41012, Spain, mdelamor@us.es; Chengxun Yuan, Southwest Jiaotong University,
999 Xián Rd, Chengdu, 611756, China, 502220232@qq.com; Luis Valencia-Cabrera, Universidad de Sevilla, Avda. Reina
Mercedes S/N, Seville, 41012, Spain, lvalencia@us.es; Mario J. Pérez-Jiménez, Universidad de Sevilla, Avda. Reina Mercedes
S/N, Seville, 41012, Spain, marper@us.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2020/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 G. Zhang, Z. Shang, S. Verlan, et al.

1 INTRODUCTION
With the arising of protocells 3.84 billion years ago in hydrothermal vent precipitates [26], the
evolution of unicellular organisms led to the apparition of multicellularity [83]. The biological
cell structure defined by the membranes has evolved and was optimized for billions of years. As a
consequence, a biological cell is a powerful parallel processing unit that can perform sophisticated
biologic behaviors. Inspired by the structure of biological membranes and by internal bio-chemical
reactions, Gheorghe Păun initiated the area of membrane computing in 1998 as a theoretical
computer science model borrowing many concepts from the cell biology [84]. The model, also
called P systems, features a nested membrane-like structure delimiting regions that host objects
(modeling cell chemicals) which are transformed locally or communicated to other regions by
different types of rules that mimic cell chemical transformations. The evolution of the state of the
system is performed by transition steps doing a synchronous parallel execution of all rules. Since a
typical model contains hundreds and even thousands of such parallel executions, P systems feature
an inherent massive parallelism and the global behavior of the system is emerging from many
simple interactions provided by rules application. There exist numerous variants of the model
depending on the manipulated objects, used types of rules and the parallel execution strategy.
Membrane Computing is a computing paradigm inspired from the structure and functioning

of living cells, and the organization of cells in tissues and other structures, including the brain.
It provides distributed parallel computing devices called, generically, P systems. Membrane com-
puting models are an extension of DNA computing, a possible source of novel/useful/interesting
computing models. If one wants to model (1) discrete, (2) distributed, (3) parallel, (4) cell-like
or tissue-like system, (5) dealing with multisets, (6) evolving by rewriting-like rules, then P sys-
tems are obligatory/unavoidable and the unique models dealing with all these features [85]. As
unconventional computing devices within natural computing, P systems have proved to over-
come the well-known limitations imposed by the conventional techniques based on electronic
technology. More specifically, the relevance of these computing models can be non-exhaustively
summarized in the following points. From a theoretical view, a novel methodology to tackle the
famous P versus NP problem has been given [76]. The main focus in the area was the introduction
of (biologically-inspired) variants of P systems and the further study of their computational power,
in particular of their computational completeness, see [87] resuming hundreds of articles on this
topic. From a practical view, the theoretical investigation led to a series of successful applica-
tions in different areas ranging from image processing [25, 114], meta-heuristic algorithms for
optimization problems [116, 117, 119], robot controllers [14, 109] and path planning [79, 81, 110]
and fault diagnosis for electrical power systems [90, 107, 108]. Due to its historical background,
membrane computing was also used as a modeling framework for biological and ecological subjects
such as artificial life [94], photosynthesis [75], p53 protein signaling pathway [95], myxobacterial
colony [68], biopolymer duplication [56]. Please see a recent overview in [118].

For twenty years many applications of P systems have arisen, not only in Theoretical Computer
Science, but also in Computational Modelling, Robotics, Optimization, etc., as mentioned above. The
interest in this area is increasing, given that this unconventional, massively-parallel approach has
been demonstrated to provide a powerful, flexible and expressive framework. One example is the
2016 report of the National Research Council of Canada where Membrane Computing appears to be
mentioned several times as prominent parts of bio-computing [112]. Therefore, there is a need for
simulators in order to build model validation tools, assistants for formal verification, environments
for virtual experimentation, model calibration tools, etc. So far, most of the simulation software
aim at reproducing only the computation of the devices. However, there have been also a research
line concerning the implementation of P system parallelism in real parallel platforms. The main

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 3

hardware employed for this is FPGAs and GPUs, given their efficiency, fast shared memory system
and scalability. The objective is twofold: on the one hand, provide efficient simulation tools where
the massive, natural P system parallelism do not get serialized and is instead harnessed in order
to speed up the simulations; and on the other hand, to explore how this special parallelism can
be mapped in current modern computing architectures. It is known that the future of computer
architecture will go through non-Von Neumann architectures [12]. Natural Computing models can
provide solutions where the instructions are closed to, or along with, the data. P systems are just
an alternative, like artificial neural networks, for this. We want to shed a light into this alternative
from the perspective of efficient implementation, analysing all the challenges and current solutions.
In addition, a number of these applications mentioned above only theoretically profit from the
potential speed-up promised by the model as there are no truly parallel implementations available.
On the other hand, the inherent large scale parallelism of the model has the profound potential
for the progress of extreme data processing, especially taking into account that there are not so
many widely investigated massively parallel computational paradigms. Thus, an interesting topic
is the implementation of membrane computing models on contemporary silicon integrated circuits.
This allows to exploit the desirable parallel computational capability of P systems to explore a new
orientation for high performance computing (HPC) [51, 54].

As pointed out in [43] “some unmistakable trends in hardware design indicate that uniprocessor
(or implicitly parallel) architectures may not be able to sustain the rate of realizable performance
increments in the future”. The augmentation of electronic ingredients’ density had been subject
to the well-known Moore’s law for decades. After extraordinary exponential growth of many
years, the number of transistor in chips cannot follow this law, at least it cannot be doubled
within two years [2]. With transistors shrunk to nanoscale, quantum effects stand out [66] and
the behavior of circuits is not up to expectations. Moreover, even with the further increase of the
density, the computational capability growth is not linearly proportional to it [111]. Another knotty
problem is the heat dissipation, which would melt the silicon substrate with density level increasing.
Traditional semiconductor scaling is predicted to reach an end by about 2024 on the foundation of
prior arts [1]. Parallel computing has the potential to further uplift computing power provided that
the density of transistor is constant [101] with multicore and multithread architecture, although
heat dissipation and interconnect issues would be challenges [8].
All these observations give strong arguments in favor of investigation of parallel computing

platforms. Before claiming that the era of parallel computing has dawned, one essential question
should be clarified: what does parallel computing mean? Though not rigorous, parallel computing
implies computing based on the decomposition of the task into a set of concurrently executable
operations and the assignment of these operations to multiple parallel processing nodes. The
evolution of computer processor scheme, from single-core single central processing unit (CPU)
to multiple-core single CPU and multiple-core multiple-CPU frame is an instance of parallel
computing. The inherent parallelism of P systems place them in the class of multiple processing
nodes computing devices. The mapping of constituents to processing nodes gives rise to different
implementation strategies. A common practice in the area of natural computing is to observe
natural processes and somehow mimic the corresponding behavior. The way how living cells
allocate, organize and coordinate processing nodes has evolved for billions of years. Investigating
this magnificent course might help us to handle the multiple cores computing, which has cut a
striking figure in the contemporary parallel computing realm.

The large scale distributed parallel processes occurring in vesicle compartments and the vesicle
division functionality enlightened from mitosis of living cells are two of the most outstanding
advantages of membrane computing. They allow to underlie the foundation for the construction of
highly parallel computation platform whose performance, flexibility and scalability outperforms

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

4 G. Zhang, Z. Shang, S. Verlan, et al.

traditional sequential counterparts substantially [118]. As a parallel computing paradigm inspired
by the structural and functional features of biological membranes, only parallel computing platforms
are suitable for the implementation of P systems. More precisely, the limited parallelism of general
computers realized by the communication mechanism among the multiple cores of CPU and GPU
cannot make full use of the large scale parallelism, non-determinism and other particular attributes
that impart an enormous computing potential like creation and dissolution of inner membranes,
the self-replication or autopoiesis [29] of the whole cell-like entirety that works as a computing
unit, the communication by symport and antiport of objects [4], etc. We would like to remark that
programming membrane computing algorithms with high level general purpose languages and
executing them on the computer represents just a simulation and not a real implementation of P
systems [85].

Several software-based and hardware-based parallel computing platforms have been developed to
implement P systems. The first software-based parallel computing platform was constructed using
a cluster of computers [22]. This platform achieves good performance and flexibility. Nonetheless,
when the size of target P system is increased, the consumption of CPU time and resources caused
by the communication between different computers rises dramatically. Moreover, the underlying
hardware (a cluster of computers) of this platform cannot be miniaturized closing the way to
corresponding membrane computing algorithms to be used in embedded chips and compact
controllers which can be employed in robots, automobiles, machine tools, etc. This disadvantage
limits the range of applications of such platforms for membrane computing.

Hence, it is important to propose hardware implementations of P systems as specific architectures
that do not have the drawbacks related to the traditional ways of implementation. There are two
main directions for such research using (1) Field-programmable gate arrays (FPGA) and (2) graphical
processing units (GPUs) relying on Compute unified device architecture (CUDA) platform. In the
first case a completely new parallel circuit is specially designed to implement some variants of P
systems. In the second case the pre-defined CUDA parallel platform is used to simulate P systems.
The achieved performance and correspondence is smaller in this case, but the development effort
is much lower, so finally it becomes an interesting compromise between traditional computers
implementations and a highly parallel one using specialized circuits. Also, when implementing
membrane computing models in hardware, the main difficulty comes from the fact that there exists
a big number of variations of the basic model of P systems having quite distinct characteristics [88].
This poses a great challenge for the conception of a general computational architecture to implement
these various models.
The computation in a P system is a sequence of transitions between configurations. The core

problem for implementations is the object distribution problem (ODP) that computes one of the
multisets of applicable rules to the current configuration and whose application permits to reach the
next configuration. This problem is a particular variant of a more general problem that computes
the whole applicable set of multisets of rules for a given configuration and it is known to be NP-
complete [21]. Known algorithms and heuristics do not parallelize well, so special heuristics were
developed in order to quickly compute the desired multiset of rules. We decided to present these
heuristics uniformly in terms of multi-criteria optimization, see Sections 4, 5. Another problem for
implementations is that in the general case the model is non-deterministic, so an equitable choice
among different possibilities should be provided. However, this is very difficult to achieve and in
most of the cases this property is not satisfied.
This paper is organized as follows: Section 2 gives a brief description of the capabilities and

of the architecture of hardware used, Section 3 recalls the definition of the most general model
of P systems, based on the formal framework [35]. Next Section 4 expresses object distribution
problem (ODP) in terms of multi-criteria optimization and integer linear programming. Section 5

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 5

presents an overview of different simulation approaches, including the Direct Non-deterministic
Distribution algorithm (DND) algorithm which is the base for handling non-determinism. Next
Sections 6, 7 and 8 give more details on existing simulation approaches. At the end, conclusions
and future research directions are discussed.

2 THE SELECTION OF HARDWARE
2.1 FPGA hardware
The FPGA is a reconfigurable hardware allowing to prototype digital circuits. The modification of
circuits for FPGA is performed by altering the interconnections between circuit elements using
a hardware description language, the most common ones being VHSIC Hardware Description
Language (VHDL) and Verilog. The design can be performed on several levels of abstraction, ranging
from the switch/transistor level until the behavioral level (corresponding to a Mealy machine [67]).
From structural point of view, an FPGA is an array of configurable logic blocks (CLB) inlaid in

the matrix of interconnects. The CLBs work as containers for slice-organized logic cells, which
are composed of look-up tables (LUTs) and flip-flops (FFs). The LUTs are used to implement
different combinatorial circuits such as basic gates, decoders, encoders and multiplexers. The
FFs are the sequential logic components acting as a memory element in the circuit. In order to
produce a circuit, the interconnects of CLBs should be reconfigured. The interconnection in FPGA
is performed by switch boxes routing signals between its logic blocks. Modern FPGAs use one of
the following interconnect technologies: static RAM, flash memory and anti-fuse. The first one
dominates the current FPGAs implementations. With the re-programmability, FPGAs comply with
the model-oriented hardware implementation quite well.

2.2 CUDA-enabled GPU hardware
The multiple computing cores architecture originates from mainframe computers where it was
used to improve the clock speed. Nowadays, it is hard to find a PC equipped with only one core.
On the other side, the component integration scale of some High-end GPUs has outpaced the
CPUs for the booming demand of graphics processing (advanced rendering and 3D vision) [52].
Currently, the GPU is a computing element as powerful as the CPU. Different from FPGAs, there are
manufactured parallel architectures in GPUs. The advantage is that developers should just concern
about the efficient utilization of these architectures and the drawback is that these frameworks are
un-reconfigurable.
Nevertheless, the GPU is not a general processing unit which can handle other computing

assignments except for graphics processing. The predicament has changed for the arise of compute
unified device architecture, known as CUDA, from the leading chip vendor-NVIDIA corporation.
CUDA is a technology that enables general-purpose computing on graphics processing units (GPGPU).
Usually, when referring to CUDA, what is referred is not the parallel computing framework but
a GPU supporting CUDA. A CUDA-enabled graphics processing unit is an universal parallel
computing device which is suitable for the implementing of parallel algorithm models. The parallel
computing behavior of CUDA is based on the execution of multiple compute kernels on the
GPU. These compute kernels are without physical construction, but based on an abstract parallel
programming model. In other words, CUDA does not alter the physical structure of GPU. CUDA
programming model is based on heterogeneous computing, where the CPU (host) is the master node
that controls the execution flow and launches kernels on the GPU (device) when massive parallelism
is required [52]. A kernel is executed by a grid of (thousands of) threads. The grid is a two-level
hierarchy, where threads are arranged into thread blocks of equal size. Each block and each thread
is unequivocally identified by an identifier. In this way, threads and blocks can be distributed easily

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

6 G. Zhang, Z. Shang, S. Verlan, et al.

to different portions of data, or to compute different instructions. Threads from the same block can
be synchronized using barriers, while those belonging to different blocks can only be synchronized
by the end of the execution of the kernel.

A GPU contains a global memory, which has the biggest size, but has the longest access time and a
shared memory, which is smaller but faster [52]. Although current GPUs contain cache memories, in
order to accelerate memory accesses, best performance is achieved when doing it manually. Global
memory is accessed by all threads launched in all grids, and also by the host, but shared memory is
only accessible by threads in a block. Threads also have fast access to their own registers for single
variables, and local memory (which is normally outsourced to global memory). Accesses to memory
have to be carefully programmed, so that contiguous portion of data is read by consecutive threads
(providing so called coalesced access), since this increases the memory bandwidth utilization.

Nowadays the architecture of GPUs is upgraded to Streaming Multiprocessors (SMs) which are
composed of an array of Streaming Processors (SPs), working as computing cores. A thread set
consisting of 32 threads named warp is the basic unit which a SM fulfills in its executions. A SM
can manage multiple warps which are based on Single-Instruction Multiple-Thread (SIMT) model
in effect. Each thread in a warp should commence its processing at the identical program address
concurrently, although after beginning, threads can execute independently abiding by a sequential
manner. The parallelism of CUDA is terminated when a warp branches or the memory stalls [61].

2.3 Other hardware
There were attempts to simulate certain types of P systems on micro-processor based architec-
tures [47]. Although the performance of micro-processors is low, they are economical alternatives
suitable for the developing of prototypes and verifying the design methods. The drawback is that in
most of the cases the parallel nature of P systems is not exploited at all, often leading to inefficient
implementations. It could be interesting to use out-of-order (OoO) execution [93] processors to
tackle this problem, but this possibility was not investigated yet.
Custom application specific integrated circuits (ASIC) can also be employed to implement P

systems. However, no such attempts exit at the moment of the writing of this paper. One of the main
reasons is that the flexibility of the hardware platform constructed on ASIC is quite insufficient
to adapt to the different variants of P systems. However, such attempts could still be meaningful
as they would allow to simulate features of P systems on some tailored circuits with different
properties, like low power consumption. Another possible direction is to use ASIC for particular
commonly occurring computational cores and combine them with software execution [28, 103].

3 THE MODEL OF P SYSTEMS
We suppose the reader to have a knowledge of basic notions from formal language theory and
membrane computing. We refer to [37, 87] and [91] for missing details. We will also closely
follow [35, 105] for the definitions.

We recall that amultiset can be seen as a set whose elements can have greater than onemultiplicity.
We will use the string notation for multisets, i.e., a multiset𝑀 will be represented by a string where
the number of occurrences of each letter, corresponds to its multiplicity in𝑀 . We will denote by
|𝑀 | the size of the multiset𝑀 and by |𝑀 |𝑎 the number of elements 𝑎 in𝑀 .
There exist many variants of P systems, see e.g. [85]. In this paper the presentation will be

given in terms of the formal framework for P systems introduced in [35], see also [104, 105]. This
framework is based on the model of network of cells specifying the structure and rules to be executed
as well as on a set of 4 functions giving the semantics of the system. Different combinations of
these parameters allow in most of the cases to construct for a given P system a network of cells
that strongly bisimulates it (i.e. one step in the one system is simulated by one step in the other

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 7

one). Moreover, in many cases there is a one-to-one correspondence between rules applied in
each system, meaning that they are mostly indistinguishable. Hence, the framework for P systems
can be seen as a common language to compare different P systems as well as to express notions
related to this area. Moreover, other multiset rewriting-based models (like Petri nets) can be easily
expressed into this framework giving a possibility to compare corresponding models. Finally, we
would like to remark that in what follows we will use the variant of the framework supposing that
the system structure does not change in time. An extension of the framework that permits to take
into account notions related to P systems with dynamically evolving structure is given in [34], but
corresponding definitions are too complex for the purpose of this paper.

3.1 Network of Cells
As pointed out in [33, 35, 104, 105], most types of (static structure) P systems can be seen as
variants of parallel multiset rewriting (by using the algorithm called flattening). Since multiset
rewriting level is not practical for system description and understanding, a higher-level concept
called network of cells was introduced in [35]. This model augments multiset rewriting with the
notion of spatial locations (cells) as well as the corresponding operations and it can be seen as a
particular interpretation of the symbols. The works [35, 104, 105] define some basic building blocks
in terms of network of cells and give several examples of the construction of widespread notions
and types of rules in membrane computing using these blocks.
Below, we provide the definition of network of cells, taken from in [35]. We remark that the

definition from [34] is slightly different, however both models coincide when the structure of the
system does not evolve.

Definition 3.1 ([35]). A network of cells of degree 𝑛 ≥ 1 is a construct

Π = (𝑛,𝑉 ,𝑤, 𝐼𝑛𝑓 , 𝑅)

where
(1) 𝑛 is the number of cells;
(2) 𝑉 is an alphabet;
(3) 𝑤 = (𝑤1, . . . ,𝑤𝑛) where𝑤𝑖 ∈ 𝑉 ◦, for all 1 ≤ 𝑖 ≤ 𝑛, is the finite multiset initially associated to

cell 𝑖;
(4) 𝐼𝑛𝑓 = (𝐼𝑛𝑓1, . . . , 𝐼𝑛𝑓𝑛), where 𝐼𝑛𝑓𝑖 ⊆ 𝑉 , for all 1 ≤ 𝑖 ≤ 𝑛, is the set of symbols occurring

infinitely often in cell 𝑖 (in most of the cases, only one cell, called the environment, will contain
symbols occurring with infinite multiplicity);

(5) 𝑅 is a finite set of rules of the form

(𝑋 → 𝑌 ; 𝑃,𝑄)

where 𝑋 = (𝑥1, . . . , 𝑥𝑛), 𝑌 = (𝑦1, . . . , 𝑦𝑛), 𝑥𝑖 , 𝑦𝑖 ∈ 𝑉 ◦, 1 ≤ 𝑖 ≤ 𝑛, are vectors of multisets over
𝑉 and 𝑃 = (𝑝1, . . . , 𝑝𝑛), 𝑄 = (𝑞1, . . . , 𝑞𝑛), 𝑝𝑖 , 𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑛 are finite sets of multisets over 𝑉 .
We will also use the notation (omitting 𝑝𝑖 , 𝑞𝑖 , 𝑥𝑖 or 𝑦𝑖 if they are empty)

(1, 𝑥1) . . . (𝑛, 𝑥𝑛) → (1, 𝑦1) . . . (𝑛,𝑦𝑛) ; [(1, 𝑝1) . . . (1, 𝑝𝑛)]; [(1, 𝑞1) . . . (𝑛, 𝑞𝑛)] .

The above rule is applied as follows: objects 𝑥𝑖 from cells 𝑖 are rewritten into objects 𝑦 𝑗 produced
in cells 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, if every cell 𝑘 , 1 ≤ 𝑘 ≤ 𝑛, contains all multisets from 𝑝𝑘 and does not contain
any multiset from 𝑞𝑘 .

By taking for each rule the set of cells that are involved a hypergraph relation, called the structure
of the system, is induced. Commonly, tree-like (for P systems) or graph-like (for tissue P systems)
relations are considered.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

8 G. Zhang, Z. Shang, S. Verlan, et al.

The configuration 𝐶 of Π is defined as an 𝑛-tuple of multisets over 𝑉 (𝑢1, . . . , 𝑢𝑛) satisfying
𝑢𝑖 ∩ 𝐼𝑛𝑓𝑖 = ∅, 1 ≤ 𝑖 ≤ 𝑛.

In order to define the computation in network of cells according to some derivation mode 𝛿 the
following functions should be specified:

• 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π, C, 𝛿) – the function taking a system Π, a configuration C and a derivation
mode 𝛿 and yielding the set of multisets of rules of Π that can be applied to C.

• 𝐴𝑝𝑝𝑙𝑦 (Π, C, 𝑅) – the function allowing to compute the configuration obtained by the parallel
application of the multiset of rules 𝑅 to the configuration C.

• 𝐻𝑎𝑙𝑡 (Π, C, 𝛿) – a predicate that yields true if C is a halting configuration of the system Π (in
some derivation mode 𝛿).

• 𝑅𝑒𝑠𝑢𝑙𝑡 (Π, C) – a function giving the result of the computation of the P system Π when the
halting configuration C has been reached.

Then the computation is a sequence of transitions where each transition step 𝐶 ⇒ 𝐶 ′ is defined
as 𝐶 ′ = 𝐴𝑝𝑝𝑙𝑦 (Π,𝐶, 𝑅), for some 𝑅 ∈ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿). As usual, this sequence starts with the
initial configuration and ends with the final configuration for which the halting predicate𝐻𝑎𝑙𝑡 yields
true. In more formal terms, the result of the computation of a network of cells Π = (𝑛,𝑉 ,𝑤, 𝐼𝑛𝑓 , 𝑅)
working in the derivation mode 𝛿 is defined as follows (we refer to [35] for more technical details):

𝑅𝑒𝑠𝑢𝑙𝑡 (Π) = {𝑅𝑒𝑠𝑢𝑙𝑡 (Π, 𝑧) : 𝑤 ⇒∗ 𝑧, 𝐻𝑎𝑙𝑡 (Π, 𝑧, 𝛿) = 𝑡𝑟𝑢𝑒 and
𝐻𝑎𝑙𝑡 (Π, 𝑥, 𝛿) = 𝑓 𝑎𝑙𝑠𝑒 for any 𝑥 : 𝑤 ⇒∗ 𝑥 ⇒+ 𝑧}

We remark that [35] gives an algorithm to compute the set of multisets of applicable rules, denoted
as𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛), the algorithm to compute𝐴𝑝𝑝𝑙𝑦 (Π, C, 𝑅) and several definitions for𝐻𝑎𝑙𝑡

and 𝑅𝑒𝑠𝑢𝑙𝑡 functions. The most common way of halting is the total halting, which means that there
are no more applicable rules and the most common way of getting the result is to consider the
multiset of objects present in the halting configuration at some predefined cell.
At each step, the set of multisets of applicable rules 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛) can be restricted

using a derivation mode, denoted by 𝛿 , which specifies which sub-multisets are chosen for the
next step application. The most common example is the maximally parallel derivation mode (𝑚𝑎𝑥)
which is defined as follows:

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥) = {𝑅 ⊆ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛) | �𝑅′ ∈ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛) : 𝑅′ ⊋ 𝑅}.

The filter condition states that only non-extensible multisets are considered in this derivation
mode. We remark that there might be several such multisets, hence for the application a non-
deterministic choice is used to take one of them. We also refer to [105] for a description of several
other derivation modes.

Example 3.2. Consider the system Π = (𝑂,𝑤1, 𝑅), having the alphabet 𝑂 = {𝑎, 𝑏, 𝑐} and the
set of rules 𝑅 = {𝑟1 : (1, 𝑎𝑏) → (1, 𝑎𝑏𝑐); 𝑟2 : (1, 𝑏𝑏𝑐) → (1, 𝑎𝑏𝑏)}. Consider the configuration
𝐶 = (1, 𝑎3𝑏4𝑐2). Then, 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛) =

{
𝑟1, 𝑟

2
1 , 𝑟

3
1 , 𝑟2, 𝑟

2
2 , 𝑟1𝑟2, 𝑟

2
1𝑟2

}
. The maximally-parallel

set of multisets of rules is the following:

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥) =
{
𝑟 31 , 𝑟

2
2 , 𝑟

2
1𝑟2

}
The application of the multiset of rules 𝑟 21𝑟2 on 𝐶 yields (1, 𝑎4𝑏4𝑐3).

Example 3.3. Consider the systemΠ = (𝑂,𝑤1,𝑤2, 𝑅), with𝑂 = {𝑎, 𝑏, 𝑐} and𝑅 = {𝑟1 : (1, 𝑎) (2, 𝑏) →
(1, 𝑏) (2, 𝑎); 𝑟2 : (1, 𝑏) → (2, 𝑏)}. Consider the configuration 𝐶 = (1, 𝑎4) (2, 𝑏). It is easy to observe
that at each step only a single rule is applicable (𝑟1 or 𝑟2 alternatively). The only possible sequence
of rule applications is (𝑟1𝑟2)4 after which no rule is applicable anymore. This sequence moves all

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 9

symbols 𝑎 from cell 1 to cell 2. We remark that the above rules do not rewrite objects, but only
move them in the structure.

3.2 Examples of P systems
Here we will give the formal framework description of some main variants of P systems that were
targeted for an implementation.

Transitional (cell-like) P systems [77]. This model considers that cells are organized in a tree
structure and uses rules of following type: (𝑖, 𝑢) → (𝑖, 𝑢 ′) (𝑗, 𝑢 ′′) (𝑘1, 𝑣1) . . . (𝑘𝑚, 𝑣𝑚), where 𝑗 is the
parent of 𝑖 and 𝑖 is the parent of 𝑘1, . . . , 𝑘𝑚 ,𝑚 ≥ 0. When |𝑢 | > 1 corresponding rules are called
cooperative.

Symport/antiport P systems. This variant considers that objects are not transformed but rather
moved in a tree-like or graph-like structure. This corresponds to rules of form (𝑖, 𝑢) (𝑗, 𝑣) → (𝑖, 𝑣) (𝑗, 𝑢)
or (𝑖, 𝑢) → (𝑗, 𝑢).

Populational Dynamics P (PDP) systems [13, 92]. The structure of this model corresponds to
several trees that have their roots linked together. There are two types of rules: (1) working inside
some tree: (𝑖, 𝑢) (𝑗, 𝑣) → (𝑖, 𝑢 ′) (𝑗, 𝑣 ′), where 𝑖 is parent of 𝑗 and (2) communication between tree
roots: (𝑟𝑖 , 𝑥) → (𝑟1, 𝑥1) . . . (𝑟𝑘 , 𝑥𝑘), where 𝑟1, . . . , 𝑟𝑘 are the numbers of the corresponding tree roots.
Moreover, each rule has a probability associated to it, so the derivation mode is maximally parallel,
followed by a probabilistic choice between rules having the same left-hand-side.

Spiking Neural P systems [24, 49]. This model has a graph structure and restricts the alphabet of
the system to be a single letter, however permitting and forbidding conditions are replaced by a
regular expression check. The rules are of form (𝑖, 𝑎𝑘) → (𝑘1, 𝑎𝑥1) . . . (𝑘𝑚, 𝑎𝑥𝑚); (𝑖, 𝐸), where 𝐸 is
the regular expression checking for the contents of cell 𝑖 , 𝑎 is the single symbol used in the alphabet
and 𝑘1, . . . , 𝑘𝑚 are the cells linked to cell 𝑖 . The derivation mode is sequential at the level of each
cell (only one rule per cell is applied) and maximally parallel at the level of all cells.

(Enzymatic) Numerical P Systems [78, 86]. Amultiset𝑀 can also be seen as a function𝑀 : 𝑉 → N.
The model of numerical P systems extends the notion of multiset to 𝑀 : 𝑉 → R𝑛 . Hence, the
configuration is a vector of real-valued variables and rules are equations describing how to update
each variable during each step.

P Systems with Active Membranes [36]. This model corresponds to transitional P systems with an
additional rule allowing to create new child cells.

4 REDUCTION OF THE COMPUTATION STEP TO MULTI-CRITERIA OPTIMIZATION
The computation in P systems corresponds to a finite sequence of transitions between configurations.
Each transition 𝐶 ⇒ 𝐶 ′ can be seen as a sequence of 4 steps: (1) computing the set of multisets
of applicable rules (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛)), (2) restricting it according to the derivation mode 𝛿
(𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿)), (3) choosing one element from it 𝑅 and (4) applying 𝑅 to the configuration
𝐶 yielding 𝐶 ′ = 𝐴𝑝𝑝𝑙𝑦 (Π,𝐶, 𝑅). The first step is the most time consuming, as the corresponding
problem is generally NP-hard. As we show below that in some cases it is possible to reduce the first
3 steps (the computation of an element from 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿)) to a multi-criteria optimization
problem. This will allow us to express different algorithms used to compute this step by different
authors in a common language for a better comparison. Another theoretical advantage of such
reduction is an extensive standard vocabulary and a plethora of solving methods existing in the
optimization area, that could be possibly applied for large-scale P systems. We would like to remark

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

10 G. Zhang, Z. Shang, S. Verlan, et al.

one more time that the presented reductions are not possible in the general case, however they are
possible for many concrete cases.

4.1 Preliminaries
A multi-criteria optimization problem (MCOP) is an optimization problem that involves multiple
objective functions. In mathematical terms it can be stated as

max(𝑓1 (𝑥), 𝑓2 (𝑥), . . . , 𝑓𝑚 (𝑥))
subject to 𝑥 ∈ 𝑋

where 𝑚 ≥ 2 and 𝑋 is the set of feasible vectors (or solutions). This set is usually defined by
some constraint functions. We can also consider the objective function as a vector: 𝑓 : 𝑋 → R𝑚 ,
𝑓 = (𝑓1, . . . , 𝑓𝑚). For a feasible solution 𝑥 , the vector 𝑧 = 𝑓 (𝑥) is called an objective vector or an
outcome [50, 53].
When corresponding functions as well as 𝑓𝑖 , 1 ≤ 𝑖 ≤ 𝑚 are linear, we speak about a multi-

criteria linear optimization problem. We also remark that as for classical optimization problems the
objective functions are minimized; the other cases like maximization or hybrid min/max can be
easily reduced to the minimization one. When further 𝑋 ⊆ N𝑘 , 𝑘 > 0 and 𝑓 : 𝑋 → N𝑚 we speak
about an integer multi-criteria linear optimization problem (IMCLOP).

In multi-criteria optimization, typically there is no feasible solution that minimizes all objective
functions simultaneously. Hence, the main attention is focused on solutions that cannot be improved
in any of the objectives without degrading some other objective(s). Such solutions are called Pareto-
optimal. Formally, they are defined as preimages of maximal elements of the outcomes, which are
also called Pareto front.

Definition 4.1. A vector 𝑥 ∈ 𝑋 is Pareto-optimal for a MCOP (defined as above) iff there is no
other vector 𝑦 ∈ 𝑋 for which 𝑓 (𝑥) < 𝑓 (𝑦), where 𝑢 < 𝑣 iff 𝑢𝑖 ≤ 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , and ∃ 𝑗, 1 ≤ 𝑗 ≤ 𝑚

such that 𝑢 𝑗 < 𝑣 𝑗 .

Example 4.2. Consider the following problem:
max(𝑟1, 𝑟2) subject to
𝑟1 ≤ 5
𝑟1 + 2𝑟2 ≤ 6
𝑟2 ≤ 3
𝑟1 ∈ N, 𝑟2 ∈ N

The corresponding feasible solutions and Pareto-optimal solutions are shown in Fig. 1. We note
that Pareto-optimal solutions are (5,0), (4,1), (2,2) and (0,3).

0

5

31 2

1

2

3

4

r1

r2

Pareto-optimal

solutions

Non-solutions Area

Feasible solutions

Fig. 1. Feasible and Pareto-optimal solutions from Example 4.2.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 11

4.2 Rule choice as IMCLOP
It is not difficult to see that the problem of the computation of elements from𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥)
can be reduced to IMCLOP. For the first time it was noticed in [5], but without any further
development. For simplicity, we consider that Π is a transitional P system and has only one
membrane (and no environment). If this is not the case, we can apply the flattening procedure
reducing it to one membrane [33, 35]. So Π = (𝑂,𝑤1, 𝑅).

Let 𝑅 = {𝑟1, . . . , 𝑟𝑚} and𝑂 = {𝑎1, . . . , 𝑎𝑛}. Consider that 𝑟𝑖 : (1, 𝑢𝑖) → (1, 𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑚. Let𝐶 be
the current configuration and let 𝐶𝑎 = |𝐶 |𝑎, 𝑎 ∈ 𝑂 .
We will consider a set of variables 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑚, that indicate the cardinality of corresponding

rules in some parallel multiset M ∈ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝑎𝑠𝑦𝑛), |M|𝑟𝑖 = 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑚. Then the
feasible set 𝑋 of (asynchronous) solutions is defined by the following inequalities:

𝑚∑
𝑖=1

|𝑢𝑖 |𝑎𝑥𝑖 ≤ 𝐶𝑎, ∀𝑎 ∈ 𝑂, (1a)

𝑥𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚, (1b)

Inequalities (1a) state that the sum of all consumed objects is included in𝐶 . Technically, for each
object 𝑎 ∈ 𝑂 it is verified that the weighted sum (by the number of symbols 𝑎 in the left-hand-side)
of rule cardinalities is smaller or equal than the number of objects 𝑎 in𝐶 . We remark that system (1)
can be also seen as a system of Diophantine equations and corresponding solutions are exactly
describing the set 𝑋 of feasible solutions.

The IMCLOP corresponding to the computation of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥) is defined by:
max(𝑥1, . . . , 𝑥𝑚) (2)
subject to (𝑥1, . . . , 𝑥𝑚) ∈ 𝑋

It should be clear that Pareto-optimal solutions represent exactly the multiplicities of rules for
some maximally parallel solution.

Example 4.3. Consider the system Π = (𝑂,𝑤1, 𝑅), with 𝑂 = {𝑎, 𝑏, 𝑐} and 𝑅 = {𝑟1 : (1, 𝑎𝑏) →
(1, 𝑎𝑏𝑐); 𝑟2 : (1, 𝑏𝑏𝑐) → (1, 𝑎𝑏𝑏)}. Consider the configuration𝐶 = (1, 𝑎5𝑏6𝑐3). Then, the constructed
IMCLOP corresponds to the one given in Example 4.2
So this system has 4 Pareto-optimal solutions: (5, 0), (4, 1), (3, 3) and (0, 3), corresponding to

multisets of rules 𝑟 51 , 𝑟
4
1𝑟2, 𝑟

2
1𝑟

2
2 and 𝑟

3
2 , which are exactly the maximal multisets of rules applicable

to 𝐶 .

4.3 Tentative solutions
One of the traditional approaches to solvemulti-criteria optimization problems is called scalarization.
It consists in reducing the corresponding MCOP to a single objective optimization problem by
using a real-valued scalarizing function involving the objective functions and additional scalar or
vector parameters and variables. This can also imply additional restrictions to the feasible set based
on the newly introduced variables.
One of the “simplest” methods to solve multi-criteria problems is the weighted sum method,

where we solve the following single objective optimization problem

max
𝑥 ∈𝑋

𝑚∑
𝑘=1

_𝑘 𝑓𝑘 (𝑥) (3)

The weighted sum problem (3) is constructed using the scalar vector product of the vector of
objective functions 𝑓 and the vector of non-negative weights _ ∈ R𝑚 as a parameter. It is known
that it allows to compute all Pareto-optimal solutions for convex problems by varying _ [27].

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

12 G. Zhang, Z. Shang, S. Verlan, et al.

In the literature on P systems some simple variants of the weighted sum method can be found.
In [3, 89] the vector _ = (1, . . . , 1) is considered (so the objective function is the sum of all variables).
However, in this case only maximally parallel rulesets having a maximal number of rules are
obtained. In terms of the formal framework [35] this corresponds to𝑚𝑎𝑥𝑟𝑢𝑙𝑒𝑠𝑚𝑎𝑥 derivation mode.
Another attempt was done in [20, 21] where the parameters _𝑘 correspond to the size of the

left-hand-side of rules (_𝑘 = |𝑢𝑘 |, 𝑟𝑘 : 𝑢𝑘 → 𝑣𝑘). Such optimization problem finds only maximally
parallel solutions involving the maximal number of objects, corresponding to𝑚𝑎𝑥𝑜𝑏 𝑗𝑒𝑐𝑡𝑠𝑚𝑎𝑥 mode
in terms of the formal framework.
In [71] the set of maximally parallel multisets of rules is expressed as solutions of a system of

Diophantine equations (roughly equations (1a)) with an additional constraint to be satisfied on a
solution, expressed as another system of Diophantine equations.
Finally, in [9] the set of maximally parallel multisets of rules can be expressed as solutions to a

system of equations defining some Diophantine sets. While the construction is similar to the one
we give below, it is not trivial to manipulate Diophantine sets and it is not clear how to express the
constraints as a single system of equations. Below, we show how to handle this problem by using
same construction as for handling multiple "either-or"constraints in integer linear programming.

As above we consider that Π has only one membrane (and no environment). So, Π = (𝑂,𝑤1, 𝑅).
Let 𝑅 = {𝑟1, . . . , 𝑟𝑚} and𝑂 = {𝑎1, . . . , 𝑎𝑛}. Consider that 𝑟𝑖 : (1, 𝑢𝑖) → (1, 𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑚. Let𝐶 be

the current configuration and let 𝐶𝑎 = |𝐶 |𝑎, 𝑎 ∈ 𝑂 .
In addition to the _ vector above we introduce an integer parameter𝑀 ∈ N having a value that

is sufficiently big (in fact it should be greater than the maximal possible value of any variable 𝑥𝑖 ,
1 ≤ 𝑖 ≤ 𝑚 of any feasible solution). We remark that in general case of maximal parallelism it is
impossible to limit the maximal values of variables, however, for practical applications, it is often
possible to find such a bound.

We will modify the system (1) to construct a system of inequalities whose integer solutions will
be maximally parallel multisets of rules for the configuration 𝐶 .

𝑚∑
𝑖=1

|𝑢𝑖 |𝑎𝑥𝑖 ≤ 𝐶𝑎, ∀𝑎 ∈ 𝑂, (4a)

𝑚∑
𝑖=1

|𝑢𝑖 |𝑎𝑥𝑖 + |𝑢𝑘 |𝑎 +𝑀𝑧𝑘𝑎 ≥ 𝐶𝑎 + 1, 1 ≤ 𝑘 ≤ 𝑚,𝑎 ∈ 𝑂, |𝑢𝑘 |𝑎 > 0, (4b)∑
𝑎∈𝑂

𝑧𝑖𝑎 = 𝑁𝑖 − 1, 1 ≤ 𝑖 ≤ 𝑚, 𝑁𝑖 =
∑
𝑎∈𝑂

sgn(𝑧𝑖𝑎) (4c)

𝑥𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚, (4d)

𝑧𝑖𝑎 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑚,𝑎 ∈ 𝑂. (4e)

Inequalities (4a) are the same as (1a) and they state that the sum of all consumed objects is
included in 𝐶 .
Inequalities (4b) state the maximality property of the rule set defined by 𝑥1, . . . , 𝑥𝑚 . It verifies

that for each rule there exist at least one object whose remaining quantity is not sufficient to apply
this rule. They are based on multiple "either-or" constraints representation in ILP. The big value of
𝑀 and the inequalities (4c) ensure that only one constraint from (4b) will be considered (the other
ones will be satisfied because of the big value of𝑀).

Hence, any solution 𝑥1, . . . , 𝑥𝑚 satisfying the system of inequalities (4) corresponds to a Pareto-
optimal solution of (3), hence to a maximally parallel rule set M = 𝑟

𝑥1
1 . . . 𝑟

𝑥𝑚
𝑚 applicable to

configuration 𝐶 . We also remark that from the construction given above, it immediately follows
that system (4) is Diophantine.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 13

Example 4.4. Consider the system Π = (𝑂,𝑤1, 𝑅), with 𝑂 = {𝑎, 𝑏, 𝑐} and 𝑅 = {𝑟1 : (1, 𝑎𝑏𝑐) →
(1, 𝑎𝑏); 𝑟2 : (1, 𝑎) → (1, 𝑏𝑏); 𝑟3 : (1, 𝑏) → (1, 𝑐𝑏)}. Consider the configuration 𝐶 = (1, 𝑎2𝑏3𝑐2). Then,
we construct an ILP according to the rules above (we recall that𝑀 is a big integer number):

Derived from (4a):

𝑥1 + 𝑥2 ≤ 2
𝑥1 + 𝑥3 ≤ 3

𝑥1 ≤ 2

Derived from (4b) for 𝑟1:

𝑥1 + 𝑥2 + 1 +𝑀𝑧1𝑎 ≥ 3

𝑥1 + 𝑥3 + 1 +𝑀𝑧1
𝑏
≥ 4

𝑥1 + 1 +𝑀𝑧1𝑐 ≥ 3

Derived from (4c) for 𝑟1:

𝑧1𝑎 + 𝑧1
𝑏
+ 𝑧1𝑐 = 2

Derived from (4b) for 𝑟3:

𝑥1 + 𝑥2 + 1 ≥ 3

Derived from (4b) for 𝑟3:

𝑥1 + 𝑥3 + 1 ≥ 4

It is not difficult to see that this system has 3 solutions: (2, 0, 1), (1, 1, 2) and (0, 2, 3), corresponding
to multisets of rules 𝑟 21𝑟3, 𝑟1𝑟2𝑟

2
3 and 𝑟

2
2𝑟

3
3 , which are exactly the maximal multisets of rules applicable

to 𝐶 .

We remark that all solutions of (4),(3) might be tedious to obtain. For the simulation purposes,
only one such solution is necessary.
As previously mentioned, using the weighted sum scalarization technique it is theoretically

possible to reach any single point from the Pareto front by choosing appropriate values of the
parameter vector _. However, by using equations (4b) it becomesmuch easier to chose corresponding
parameters as the feasible set is restricted only to Pareto-optimal values. For example, usingmax𝑥1
as objective function with the constraints from Example 4.4, would yield the solution (2, 0, 1). By
using min(𝑥1 + 𝑥2 + 𝑥3 − 5) as the objective function, the solution (0, 2, 3) is obtained (the above
constraint allows to consider only multisets of rules of size 5).
In the literature on P systems, there are other examples of the construction of a single Pareto-

optimal solution having certain properties. One of them is the DND algorithm introduced in [71]
for the FPGA simulations that we discuss below.
In what follows, we explain briefly the functioning of the DND algorithm in the view of equa-

tions (1). First a random rule permutation is computed (corresponding to a random permutation
of variable indices). Next, during the forward step a random value (bounded by the number of
possible applications) for the number of each rule applications is taken. This corresponds to finding
the values of 𝑥𝑖 , satisfying the constraints (1a). Finally, during the backward step, the frequency of
each rule is increased until it cannot be applied anymore. This step corresponds to the elimination
of the dominated, i.e. smaller, solutions for the system (1) yielding only Pareto-optimal ones.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

14 G. Zhang, Z. Shang, S. Verlan, et al.

The described procedure can also be seen as a combination of scalarizing and of the lexicographic
method, which is a method from the family of a priori methods for multi-criteria optimization.
More precisely, it corresponds to a solution of a series of optimization problems, each of them
bounded by the parameter corresponding to the choice of the maximal rule multiplicity for the
forward step. The backward step also corresponds to a series of optimization problems that just
reach the maximum for each component (like in the lexicographical method).

A simpler variant of the DND algorithm that does not perform the initial rule permutation can be
found in [60, 98, 100]. Other variations of DND algorithm were used for CUDA-based simulations
and are discussed later. A different approach is used in [106]. It supposes that for a P system Π
working in the derivation mode 𝛿 there exists an easily computable function 𝑁𝐵𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (Π,𝐶, 𝛿)
that for any configuration 𝐶 gives the number of solutions of (4). Next, it also supposes that
there exists an easily computable function 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 (Π,𝐶, 𝛿, 𝑛) that for each integer 𝑛 (up to the
corresponding value) yields the corresponding solution (the used method is similar to the decoding
of a number in the combinatorial number system). It is clear that such functions do not exist for any
variant of P system. The papers [88, 106] give some sufficient relations between rules that allow to
construct the above functions for a P system working in set-maximal (𝑠𝑚𝑎𝑥) derivation mode.

5 IMPLEMENTATION OF P SYSTEMS USING HARDWARE
The discussion about the hardware implementation of membrane computing concerns mainly the
simulation of concrete variants (sometimes even examples) of P systems using a dedicated hardware
(for ASIC and FPGA) or firmware (for CUDA). In most of the cases a (single) particular class of
P systems is simulated. The simulator is composed from two parts: (1) the hardware simulator
for a concrete system and (2) the software generator of hardware simulators, which based on
input parameters (rules, membranes, initial configuration etc.) generates the code for the dedicated
hardware simulator. In this section we will mainly discuss the structure of the corresponding
hardware simulators, as the generator part is more-or-less following standard compiler construction
techniques. We will concentrate on three points, which are the most important for a hardware
implementation: (a) the representation of the configuration (multisets of objects and themembranes),
(b) the representation of rules and their parallel application and (c) handling of the non-determinism.

5.1 Data organization
Membranes. We remark that there are no compartments in silicon circuits, hence the notion of

membranes is relatively difficult to represent directly. Nevertheless, according to [85], a membrane
is just an idealized concept without internal structures. The main functionality of membranes is to
perform a topological division of the space allowing P systems to compute in a distributed manner
(based on an correspondence between the membrane and its contents). Hence, the spatial placement
and size of membrane are not important, only the inter-relationship among themmatters. Moreover,
it is known that any membrane structure can be reduced (flattened) to just a single membrane,
see [33, 35] for more details. The existing hardware simulators adapt in most cases this last point
of view, where the membrane structure is not physically implemented on the device. As exceptions
from this rule we cite [82] and [73] (region-based), which implicitly implement the membrane
topology by using dedicated buses and message passing in the corresponding circuits.

Configuration. The representation of the configuration in all cases is done as a vector of non-
negative integers (stored in the memory/registers of the device). We remark that this vector corre-
sponds to a flattened system, so it is relatively big and sparse, as it encodes each object/membrane
pair. For performance reasons, it is physically split in several places to be closer to the processing
units (as routing is relatively expensive). In the case of [73, 82] it can be argued that corresponding

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 15

parts are internalized into the corresponding region circuit, as the access to corresponding values is
not direct and it is done by message passing. In CUDA, only the portions of the array representing
the configuration in the corresponding membranes to be processed are loaded by the cores.

Evolution Rules. As it can be seen from definition 3.1 in the simple case (without permitting and
forbidding) rules can be defined by 2 integer vectors indicating the multiplicities of corresponding
objects in the left-hand-side and right-hand-side of each rule. This gives a natural rule represen-
tation as two vectors stored in the memory/registers. Then a specific circuit/module verifies the
applicability of rules and performs their application. Most variants of hardware implementations
use this idea, however in [70, 72, 82] each rule is encoded in hardware as a specific circuit that
verifies the needed resources and performs the rule application. In the case of P systems with active
membranes, there might be several cells with the same label, so the corresponding CUDA simulator
uses a split representation: 2 integer vectors, as above, for all rules, and an index array with one
position per rule giving for each cell the rules it contains.

5.2 Object Distribution Problem and Non-Determinism
The hardware implementation of P systems faces the problem of the computation of the applicable
rule set according to some derivation mode (usually maximally parallel). More precisely, an efficient
way to compute and represent an element from 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿) is required [88, 106]. The
difficulty of the problem is that rules can compete for same objects, so increasing the number
of occurrences for one rule, may decrease the application possibilities for another one. Another
important problem is to ensure that a non-deterministic choice among all possibilities is performed.
In [41, 44, 57, 60], hardware architectures aiming at parallel processing and communication, and
the application of rules are developed. In [11], a formal exposition of non-deterministic evolution
in transition P systems was suggested.
We call the first problem as object distribution problem (ODP). It consists in the computation of

the set 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿) (or of an element from this set). As discussed in Section 4 in terms of
multi-criteria optimization this corresponds to the computation of the corresponding Pareto front
(or an element of it).

In [71] different algorithms solving ODP are classified in direct and indirect ones. In the direct
approach, the corresponding multiset is directly constructed by the algorithm. In terms of MCOP
this corresponds to a particular fixed scalarization. The indirect approaches are based on the
observation that the solution number is finite because the solution space is bounded by the size of
the configuration. Hence, a heuristic or brute-force approach can be used to explore this bounded
space. However, since it is an overestimation, there might be visited elements that are not valid
solutions. Hence, the algorithms are iterative and explore the whole space until a valid solution is
encountered. In terms of MCOP this corresponds to different searches through the space limited
only by the maximal values for each axis.
Sometimes it is not easy to classify an algorithm in one of these categories. We will classify an

algorithm as a direct approach if its main goal is to construct a valid multiset of rules. Otherwise,
if an algorithm is exploring different solutions until it reaches a valid one, it will be classified as
indirect. We will use this classification to overview different strategies for ODP solution known in
the literature.

Indirect approaches. Generally, the enumeration of all possible solutions and their verification
one by one until a correct solution is obtained is the simplest method for the indirect approach [31].
Before the first correct solution is obtained, some invalid solutions should be rejected. This ap-
proach is called indirect straightforward approach [71]. Taking into account that it is not viable to
enumerate all possible solutions for many problems, the feasibility of the approach is low. However,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

16 G. Zhang, Z. Shang, S. Verlan, et al.

the performance of the algorithm suggests its use as to compute the floor values for the object
distribution problem. Another indirect approach discussed in [71, 73] called indirect incremental
approach investigates a strategy generating possible solutions in rounds. Other attempts based on a
similar idea but with different rule elimination strategies were done in [30, 39, 46, 48, 98, 99]

Direct approaches. In contrast to indirect approaches, the direct approach fabricates a solution
straightforwardly rather than identifying a number of possible solutions before a solution is
confirmed.

The simplest approach is the direct straightforward approach. As defined in the paper [71], in this
approach “all the solutions to the object distribution problem are given as input, and one of these
solutions is simply selected at random”. While in the same paper it is argued that such approach
is infeasible for an arbitrary configuration and rule types, it can still be applied in a big number
of cases. As shown in [88, 106], if at each step the number of solutions can be expressed as a the
number of words of some length in a regular language, then it becomes possible to compute the
solution only based on its number. In [106] it is shown that the corresponding class of P systems is
quite large and also that this method is particularly interesting for bounded derivation modes like
the set-maximal derivation mode (called also flat mode) where the rules are chosen in a set-maximal
way (instead of the multiset maximal way).

Another variant of the direct approach is the Direct Non-deterministic Distribution algorithm
(DND) proposed in [71]. A similar algorithm can also be found in [38, 40]. This algorithm works in 2
phases. At the first phase all rules (initially randomly shuffled) except one are selected to be applied
a random number of times below its maximal applicability value. In the second phase, all the rules
are taken in the converse order (with the first one being the rule excluded at the previous step) and
their applicability is increased up to the maximal still possible value. A variant of DND, named
DND-P, became popular in the simulation of Population Dynamics P (PDP) systems [65]. Together
with another algorithm Direct distribution based on Consistent Blocks Algorithm (DCBA) [63] it
was employed for the engine of the PDP system simulator on CUDA [62].

Non-determinism. One of the difficulties of the above approaches is the handling of the non-
determinism. From the formal point of view, the non-determinism corresponds to a random
equiprobable choice of an element from the set of all applicablemultisets of rules (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿)).
In the case of indirect approaches, due to the iterative nature of the algorithms, it is not easy to
argue that each possibility has the same probability to occur. We would state that solutions con-
taining a smaller number of different rules have a higher chance to be selected. In the case of DND
algorithm and related variants, it looks like the obtained solution tends to be an equiprobable
choice. However, the corresponding articles do not give such a proof and there are some unclear
points, which do not allow us to affirm this fact. Up to now, the only algorithm that is performing
a truly non-deterministic choice is the one described in [88, 106]. However the corresponding
implementation is limited to some particular derivation modes and particular classes of P systems.

6 AN OVERVIEW OF EXISTING FPGA SIMULATIONS
With the advent of reconfigurable hardware which realizes the idea of modifying the hardware
circuits by programming, conceiving a novel circuit simulating an innovative processing paradigm
is no longer an exceedingly hard task. The first attempt to use FPGA reconfigurable hardware
to simulate P systems dates back to 2003 [82]. Since then two simulation approaches emerged,
considering regions or rules as basic processing units.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 17

6.1 Region-based Simulations
In the region-based simulation approach rules and objects from different membranes are physically
located in different places of the circuit, while those from the same membrane are physically close
and well connected. The biggest problem is to ensure the correct communication of objects between
membranes as this requires a global level synchronization. As advantage, the obtained system is
highly scalable and robust. Below, we give two examples of region-based simulations.
In contrast, the rule-based implementation approach discussed later explicitly represents the

evolution rules as processing units and multisets of objects as register arrays, while membranes
and regions are represented implicitly as logical constructions existing between those processing
units and data structures.

6.1.1 Petreska and Teuscher simulation. Petreska and Teuscher designed the first FPGA circuit
simulating membrane computing (more precisely transitional P systems) [82]. They could realize
several interesting features like communication to inner membranes, priorities between rules and
proposed ideas how to simulate membrane creation and dissolving mechanism in integrated circuits.
This work inspired the successors to engage in this challenging and breathtaking field to advance
the development of hardware simulation of P systems. In their simulation they made two strong
assumptions: the application of evolution rules in each membrane is not done in a maximally
parallel but in a sequential manner (but still keeping a parallelism at the system level); the non-
deterministic evolution of configuration is substituted by a deterministic transition following a
predetermined order. Such computational step corresponds to an ILP with the subject function as a
weighted sum of variables with predefined fixed weights.

In theory, membranes are borders without internal structures and material consistence. In this
implementation, the membrane structures represent regions on the circuit containing the enclosed
substances, i.e., the multisets of objects, evolution rules and children membrane architectures.
The objects exchange among membranes is a kind of bi-directional traversing behavior. In case
of the possible objects exchange between regions, the communications are made by data buses
connecting to different parts of hardware representing inner membranes. To avoid the multiple
buses used to connect the parent membrane to its plural children membranes, a single bus links all
the children membranes before it connects to the parent membrane. Hence, the communication is
limited to parent-child membranes and there is no object exchange among children membranes or
non-immediate contained membranes.
The representation of the multisets of objects is implemented by using registers. Different

registers just preserve different multiplicities of objects. A register does not store the objects
but only a number indicating the multiplicity of each object. The order of these registers is in
accordance with the lexicographic order of the alphabet of objects. The recognition of an object is
indirectly realized by examining the position of the register storing the multiplicity of this object.
An evolution rule defined here is in the form of 𝑢 → 𝑣 (𝑣1, 𝑖𝑛𝑖) (𝑣2, 𝑜𝑢𝑡), where 𝑣1 is the string to be
sent into lower-immediate membrane labeled i, 𝑣2 will be sent to upper-immediate membrane. The
treatment employed to deal with the formulation of evolution rules is storing the rule’s left-hand
side and right-hand side into different registers separately. A particular module is designed to
determine whether a rule is applicable. This module compares the left-hand side of a rule u with the
multiset of objects w present in the current membrane. If and only if 𝑢 ≤ 𝑤 , this rule is applicable
and this module will generate a signal 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 = 1. Input all the Applicable signals to an OR
gate, the result of this logical gate can used as a monitor to identify whether the evolution reaches
halt configuration.

The transition of configurations of P system is realized deterministically and sequentially, which
is different from the general model. The consecutive transformation of configurations is regarded as

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

18 G. Zhang, Z. Shang, S. Verlan, et al.

the evolution process. This evolution process is decomposed into micro-steps and macro-steps. The
application of rules enclosed by membranes is performed in terms of a predefined sequential order.
This deterministic execution of rules is conducted in micro-steps sequentially. If a selected rule
is applicable, the left-hand side of the rule u will be removed. Then the right-hand sides v, 𝑣1 and
𝑣2 is stored in corresponding registers. The objects from the upper immediate membrane will be
preserved in another register. Although the micro-steps are carried out deterministically, they are
performed simultaneously in all membranes, until there are no applicable rules. The micro-steps
terminates when there are no applicable rules, i.e. the halt condition is reached. All the registers
are updated in line with associated rules in macro-steps.

This implementation considered and respected the priorities of applicable rules at the beginning of
eachmicro-step. By labeling the applicable rules with higher priorities and storing the corresponding
labels, applicable rules are executed in accordance with their respective priorities. Besides, two
additional features of P system, the dissolution and creation of membranes, are simulated. When a
rule with membrane dissolving function is applied, its contents are owned by its upper immediate
membrane, setting the membrane Enable signal of the relevant membrane to “0”. However, the
connections and registers defining the dissolved membrane still exist. This scheme gives rise to a
disadvantage that the hardware resources cannot be released. The creation of new membranes is
executed in the initialization process of the P system since all the information about new membrane
is known from the specification of the system. The created membranes are inactive until membrane
creating rules invoke them.

6.1.2 Nguyen simulation. In this implementation, a parallel computing platform simulating mem-
brane computing based on FPGA named Reconfig-P is developed [69, 74]. Reconfig-P is fabricated
on the basis of the region-oriented idea that regions work as the computational entities commu-
nicating objects through message passing. The functionality of these regions is extended by the
included set of evolution rules. P Builder, the software component of Reconfig-P, specifies the P
system concerned in software, converts the specification of P system written in Java to Handel-C (a
hardware description language) source code. Software simulation of the circuits to be constructed
is supported by P Builder to test the functionality of circuits before mapping the code to hardware
circuits.

The execution of a evolution step is divided into two phases: object assignment phase and object
production phase [69]. The maximal instance of each rule in a region is determined in the object
assignment phase. The update of multiplicity of objects is accomplished in the object production
phase. The maximal instance of the rules with higher priorities is computed before the rules with
lower priorities. Note that the consumption of objects for rules with higher priorities performed
during the object assignment phase to save clock cycles. It is assumed that all rules are assigned
relative priorities. The priority between rules is implemented as the temporal order which should
be respected by region processing units in the assignment phase. Rules with same priority are
executed concurrently. The temporal order is determined at compile-time. The rules are applied
according to their priorities in rounds until no rules are applicable using the indirect iterative
approach. Under this circumstance, the applicability of each rule is non-stationary because of the
existence of priorities. To avoid processing inapplicable rules, the applicability status of each rule
is checked at the outset of the assignment phase and immediate after a applicable is applied to
consume some objects.

The objects traversing behavior is the origin of communication between regions. The update of
multiplicity of objects caused by rules with and without traversing behavior is completed in the
object production phase. When different region processing units update the multiplicity value of
the same object at the same time, a conflict occurs. To handle this conflict, in [69] two solution

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 19

strategies, the space-oriented strategy and the time-oriented strategy are proposed. Table 1 and 2
summarize the different strategies of two resource conflict resolutions and their modifications in
the rule-based and region-based design [70, 72]. In order to simplify the exposition of processes of
rule-based and region-based implementations of P systems, tables are designed to delineate the
relevant details, which will be given below.

Table 1. The comparison of the time-oriented and space-oriented conflict resolution

Strategy Resource conflict resolution

Time-oriented strategy (a) construct a conflict matrix in which each row is a quadruple (𝑝,𝑞, 𝑟, 𝑠). 𝑝 is the object competed by multiple
rules. 𝑞 is the region where 𝑝 is produced or consumed. 𝑟 is the set of the conflicting rules, 𝑠 is the size of set
𝑟 . (b) insert delay statement among conflict rules such that the updating operations of multiplicity of 𝑝 can be
executed in distinct clock cycles. The number of delays is equal to 𝑠 .

Space-oriented strategy (a) construct the conflict matrix as in the Time- oriented strategy. (b) the register storing the object accessed by
multiple rules concurrently is replicated 𝑠 times. These copy registers are assigned to each conflicting rules to
write. After the updating process for all the copy registers, the corresponding values are joined to the original
register.

Table 2. The differences of the conflict resolutions adopted in two design modes

Item Time-oriented strategy Space-oriented strategy

Rule-oriented design The interleaving operation can be determined at
compile-time and it can be hard-coded into the HDL
source.

Need a multiset replication coordinator to coordinate
the multiplicities stored in the copy registers.

Region-oriented design The objects received from other regions are regarded
as external objects, otherwise the objects are internal ob-
jects. The interleaving merely caused by the production
of internal objects can be identified at compile-time. To
retain the independence of region processing units, the
interleaving induced completely or partially by the re-
ceipt of external objects can only be calculated at run-
time.

The role of the multiset replication coordinator in rule-
oriented design is played by the region processing units.
The existing register storing the multiplicity received
from the associated communication channels in the
considered region can be assigned to those processing
units which sending objects to the considered region
to write the new values of of the objects competed by
multiple rules.

The extensibility of the region-based design is the consequence of the representation of mem-
branes as processing units interacting with two region processing units corresponding to inner and
outer regions. This allows to achieve a strong separation of the processing logic inside different
membranes and the independence of the communication. Thus, adding additional elements to the
system does not lead to the redesign of the remaining part of the system.

6.2 Rule-based simulations
Rule-based approaches consider evolution rules as processing units performing the update of
multiplicities and of the membrane structure.

6.2.1 Nguyen simulation . Every rule in all regions of the P system is represented as a processing
unit synchronized by a global clock that implements the parallel processing. However, a processing
unit does not correspond a concrete hardware component but rather to a potential infinite while
loop which contains the code related to the rule application using Handel-C. The information
associated to execution and synchronization is contained in processing units as well. Each rule
processing unit in a region is linked to the array of registers containing multisets of objects. The
membrane inclusion relationships can be described with the connections between processing units
and arrays. Generally speaking, a rule processing unit in a region is linked to the objects array
located in the same region with the rule processing unit. If there are objects traversing regions
which imply the containment, connecting the rule processing unit to the object array to which

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

20 G. Zhang, Z. Shang, S. Verlan, et al.

the rule will send objects contained in different region. This procedure permits to represent the
membrane inclusion. The rule execution is split into preparation phase and updating phase. We
compare the two designs (the rule-based and the region-based) of Nguyen’s implementation in
Table 3.

Table 3. The comparison of the rule-based and region-based design of Nguyen’s implementation

Object Rule-based Design Region-based Design

Region and their contain-
ment relationships

Regions are realized in hardware implicitly by the con-
tent they included. For the containment relationships
including the traversing of objects between regions,
they are implemented by imparting the corresponding
rules with ’in’ or ’out’ target directives the abilities to
access the multiset of objects in the destination region
of the objects traversed.

Regions are represented as parallel processing units.
The traversing of objects among regions is realized as
message passing through channels connecting differ-
ent region processing units.

Multiset of objects An array of registers contains each type of object in
the alphabet for a region

The same strategy adopted as the rule-oriented design.

Evolution rule Potentially infinite while loop in which contain proce-
dures representing the operations of the relevant evo-
lution rules in HDL language.

Implicitly expounded through integrating them into
the region processing units.

Operation process Preparation phase and updating phase. Object assignment phase and production phase.
Synchronization An array of registers composed of three 1-bit registers

is associated to each rule processing unit. The values
in the array indicate whether the rule processing unit
has complete the preparation and updating phase, or is
applicable. Compute the logic AND or OR values of all
the values stored in the 1-bit register that indicates the
same status of the processing unit and store the three
results into three sentinel registers. The coordinating
processing unit read the sentinel values to synchronize
the whole procedures.

For the synchronization of object assignment phase, it
is realized when all the region processing units com-
municate with each other on channels at the beginning
of object production phase. For the object production
phase, a region execution coordinator connecting to
each region processing unit via dedicated channels is
designed to perform the synchronization of operations.
After the region execution coordinator received the sig-
nals denoting the completion of all the operations of
every region processing unit, the current transition is
done and the next one is carried out.

6.2.2 Verlan andQuiros simulation . The target model is a static P system. The system is considered
flattened, so only one skin membrane is present. A special strategy was elaborated in order to not
compute the complete solution, i.e. 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿) but the cardinality of its elements. Then
a random value between 1 and this cardinality is taken. Finally, this number is decoded to the
corresponding solution [88, 106]

Devising an algorithm which carries out the computation of the cardinality and of all elements of
the solution set in constant time on FPGA is the key issue of the approach. A remarkable character-
istic of FPGA is that the time consumed for executions of functions that do not exceed the cycle of
the global clock is done in one cycle of FPGA, hence in constant time. The computation of the cardi-
nality and the decoding of solutions are accomplished by two functions hardwired into the circuit:
𝑁𝐵𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (Π,𝐶, 𝛿), which gives the cardinality of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿), and 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 (𝑛,Π,𝐶, 𝛿),
which returns the 𝑛-th element of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶, 𝛿).

A concept named rules’ dependency graph is introduced to compute the two functions above.
It is a bipartite graph that contains as nodes rules and objects and there is an edge between two
nodes if a rule contains the corresponding objects in its left-hand-side. The picture below depicts
the rules’ dependency graph for rules 𝑟1 : 𝑎𝑏 → 𝑢 and 𝑟2 : 𝑏𝑐 → 𝑣 .

𝑟1 𝑟2

𝑎 𝑏 𝑐
�� ��@@ @@

Assume that the derivation mode is maximal parallelism (max). Suppose that 𝑁𝑎, 𝑁𝑏 and 𝑁𝑐

represent the number of objects 𝑎, 𝑏 and 𝑐 in 𝐶 . Let 𝑁1 = 𝑚𝑖𝑛(𝑁𝑎, 𝑁𝑏), 𝑁2 = 𝑚𝑖𝑛(𝑁𝑏, 𝑁𝑐), 𝑁 =

𝑚𝑖𝑛(𝑁1, 𝑁2), 𝑘𝑖 = 𝑁𝑖 ⊖ 𝑁 ,1 ≤ 𝑖 ≤ 2, where ⊖ denotes the positive subtraction. Let also 𝑝, 𝑞 =

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 21

0, 1, 2, . . . , 𝑁 . From the dependency graph we can deduce the following:

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥) =
⋃

𝑝+𝑞=𝑁

{
𝑟
𝑝+𝑘1
1 𝑟

𝑞+𝑘2
2

}
𝑁𝐵𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (Π,𝐶,𝑚𝑎𝑥) = 𝑁 + 1

𝑉𝑎𝑟𝑖𝑎𝑛𝑡 (𝑛,Π,𝐶,𝑚𝑎𝑥) = 𝑟
𝑁−𝑛+1+𝑘1
1 𝑟

𝑛−1+𝑘2
2 .

Example 6.1. Consider a configuration where 𝑁𝑎 = 5, 𝑁𝑏 = 5 and 𝑁𝑐 = 3. It can be easily verified
that 𝑁1 = 𝑚𝑖𝑛(5, 5) = 5, 𝑁2 = 𝑚𝑖𝑛(5, 3) = 3, 𝑁 = 𝑚𝑖𝑛(5, 3) = 3, 𝑘1 = 𝑁1 ⊖ 𝑁 = 5 − 3 = 2,
𝑘2 = 𝑁2 ⊖ 𝑁 = 3 − 3 = 0. Hence, we can enumerate the elements of 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥) as
bellow:

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (Π,𝐶,𝑚𝑎𝑥)1 = {𝑟 3+21 𝑟 0+02 , 𝑟 2+21 𝑟 1+02 , 𝑟 1+21 𝑟 2+02 , 𝑟 0+21 𝑟 3+02 } = {𝑟 51 , 𝑟 41𝑟2, 𝑟 31𝑟 22 , 𝑟 21𝑟 32 }.

The same result can be easily obtained by using formal power series associated to context-free
languages. In this case, any maximal rule combination is a part of the language 𝐿𝑁 = {𝑟𝑝1 𝑟

𝑞

2 | 𝑝 +𝑞 =

𝑁 }. It is quite easy to observe that the number of words of length 𝑁 in 𝐿𝑁 is exactly the same
as the number of words of same length in the language 𝐿 = {𝑟 ∗1𝑟 ∗2 }. This last language is regular
and its generating function is 𝑞0 (𝑥) = 1/(1 − 𝑥)2. The 𝑛 − 𝑡ℎ coefficient of the expansion of 𝑞0 (𝑥)
is equal to 𝑛 + 1 ([𝑥𝑛]𝑞0 = 𝑛 + 1), which immediately gives 𝑁𝐵𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (Π,𝐶,𝑚𝑎𝑥) = 𝑁 + 1. The
𝑉𝑎𝑟𝑖𝑎𝑛𝑡 (𝑛,Π, 𝑐,𝑚𝑎𝑥) is computed using an algorithm that performs a weighted breadth-first search
of the decomposition of 𝑛 with respect to the number of variants found on each branch of the
execution of automaton for 𝐿.

Such a process can be easily repeated for any regular language, yielding a constant time simulation
of a computational step. The reason for such performance is that any generating function is
equivalent to a recurrence relation and such relations can be computed in one synchronous time
unit using asynchronous operations. The described algorithm functions for any P system where the
rule choice can be expressed as words of certain length in a regular language. The corresponding
class is quite large (containing even computationally complete models), thus allowing an extremely
fast execution. Examples from [106] exhibited a speed-up of order 105.

Another important point is that this approach allows to handle the non-determinism in a natural
way, by performing a uniform random choice between all possible rule applications at each step.

Technically, the implementation represents only objects by registers and rules by layered logic.
Each rule implementation is modularized and contains an own copy of processing instructions
needed to compute the two above functions, based on asynchronous operations. Consequently,
five clock cycles are required to compute the 𝑁𝐵𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (Π,𝐶,𝑚𝑎𝑥), 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 (𝑛,Π,𝐶,𝑚𝑎𝑥) and
to apply the corresponding rules. The entire process of the implementation is split into several
consecutive stages, which take charge of different operations associated to phases of evolutions of
configurations.
Persistence stage stores the states that the hardware system goes through. A independent stage

computes the maximal instance of each rule by means of the dividing operation and MIN logic
operation. Assignment stage in charge of selecting a rule to be applied non-deterministically, and
determines its instances. Updating stage is responsible for updating the current configuration with
the values from the previous stage. During Halting stage, the system inspects whether the halting
condition is reached, and once reached, stops the system.
According to the elaborations stated above, the comparisons of the FPGA implementations

of P systems is listed in table 4. The details of each design are summarized. We can check the
characteristics of the three main prototypes.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

22 G. Zhang, Z. Shang, S. Verlan, et al.

Table 4. The quantitative attributes of FPGA implementation

Item Biljana Petreska Van Nguyen Juan Quiros

Period 2003 2007-2010 2012-2015
Institute Swiss Federal Institute of Technology

Lausanne (EPFL)
University of South Australia University of Seville

Target FPGA Xilinx Virtex-II Pro
2VP50ff1517-7

Xilinx Virtex-II XC2V6000-ff1152-4
(rule-oriented) and Virtex-II RC2000
(region-oriented)

Xilinx Virtex-V XC5VFX70T and
Virtex-VII XC7VX485T

Host processing
platform

Not given. 1.73GHz Intel Pentium M processor
with 2GB of memory

Intel Core i5 – 5220 at 3 GHz, with 8
GB of RAM.

HDL VHDL Handle C VHDL
Experiment Sub-
jects

Cell-like P systems with follow-
ing characteristics: membrane dis-
solution and creation, objects ex-
change between upper- and lower-
immediate membranes, cooperative
P systems with priorities. The range
(non-continuous) for object number
is 6 to 12 and for membrane is 10 to
20.

For rule-oriented design, the sub-
jects are cell-like P systems cas-
caded in vertical, horizontal, vertical
and horizontal structures. For region-
oriented design, the objects are cell-
like P systems containing hierarchi-
cal regions and tissue-like connected
regions. The rule range is [10,50],
[1,25] for regions, [3,200] for objects.
The extent of the inter-region com-
munication is [80,319].

The subject P system is simplified
according to the multiset rewriting
point of view, which it has a skin
membrane, no inner regions. The 4
subjects differ in the rule dependen-
cies which form chains: circular, 2-
circular, linear, opposite. The object
number range is [10,200].

Experiment results The hardware consumption ranges
from 4.2% to 33% (CLB). The extent
of clock rate is 27 to 198 MHz.

For rule-oriented design, the number
of rules applied per second ranges
from 2.7×105 to 1000×105 . The hard-
ware consumption extent is 1.55% to
21.43% (LUTs). For region-oriented
design, the hardware usage ranges
1.82% from 16.79%. The clock rate
fluctuates from 52.63 MHz to 81.77
MHz. The biggest size which can be
executed is a P system with 550 rules,
1280 communication channels, 1100
objects conflicts.

The hardware consumption ranges
from nearly 1% to 48% (LUTs) or
nearly 1.1% to 11% (slice). The pe-
riod needed to perform a computa-
tion step fluctuates from 5.46 ns to
9.14 ns. The highest frequency ex-
ceeds 100 MHz, permitting 2 × 107
computational steps per second. The
run-time for each experiment subject
ranges from 3.017× 10−5𝑠 to 4.174×
10−5𝑠 .

Parallelism System-level parallelism Region-level and system-level paral-
lelism

System-level (there is only a skin
membrane, so it is also region-level
parallelism).

Non-determinism No non-determinism DND algorithm True non-determinism.

7 AN OVERVIEW OF EXISTING CUDA SIMULATIONS
In [61], it is concluded that the GPU is a suitable platform to accelerate the simulation of P systems
because of the following features:

• Good performance: for example, the NVIDIA Tesla K40 delivers 1.43 TeraFLOPS double-
precision peak floating point performance, 4.29 TeraFLOPS of single-precision, and 288
GBytes/s of global memory bandwidth;

• An efficiently synchronized platform: GPUs implement a shared memory system, avoiding
communication overload;

• A medium scalability degree: the amount of resources depend on the GPU model, e.g. a K40
includes 2880 cores and 12 GBytes of memory. If the resources of a GPU is not enough, there
are more scalable solutions such as multi-GPU systems, but they then require communication
among nodes;

• Low-medium flexibility: although CUDA programming is based on C++, and hence program-
mers are free to use the same data structures than in CPU, both the algorithm and the data
structure have to be adapted for best performance on GPUs.

Simulation algorithms implemented on CUDA have a common structure, in which for each sim-
ulated computation step, first the rules are selected (obtaining a multiset of rules, while consuming
the left-hand sides), and secondly the rules are executed (based on the obtained multiset of rules,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 23

Table 5. The qualitative attributes of FPGA implementations

Item Biljana Petreska Van Nguyen Juan Quiros

Membranes (re-
gions) and their
containment

Implicitly represented by the con-
tents enclosed by the membranes.
The objects exchange is interpreted
as transferring objects with commu-
nication buses by which connect the
origin region to the destination re-
gion.

For the rule-oriented design, the
treatment is similar with Petreska’s.
For the region-oriented design, re-
gions are represented as parallel pro-
cessing units. The objects exchange
among regions is realized as message
passing through channels connecting
different region processing units.

According to the multiset rewrit-
ing system framework, the topology
structures of membranes are not im-
portant. What concerned is the rule
dependency graph.

Multiset of objects Store the multiplicity value of each
type of object in different registers
whose positions indicate the type.

The same method. The same method.

Evolution rule Store the left-hand-side and right-
hand-side of a rule in different regis-
ters.

In rule-oriented design, they are char-
acterized as potentially infinite while
loop in which contain procedures rep-
resenting the operations of the rel-
evant evolution rules in HDL. In
region-oriented design, they are im-
plicitly expounded through integrat-
ing them into the region processing
units.

The logic of rules is distributed along
the the hardware components. There
is no explicitly correspondence be-
tween rules and hardware compo-
nents.

Operation Process Micro-step: only one applicable rule
is appliedwith respect to the instance
number in a region. Macro-step: exe-
cute a micro-step concurrently in ev-
ery region.

In rule-oriented design, perform
preparation phase and updating
phase. In region-oriented de-
sign,perform object assignment
phase and production phase.

1. Persistence stage 2. Independent
stage 3. Assignment stage 4. Applica-
tion stage 5. Updating stage 6. Halt-
ing stage.

Extensibility Membrane mediated features cannot
be added in since membranes are im-
plicitly represented by their contents.

Because of the region-oriented de-
sign, Membrane mediated features
such as symport and antiport func-
tions can be extended.

This implementation is designed
only for P systems whose applicable
multisets of rules can be repre-
sented as regular language. So its
extensibility is limited.

Scalability With the increase of the rules, the
hardware usage rise approximately
proportional. The clock rates decline
a small amount. The membrane cre-
ation ability cripples clock rate signif-
icantly.

The hardware consumption scales
linearly with respect to the size
of the P system executed in both
rule-oriented and region-oriented de-
sign. The performances grow linearly
when the number of rules increase.

The hardware usage is scalable, but
the rate of increase in the perfor-
mance is not always linear for differ-
ent systems with distinct structures.

Contributions Membrane creation and dissolution
functionality

Two kinds of methodology for P
system characterization and resource
conflict resolution, DND algorithm

Put up with a new methodology
with absolute equiprobability to im-
plement non-determinism.

Drawback Partially parallelism, no non-
determinism

The equiprobability of DND algo-
rithm has not been proven theoreti-
cally.

The types of P systems which can
be implemented are confined to those
whose rules can be represented as
regular language.

and generating the right-hand side. This strategy is necessary in order to synchronize which rules
get executed in the corresponding computation step. For some models, for example for those ad-hoc
simulators, the selection step is done in micro-stages.

In the following subsections, the existing CUDA simulations are summarized, by organizing into
P system models.

7.1 Cell-like P systems
The first test of concept for simulating P systems on GPUs was applied to P systems with active
membranes using CUDA [18]. This simulator performs only one computation out of the whole
tree, in order to avoid non-determinism, by requiring the confluence property to the simulated P
systems. Bearing this in mind, the “lowest-cost computation path” is selected: the one in which least
membranes and communication are required. This is achieved by giving preferences to rules that
lead to least membranes (e.g. dissolution over division rules). The simulation algorithm is composed
of two main stages: selection and execution of rules. Selection is where the semantics of the model is

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

24 G. Zhang, Z. Shang, S. Verlan, et al.

actually simulated. Rules are chosen by following the defined constrains, altogether with a number
of applications. The result of this stage is used for the next one, which is the execution of the rules;
that is, updating the P system configuration. This two-staged strategy allows to synchronize the
application of rules within and among membranes.
Both P systems and GPUs have a double-parallel nature [18], and this is harnessed for imple-

menting a mapping: (elementary) membranes are assigned to thread blocks, and a subset of rules
to threads. Each thread is in charge of selecting rules for a portion of the defined objects in the
alphabet. Note that this is enough given that in P systems with active membranes, rules have no
cooperation. However, this mapping of parallelism is naive, since it assumes that all the objects
in the alphabet can be present within each membrane. This require allocating memory space and
assigning resources (threads) to all of them. This, in fact, does not take place in the majority of P
systems to be simulated, but turns out to be the smallest worst case to handle. Thus, the performance
of the simulator completely depends on the P system being simulated, and drops as long as the
variety of different objects appearing in membranes decreases.

Non-determinism is handled by imposing the simulated P systems to be confluent; that is, all
computations halt and they generate the same result [18]. This way, the simulator can choose any
path in the computation tree, since the aim is to find a halting configuration. The GPU simulator
take advantage of this by preferring to select evolution rules rather than division or dissolution.

The performance of the simulator was analyzed on a GPU Tesla C1060 (240 cores, 4GB memory)
by using two benchmarks [61]: a simple test P system designed in a convenient manner (up to 7x
of speedup), and a family of P systems designed to solve different instances of the SAT problem
(1.67x of speedup).

Improvements to this design have followed [61], reporting up to 38x of acceleration when taking
advantage of shared memory and data transfer minimization. By constructing a dependency graph,
the set of rules of the input model are arranged so that those having common objects in the left-
hand side and in the right-hand side (respectively) are more likely to be in a node. This reduces
communication given that thread blocks are assigned to nodes.
Another approach was to implement ad-hoc simulators for a specific family of P system with

active membranes allowing to solve SAT in linear time [19]. In this way, the worst case assumed
before (all objects defined can appear in every membrane) is further reduced by analyzing the upper
bound to the number of existing objects in membranes. In this way, the work done by threads
is maximized, and the design remains similar: each elementary membrane is implemented by a
thread block, and each object of the input multiset is implemented by a thread. The experiments
carried out on a NVIDIA Tesla C1060 GPU reported up to 63x of speedup. Further developments
took place focusing on this family of simulators, with the aim at being better tailored to newer
GPU architectures, and also to enable multi-GPU systems and supercomputers [19].
A related work was to explore which P system ingredients are better suited to be handled by

GPUs. To this aim, another solution to SAT based on a family of tissue P systems having the
operation of cell division was simulated [61]. The design is similar to the previous case: each cell is
simulated by a thread block, however the constructed solution required a higher number of objects
to be placed inside each cell. At the same time, this simulator does not need to store nor handle
charges associated to membranes. Experiments on a NVIDIA Tesla C1060 GPU leaded to speedup
by 10x. This showed that using charges associated to membranes helped to save instantiation of
objects, and so, they entail a lightweight ingredient to be processed by threads.

7.2 Population Dynamics P systems
Population Dynamics P (PDP) systems is a multi-environmental model successfully used for mod-
eling real ecosystems. Thus, their efficient simulation was critical for experimental validation.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 25

Simulators for PDP systems typically run several simulations in order to extract statistical informa-
tion from the models.
A CUDA simulator for PDP systems was presented in [62]. The selected simulation algorithm

was the DCBA [63], since it provides better accuracy in the simulation results. The selection of
rules in DCBA consists of three phases: phase 1 (distribution of objects), phase 2 (maximality) and
phase 3 (probability). This algorithm uses a distribution table in order to distribute the objects in a
proportional way between competing rules, i.e. with overlapping left-hand sides. Moreover, rules
are grouped into rule blocks, when having the same left-hand side.
It can be noticed that the approach of DCBA is to handle non-determinism by first using an

uniform distribution of objects to competing rules. This requires an extra phase (2) to avoid rounding
errors, in this way a random order is employed to control the remaining rules and which one takes
all objects. This phase is based on the procedure of DND.
The CUDA simulator for PDP systems [61, 62, 64] uses the following design: the contents of

environments and rule simulations are fractioned and distributed all-over thread blocks, while
individual rules are fractioned over threads. Phases 1, 3 and 4 are efficiently managed by the GPU,
but Phase 2 can become a bottleneck. For phase 3, a random binomial variate generation library was
developed, so that binomial and multinominal distributions were supported for random number
generation. In the benchmark using a set of randomly generated PDP systems (having no biological
meaning), speedups of up to 7x were achieved on a Tesla C1060 with respect to a multi-core version.
The simulator was validated and tested by using a known ecosystem model of the Bearded Vulture
in the Catalan Pyrenees, leading to speedups of up to 4.9x with a C1060, and 18.1x using a Tesla
K40 GPU (2880 cores). Finally, the simulator was extended in [64] in such a way that it introduces
high-level information provided by the model designer into the code. This is accomplished through
a new syntactical ingredient in P-Lingua 5 [80], called feature. This ingredient was employed to
define the usual algorithmic scheme based on rule modules when designing biological models. This
new version is called adaptative simulator, and helped to obtain an extra speedup of 2.5x on a Tesla
K40, and 1.8x on a Tesla P100 GPU (3584 cores).

Table 6. The summing up of CUDA-GPU implementations I. The target CUDA-GPU is NVIDIA C1060 (240
cores) and the host platform is a computer with two Intel i5 Nehalem processors (8 cores).

Item PCUDA PCUDASAT TSPCUDASAT

P system class Cell-like (recognizer P system with
active membranes)

Cell- like P system with active mem-
branes (resolve SAT in linear time)

Tissue-like P system (resolve SAT in
linear time)

P system ingredi-
ents representation

Elementary membranes are repre-
sented by thread blocks. Threads are
assigned to objects.

Each elementary is assigned a thread
block. Only the objects appearing in
the input multisets will be assigned a
thread.

Every Cell is assigned a thread block.
More objects are requested by every
cell than the PCUDASAT simulator.

Operation Process A transition step is performed in se-
lection stage and execution stage.

1. Generation 2. Synchronization 3.
Check-out 4. Output.

1. Generation 2. Exchange 3. Synchro-
nization 4. Check-in 5. Output.

Experiment models (a) An illustrator model to stress the
simulator. (b) A model aims at solv-
ing a SAT problem.

A sequential and two CUDA-based
parallel simulators (one of them is de-
signed by a hybrid method).

A CUDA-based simulator.

Size of the simu-
lated P system

512 objects and 1024 membranes for
(a) and 914 objects and 4096 mem-
branes for (b).

256 objects and 4096 membranes. 256 objects and 4096 membranes.

Speedup 7 times for (a) and 1.67 times for (b). The CUDA simulator is 63 times
faster than the sequential simulator
and the hybrid CUDA simulator is 9.3
times faster than the normal one.

10 times higher than the sequential
simulator.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

26 G. Zhang, Z. Shang, S. Verlan, et al.

7.3 Spiking Neural P systems
Parallel simulation of Spiking Neural P (SNP) systems has been based on a matrix representation
so far [115]. The simulation algorithm uses the following vectors and matrices:

• Spiking transition matrix: stores information about rules, and is employed for computing
transitions. It assigns a row per rule and a column per neuron. The values coded correspond
to the left-hand side of rules (as negative numbers) and to the right-hand sides (as positive
numbers).

• Spiking vector : defines a selection of rules to be fired in a transition step, using a position
per rule. Given the non-deterministic nature of SNP systems, there are more than one valid
spiking vector for a given configuration.

• Configuration vector : defines the number of spikes per neuron, that is, the configuration in a
given time.

The algorithm is then used to compute the next configuration from a given one, by performing
only vector-matrix operations. These operations are offloaded to the GPU, which is optimized to
handle matrices [15]. CuSNP is a simulator for SNP systems which is written in Python and the
CUDA kernels were launched by using the binding library PyCUDA. For the first approach, SNP
systems without delays were simulated by covering each computation path sequentially, leading to
speedups of up to 2.31x [61] [15].

Further extensions have followed, enabling delays, support of more types of regular expressions
and input of P-Lingua files [17]. The support of delays is done by an extension of the matrix
representation, introducing vectors to control when rules fire after the delay is met, and if neurons
are open. These leaded to up 50x of acceleration on a GTX750 GPU [17]. Moreover, non-deterministic
SNP systems with delays are supported by generating all computation paths sequentially and using
GPU to speedup the simulation [16] (with up to 2x on a GTX1070 for a non-uniform solution to
Subset Sum).
Furthermore, the simulation of Fuzzy Reasoning Spiking Neural (FRSN) P systems on the GPU

was explored [55]. FRSNP systems allows modeling fuzzy diagnosis knowledge and reasoning for
fault diagnosis applications. The simulation algorithm is also based on a matrix representation and
vector-matrix operations. The employed simulation framework was pLinguaCore, so the CUDA
kernels were launched by using the binding library JCUDA.

7.4 Other models
Enzymatic Numerical P systems has been employed for modeling robot controllers and path
planning, being significant for the Artificial Intelligence. A CUDA simulator was developed [61],
where the selection of applicable programs was first applied, second, the calculation of production
functions, and third, distribution of production function results according to repartition protocols.
Production functions are computed using a recursive solution. Simulators were implemented in
Java (inside pLinguaCore) and C programming languages as standalone tools. On a GeForce GTX
460M, the achieved speedup was of up to 11x. Moreover, a model for RRT and RRT* algorithms for
robotic motion planning using ENPS was also simulated on CUDA [79] 24x faster than in multicore
CPU using an RTX2080.
Evolution-Communication P systems with Energy (ECPE) [61] were also target for a CUDA

simulation. The employed simulation algorithm used a matrix representation and linear-algebra
based algorithm, similarly as for the spiking neural P systems simulator: a configuration vector, a
trigger matrix, an application vector and a transition vector.

The summary of CUDA-GPU implementations is concluded in Table 6 and 7, providing an easy
checking for the CUDA-based simulations for academic communities. For the sake of presenting

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 27

Table 7. The summing up of CUDA-GPU implementations II

Item ABCD-GPU ENPS-GPU snpgpu and CuSNP

P system class Population Dynamics P system Enzymatic numerical P system (cell-
like)

Spiking Neural P system

P system ingredi-
ents representation

Environments and simulations are
distributed through thread blocks.
Rule blocks are assigned among
threads.

Each production function and each
repartition protocol element are asso-
ciated with a thread respectively.

Spiking transition matrices, spiking
vectors and configuration vectors are
employed to model the target sys-
tems.

Operation Process (DCBA algorithm) Selection stage (1.
Distribution 2. Maximality 3. Proba-
bility) and Execution stage.

1. Select the applicable programs 2.
Compute production functions 3. Dis-
tribute the results of the precede step
according to repartition protocols.

Generate the matrix representation
for the model, and iterate the com-
putation of next configuration until
a stopping criterion is met.

Experiment models A set of randomly generated PDP
systems (without biological mean-
ing), the ecosystem model of the
Bearded Vulture and a tritrophic ex-
ample model with modules defined
as features.

A dummy model and an exponential
function approximation model.

(a) SNP systems covering each com-
putation path sequentially, without
delays. (b) Extensions enabling de-
lays, support of more types of regu-
lar expressions and input of P-Lingua
files.

Size of the simu-
lated P system

Running 50 simulations, 20 environ-
ments and more than 20000 rule
blocks.

2 membranes, range from 1 to 120000
programs.

(a) From 1 to 16 neurons. (b) General-
ized sorting networks with up to 512
neurons.

Speedup 7 times (Tesla C1060) compared with
the sequential model, 3 times con-
trasted to the 4 cores CPU. The
speedup for the real ecosystem, 4.9x
with a C1060, and 18.1x using a
Tesla K40 GPU (2880 cores). Us-
ing the adaptative simulator with
the tritrophic model using modules
achieved an extra 2.5x on a K40 GPU
and 1.8x on a P100 GPU (3584 cores).

6.5 times for dummy model and 10
times for exponential model. 11 times
on GeForce GTX 460M.

(a) 2.31 times for the Python ver-
sion simulator. (b) 50 times on CUDA-
based version (GTX750 GPU).

a overview contrast of FPGA and CUDA-GPU implementation, we summarize the quantitative
and qualitative attributes and conclude their methodologies in the Table 8, 9 and 10. This overall
contrast present a recapitalized conclusion about hardware implementations of P system.

Table 8. The comparison of the quantitative attributes of the implementations between FPGA and CUDA-GPU

Item FPGA CUDA-GPU

Inchoate year 2003 2009
Hardware Price 50-4500 $ 150-2000 $.
Concerned institute Southwest Jiaotong University, Université Paris-

Est Créteil Val de Marne, Xihua University
Universidad de Sevilla, University of the Philip-
pines Diliman

Number of researchers 6 8
Implemented P system type Cell-like P system P systems with active membranes, tissue P sys-

tems with cell division for a SAT solution, Popula-
tion dynamics P system, spiking Neural P system,
enzymatic Numerical P system, evolution com-
munication P system.

Size of the simulated P systems No limit for objects and membranes, but less than
1000 rules

No limit as long as GPU resources (mainly mem-
ory) are available.

Approximate time needed to obtain
a hardware system

2 months 1 month.

Speed-up effect 2×107 computational steps per second at present. Depends on model, implementation or GPU de-
vice. Reported speedups from 2 to 90x compared
to a sequential counterpart.

Handling of non-determinism DND algorithm and formal power serial theory. DCBA, or ad-hoc strategies (e.g. assuming conflu-
ent P systems).

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

28 G. Zhang, Z. Shang, S. Verlan, et al.

Table 9. The comparison of qualitative attributes of the implementations between FPGA and CUDA-GPU

Item FPGA CUDA-GPU

Complexity of the parallel
framework

Both region-level and system-level parallelism are re-
alized, as well as the non-determinism (the equiprob-
ability of the rules are guaranteed in Juan’s contribu-
tion)

Both region-level and system-level parallelism are re-
alized, several strategies are carried out to sort out
non-determinism (for PDP systems, based on DND al-
gorithm in which the equiprobability is not proven
mathematically.).

Extensibility Although the hardware consumptions are no more
than 30% when rules are no more than 300, which
means there are amount of space to accommodate new
features of the P system, extending the existing type
of P system to additional types needs significant revi-
sions.

The programming framework is flexible enough to
support other ingredients, but it might require a sig-
nificant revision to the parallel design.

Scalability With the size of the subject P systems growing, the
computation clock rates decrease not too much and
the hardware usages are approximately proportional
to the size.

Newer GPUs showed to reach higher performance,
but the simulations have been demonstrated to be
memory bandwidth bounded. It requires to run large
models to see a positive speedup.

Experiment subject Cell-like P systems with 10-1000 rules, 1 to 55 regions,
3-165 objects.

(a) P systems with active membranes with 914 ob-
jects/rules and 4096 membranes, (b) SAT solutions in
active membranes and cell division 256 objects/rules
and 4096 membranes, (c) PDP systems up to 200000
rules on 50 simulations and 20 environments, (d) SN P
systems with 16 to 512 neurons, (e) ENP systems with
2 membranes and up to 120000 programs.

Difficulties Programming with HDL is difficult contrasting with
its software counterpart, and the synchronization of
intricate circuits. It usually cost 8-10 months to be pro-
ficient with HDL programming and to comprehend
the parallel architecture.

Work assignation for a parallel design can be the most
difficult task when developing GPU simulators, since
the restrictions of GPU computing meets with P sys-
tem semantics. Need to think on GPU architecture for
high performance: memory accesses, memory trans-
fers, thread synchronization, etc.

Application The prototypes are developed but no applications for
concrete problems to date.

several application for biological simulations have
to executed. Solutions to computationally-hard prob-
lems.

Table 10. The conclusion of the implementations for FPGA and CUDA-GPU

Item FPGA CUDA-GPU

Advantages The computation speed is fast and the hardware
framework is adjustable. The compromises between
implementing the P system model and constructing
the most proximate hardware are relatively ideal.

Relatively convenient way to implement P systems
for the established parallel framework in the GPU.
The programming is similar with the classic soft-
ware developing process.

Disadvantages Building the parallel architecture from scratch is a
laborious and challenging adventure

Slower than FPGA. Sometimes big concessions are
indispensable as the architectures are unchange-
able.

Contributions Introducing the reconfigurable hardware to develop
the real parallel architectures which can exploit the
maximal parallelism of the P systems substantially.

The tremendous potential of the emergent universal
computing GPU is concentrated, which the ready-
made parallel framework is off-the-shelf, to estab-
lish a P system computing platform conveniently.

Conclusions We can develop sophisticated P systems hardware
circuits which implement the target models as ap-
proximate as possible on FPGA devices. The ex-
pense we should pay is also considerable high tak-
ing the painstaking effort into account.

CUDA-GPU provides a relatively comfortable and
alternative choice to implement P systems, which
the simulation results are acceptable, nevertheless
at a price of the modification of the source models.
GPUs worth when simulating large P system mod-
els.

8 OTHER APPROACHES
Besides FPGA-based and CUDA-enabled GPU-based hardware platforms developed for the imple-
mentation of P systems, there are several attempts to implement P systems on micro-controllers.
Serial algorithms and their hardware circuits designs in terms of the exhaustive investigation line
focusing on implementing the transition of configurations of P systems were developed. The

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 29

corresponding research does not precise concrete hardware devices, it is just designing the cir-
cuits aiming at simulating certain operations of particular P systems with registers, logical gates,
magnitude comparators, and data buses.
In [32], a digital circuit is presented to select active rules in the current configuration. Each

evolution rule is represented by 2 hardware registers. The first register characterizes the left-hand
side (antecedent) of a rule, and the other specifies the right-hand side of the rule, which also
determines whether the rewritten objects go out from the current membrane or stay where they
are, or go into inner membranes. By comparing the left-hand side of each rule with the multiset of
objects in a region, the applicability of every rule can be determined. Next, an algorithm computes
the number of applications of active rules given the multiset of objects and evolution rules [58]. The
corresponding circuit is composed of logical gates, registers, multiplexers and sequential elements.
The computation process is bounded. In [47], a P system circuit is constructed by means of PIC16F88
micro-processor enriched with the storage component 24LC1025, connected by an I2C bus. Thus,
the shortcoming of insufficient storage capacity of the micro-processor is solved by the introduced
external memory. The flexibility of the circuit is acceptable as the modification of the structure is
not necessary.
Continuing the research from [58], the paper [59] presents an improved algorithm and the

corresponding circuit calculating the application times of active rules. The computing process can
be completed in minor steps and the theoretical performance is optimized. In [6, 7], a draft of a
circuit implementing the inherent parallelism of P system is presented. Towards the parallelism,
the rule treatment is similar with the region-based solution defined in Section 6, namely, what
applied is a multiset of rules instead of a single rule. An operating environment is elaborated in [42]
which performs the automatic transformation of tasks involved in the hardware simulation of P
systems, including loading, execution and interpretation, into a distributed framework constructed
on micro-controllers. The execution results of the circuit, which are in the form of binary data, can
be interpreted in a transparent manner. What should be emphasized here is that all the hardware
circuits introduced are just on the blueprints which were never implemented in practice. They
remain mostly theoretical and the actual functionality and performances are unknown, unlike for
FPGA-based and CUDA-based hardware implementations/simulations which are carried out practi-
cally. In [45], micro-controllers are also chosen as target hardware to implement communication
architectures of P systems. A digital circuit carrying out massive parallelism in transition P Systems
is established in [6].

As a new attempt for implementing neural P systems on different hardware, DRAM-based CMOS
circuits are adopted to construct elementary spiking neural P systems. We do not carry out an
in-depth discussion about this topic and refer to [113] for more details.

9 CONCLUSIONS
In this article we gave an overview of different existing hardware implementations of P systems.
As expected the FPGA-based approach is very promising, yielding truly parallel implementations
achieving a speed-up of order 105. However, it requires a considerable amount of work as the
corresponding hardware architecture should be created from scratch. Moreover, the hardware
description languages like VHDL are very low-level and programming in such languages tends to
be extremely tedious. Also, as it was shown from the existing implementations, the most promising
results are obtained using rule-based architectures, because of the smaller communication cost.
By contrast, CUDA-based approach features a powerful unique hardware platform that can

be programmed using standard C/C++ language. While it gives less freedom and accuracy, this
approach gives a good trade-off between complexity, scalability and maintenance. The achieved

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

30 G. Zhang, Z. Shang, S. Verlan, et al.

speed-ups are relatively small (between 4 and 50 times), however, due to the programming simplicity,
more types of P systems were implemented.
The central problem in both approaches – the object distribution problem – was tackled from

different points of view, the most fruitful attempts being the variations of the DND algorithm
and direct approaches using mathematical properties of the dependency relation between rules.
Future research can be done in this direction by providing new classes of P systems suitable for
the precomputation of possible rule applications. Another research direction related to software
implementation of P systems is given by the construction from Section 4, which features a novel
reduction of the object distribution problem to ILP. This reduction handles well the maximal
parallelism and allows to define criteria for the choice of the solution. Then, it would be possible to
design a software framework that would use existing solvers and algorithms to quickly obtain the
desired solution, including those optimized for parallel hardware [10, 23, 96, 97, 102, 120].

Finally, as a future research interest we mention a robust implementation of different features of
P systems like membrane creation/dissolution, as well as non-classical variants of P systems like
numerical P systems. The motivation for such research is that the corresponding models feature
numerous applications, so their scalable implementation would immediately allow to test the
acceleration of corresponding algorithms and their practical usage.

ACKNOWLEDGMENTS
The work of G.Z., Z. S. and S. V. is supported by the National Natural Science Foundation of China
(61972324, 61672437, 61702428), Beijing Advanced Innovation Center for Intelligent Robots and
Systems (2019IRS14), Artificial Intelligence Key Laboratory of Sichuan Province (2019RYJ06), the
New Generation Artificial Intelligence Science and Technology Major Project of Sichuan Province
(2018GZDZX0043) and the Sichuan Science and Technology Program (2018GZ0086). M.A.M-d-
A., L.V-C. and M.J.P-J. also acknowledge the support of the research project TIN2017-89842-P
(MABICAP), co-financed by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain,
through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo de Desarrollo Regional
(FEDER) of the European Union.

The authors are grateful to the Editor-in-Chief, Prof. Sartaj Sahni, the anonymous handling
editor and all reviewers for their insightful and detailed comments on this manuscript, and are also
indebted to Academician Gheorghe Păun for his useful discussions and valuable suggestions.

REFERENCES
[1] [n.d.]. IRDS points to chip stacks and new architectures. https://www.eetimes.com/document.asp?doc_id=1331517
[2] [n.d.]. Moore’s law organization website. http://www.mooreslaw.org/
[3] Oana Agrigoroaiei, Gabriel Ciobanu, and Andreas Resios. 2010. Evolving by Maximizing the Number of Rules:

Complexity Study. In Membrane Computing: 10th International Workshop, WMC 2009 (LNCS), Gheorghe Păun, Mario J.
Pérez-Jiménez, Agustín Riscos-Núñez, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer, 149–157.

[4] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. 2002. Molecular Biology
of the Cell (4th ed.). Garland.

[5] Artiom Alhazov. 2005. Maximally Parallel Multiset-Rewriting Systems: Browsing the Configurations. In Proceedings
of the Third Brainstorming Week on Membrane Computing, Sevilla, Spain, January 31-February 4, 2005 (RGNC Report,
01/2005), M.A. Gutiérrez-Naranjo, A. Riscos-Nú nez, F.J. Romero-Campero, and D. Sburlan (Eds.). 1–10.

[6] Santiago Alonso, Luis Fernández, Fernando Arroyo, and Javier Gil. 2008. A Circuit Implementing Massive Parallelism
in Transition P Systems. International Journal Information Technologies and Knowledge. 2, 1 (2008), 35–42.

[7] Santiago Alonso, Luis Fernández, Fernando Arroyo, and Javier Gil. 2008. Main modules design for a HW implementa-
tion of massive parallelism in transition P-systems. Artificial Life and Robotics 13, 1 (2008), 107–111.

[8] Himanshu Kushwah Anil Sethi. 2015. Multicore Processor Technology-Advantages and Chanllenges. International
Journal of Research in Engineering and Technology 4, 9 (2015), 87–89.

[9] Alberto Arteta, Luis Fernández, and Javier Gil. 2008. Algorithm for Application of Evolution Rules Based on Linear
Diofantic Equations. In SYNASC 2008, 10th International Symposium on Symbolic and Numeric Algorithms for Scientific

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

https://www.eetimes.com/document.asp?doc_id=1331517
http://www.mooreslaw.org/

An Overview of Hardware Implementation of Membrane Computing Models 31

Computing, Viorel Negru, Tudor Jebelean, Dana Petcu, and Daniela Zaharie (Eds.). IEEE Computer Society, 496–500.
[10] Jambhlekar P. Arun, Manoj Mishra, and Sheshasayee V. Subramaniam. 2011. Parallel implementation of MOPSO on

GPU using OpenCL and CUDA. In 18th International Conference on High Performance Computing. 1–10.
[11] Angel V. Baranda, Fernando Arroyo, Juan Castellanos, and Rafael Gonzalo. 2001. Towards an Electronic Implementa-

tion of Membrane Computing: A Formal Description of Non-deterministic Evolution in Transition P Systems. In DNA
Computing, 7th International Workshop on DNA-Based Computers (LNCS, Vol. 2340), N. Jonoska and N. C. Seeman
(Eds.). Springer, 350–359.

[12] Sankar Basu, Randal E. Bryant, Giovanni De Micheli, Thomas Theis, and Lloyd Whitman. 2019. iFLEX: A Fully Open-
Source High-Density Field-Programmable Gate Array (FPGA)-Based Hardware Co-Processor for Vector Similarity
Searching. Proc. IEEE 107 (2019), 11–18. Issue 1.

[13] Francesco Bernardini and Marian Gheorghe. 2004. Population P Systems. Journal of Universal Computer Science 10, 5
(2004), 509–539.

[14] Catalin Buiu, Cristian Vasile, and Octavian Arsene. 2012. Development of membrane controllers for mobile robots.
Information Sciences 187 (2012), 33 – 51.

[15] Francis G.C. Cabarle, Henry N. Adorna, Miguel A. Martínez-del-Amor, and Mario J. Pérez-Jiménez. 2012. Improving
GPU simulations of Spiking Neural P systems. Romanian J. of Information Science and Technology 15, 1 (2012), 5–20.

[16] Jym P. Carandang, Francis G.C. Cabarle, Henry N. Adorna, Nestine H.S. Hernandez, and Miguel Á. Martínez-del-Amor.
2019. Handling Non-determinism in Spiking Neural P Systems: Algorithms and Simulations. Fundamenta Informaticae
164 (2019), 139–155.

[17] Jym P.A. Carandang, John M.B. Villaflores, Francis G.C. Cabarle, Henry N. Adorna, and Miguel A. Martínez-del-Amor.
2017. CuSNP: Spiking Neural P Systems Simulators in CUDA. Romanian Journal of Information Science and Technology
20, 1 (2017), 57–70.

[18] José M. Cecilia, José M. García, Ginés D. Guerrero, Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, and Mario J.
Pérez-Jiménez. 2010. Simulation of P systems with active membranes on CUDA. Briefings in Bioinformatics 11, 3
(2010), 313–322.

[19] José M. Cecilia, José M. García, Ginés D. Guerrero, Miguel A. Martínez-del-Amor, Mario J. Pérez-Jiménez, and Manuel
Ujaldon. 2012. The GPU on the simulation of cellular computing models. Soft Comput. 16, 2 (2012), 231–246.

[20] Gabriel Ciobanu, Solomon Marcus, and Gheorghe Păun. 2009. New Strategies of Using the Rules of a P System in a
Maximal Way: Power and Complexity. Romanian Journal of Information Science and Technology 12, 2 (2009), 157–173.

[21] Gabriel Ciobanu and Andreas Resios. 2009. Complexity of evolution in maximum cooperative P systems. Natural
Computing 8, 4 (31 Jan 2009), 807.

[22] Gabriel Ciobanu and Guo Wenyuan. 2003. P Systems Running on a Cluster of Computers. In Membrane Computing,
International Workshop, WMC 2003 (Lecture Notes in Computer Science, Vol. 2933), Carlos Martín-Vide, Giancarlo
Mauri, Gheorghe Páun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer, 123–139.

[23] Daniele D’Agostino, Giulia Pasquale, and Ivan Merelli. 2014. A Fine-Grained CUDA Implementation of the Multi-
objective Evolutionary Approach NSGA-II: Potential Impact for Computational and Systems Biology Applications. In
Computational Intelligence Methods for Bioinformatics and Biostatistics - 11th International Meeting, CIBB 2014 (LNCS,
Vol. 8623), Clelia Di Serio, Pietro Liò, Alessandro Nonis, and Roberto Tagliaferri (Eds.). Springer, 273–284.

[24] Ren T.A. de la Cruz, Francis G.C. Cabarle, and Henry N. Adorna. 2019. Generating context-free languages using
spiking neural P systems with structural plasticity. Journal of Membrane Computing 1, 3 (2019), 161–177.

[25] Daniel Díaz-Pernil, Miguel A. Gutiérrez-Naranjo, and Hong Peng. 2019. Membrane computing and image processing:
a short survey. Journal of Membrane Computing (04 Feb 2019).

[26] Matthew S. Dodd, Dominic Papineau, Tor Grenne, John F. Slack, Martin Rittner, Franco Pirajno, Jonathan O’Neil, and
Crispin T. S. Little. 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 7643
(2017), 60–64.

[27] Matthias Ehrgott. 2005. Multicriteria Optimization (2. ed.). Springer.
[28] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. 2012. Neural Acceleration for General-Purpose Approximate

Programs. In 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE Computer
Society, 449–460.

[29] R. Uribe F. Varela, H. Maturana. 1974. Autopoiesis: The Organization of Living Systems, its Characterization and a
Model. BioSystems 5, 4 (1974), 187–196.

[30] Luis Fernández, Fernando Arroyo, Ivan Garcia, and Gines Bravo. 2007. Decision Trees for Applicability of Evolution
Rules in Transition P Systems. Information Theories and Applications 14, 3 (2007), 223–230.

[31] Luis Fernández, Fernando Arroyo, Jorge A Tejedo, and Juan Castellanos. 2006. Massively Parallel Algorithm for
Evolution Rules Application in Transition P Systems. In Proceedings of 7th Workshop on Membrane Computing,
Hendrik Jan Hoogeboom, Gheorghe Păun, and Grzegorz Rozenberg (Eds.). Universiteit Leiden, 337–343.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

32 G. Zhang, Z. Shang, S. Verlan, et al.

[32] Luis Fernández, Victor J. Martínez, Fernando Arroyo, and Luis F. Mingo. 2005. A Hardware Circuit for Selecting
Active Rules in Transition P Systems. In Seventh International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2005), Daniela Zaharie, Dana Petcu, Viorel Negru, Tudor Jebelean, Gabriel Ciobanu,
Alexandru Cicortas, Ajith Abraham, and Marcin Paprzycki (Eds.). IEEE Computer Society, 415–418.

[33] Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey Verlan, and Claudio Zandron. 2013.
Flattening in (Tissue) P Systems. In Membrane Computing - 14th International Conference, CMC 2013 (Lecture Notes
in Computer Science, Vol. 8340), Artiom Alhazov, Svetlana Cojocaru, Marian Gheorghe, Yurii Rogozhin, Grzegorz
Rozenberg, and Arto Salomaa (Eds.). Springer, 173–188.

[34] Rudolf Freund, Ignacio Pérez-Hurtado, Agustín Riscos-Núñez, and Sergey Verlan. 2013. A Formalization of Membrane
Systems with Dynamically Evolving Structures. International Journal of Computer Mathematics 90, 4 (2013), 801–815.

[35] Rudolf Freund and Sergey Verlan. 2007. A Formal Framework for Static (Tissue) P Systems. In Membrane Computing,
8th International Workshop, WMC 2007 (Lecture Notes in Computer Science, Vol. 4860), George Eleftherakis, Petros
Kefalas, Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer, 271–284.

[36] Zsolt Gazdag and Gábor Kolonits. 2019. A new method to simulate restricted variants of polarizationless P systems
with active membranes. Journal of Membrane Computing 1, 4 (2019), 251–261.

[37] Marian Gheorghe, Andrei Păun, Sergey Verlan, and Gexiang Zhang. 2017. Membrane Computing, Power and Complexity.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16.

[38] Francisco J. Gil, Luis Fernández, Fernando Arroyo, and Juan Alberto de Frutos. 2008. Parallel algorithm for P Systems
implementation in multiprocessors. In Proceedings of the Thirteenth International Symposium on Artificial Life and
Robotics 2008 (AROB 13th’08), M. Sugisaka and H. Tanaka (Eds.). 10–25.

[39] Francisco J. Gil, Luis Fernández, Fernando Arroyo, and Jorge A. Tejedor. 2007. Delimited Massively Parallel Algorithm
based on Rules Elimination for Application of Active Rules in Transition P Systems. In Proceedings of the Fifth
International Conference Information Research and Applications, i.TECH 2007, Krassimir Markov and Krassimira
Ivanova (Eds.), Vol. Vol. 1. Institute of Information Theories and Applications FOI ITHEA, Bulgaria, 182–188.

[40] Francisco J. Gil, Jorge A. Tejedor, and Luis Fernández. 2008. Fast Linear Algorithm for Active Rules Application in
Transition P Systems. In Algorithmic and Mathematical Foundations of the Artificial Intelligence (International Book
Series “INFORMATION SCIENCE & COMPUTING”, Vol. Supple), Krassimir Markov, Krassimira Ivanova, and Ilia Mitov
(Eds.). Institute of Information Theories and Applications FOI ITHEA, Bulgaria, Sofia, Bulgaria, 35–44.

[41] Fernando Arroyo Ginés Bravo, Luis Fernández and Juan Frutos. 2008. A Hierarchical Architecture with Parallel
Comunication for Implementing P Systems. Information Technologies and Knowledge 2, 1 (2008), 43–48.

[42] Sandra M. Gomez-Canaval, Abraham Gutiérrez, and Santiago Alonso. 2008. Hardware Implementation of P Systems
Using Microcontrollers. An Operating Environment for Implementing a Partially Parallel Distributed Architecture. In
SYNASC’08. 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara,
Romania, 26-29 Sept. 2008, Viorel Negru, Tudor Jebelean, and Dana Petcuand Daniela Zaharie (Eds.). IEEE, 489–495.

[43] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. 2003. Introduction to Parallel Computing (second
ed.). Addison-Wesley.

[44] Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, and Santiago Alonso. 2007. Hardware and Software Archi-
tecture for Implementing Membrane Systems: A Case of Study to Transition P Systems. In DNA Computing, 13th
International Meeting on DNA Computing (LNCS, Vol. 4848), Max H. Garzon and Hao Yan (Eds.). Springer, 211–220.

[45] AbrahamGutiérrez, Luis Fernández, Fernando Arroyo, and Santiago Alonso. 2008. Suitability of using microcontrollers
in implementing new P-system communications architectures. Artificial Life and Robotics 13, 1 (01 Dec 2008), 102–106.

[46] Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, and Ginés Bravo. 2007. Optimizing Membrane System
Implementation with Multisets and Evolution Rules Compression. In Proceedings of the 8th Workshop on Membrane
Computing, Thessaloniki, Greece, June 25-28, 2007, G. Ekeftherakis, P. Kefalas, and Gh. Păun (Eds.). 345–362.

[47] AbrahamGutiérrez, Luis Fernández, Fernando Arroyo, and Victor J. Martínez. 2006. Design of a Hardware Architecture
Based on Microcontrollers for the Implementation of Membrane Systems. In 8th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, Viorel Negru, Dana Petcu, Daniela Zaharie, Ajith Abraham, Bruno
Buchberger, Alexandru Cicortas, Dorian Gorgan, and Joël Quinqueton (Eds.). IEEE Computer Society, 350–353.

[48] Francisco Javier Gil, Luis Fernández, Fernando Arroyo, and Jorge Tejedor. 2008. DelimitedMassively Parallel Algorithm
Based on Rules Elimination for Application of Active Rules in Transition P Systems. Information Technologies and
Knowledge 2, 1 (2008), 56–61.

[49] Z. B. Jimenez, Francis G.C. Cabarle, Ren T.A. de la Cruz, Kelvin C. Buño, Henry N. Adorna, Nestine H.S. Hernandez,
and Xiangxiang Zeng. 2019. Matrix representation and simulation algorithm of spiking neural P systems with
structural plasticity. Journal of Membrane Computing 1, 3 (2019), 145–160.

[50] Ignacy Kaliszewski, Janusz Miroforidis, and Dmitry Podkopaev. 2016. Multiple Criteria Decision Making by Multiob-
jective Optimization–A Toolbox. Int. Series in Operations Research & Management Science, Vol. 242. Springer.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 33

[51] Takahiro Katagiri. 2019. High-Performance Computing Basics. In The Art of High Performance Computing for
Computational Science, Vol. 1, Techniques of Speedup and Parallelization for General Purposes, Masaaki Geshi (Ed.).
Springer, 1–25.

[52] David Kirk and Wen-Mei Hwu. 2010. Programming Massively Parallel Processors: A Hands On Approach. Morgan
Kaufmann.

[53] Julien Legriel. 2011. Multi-Criteria Optimization and its Application to Multi-Processor Embedded Systems. Universite
de Grenoble, Grenoble, France.

[54] Jianping Kelvin Li, Jia-Kai Chou, and Kwan-Liu Ma. 2015. High performance heterogeneous computing for collabora-
tive visual analysis. In SIGGRAPH Asia 2015 Visualization in High Performance Computing. ACM, 12:1–12:4.

[55] Luis F. Macías-Ramos, Miguel A. Martínez-del-Amor, and Mario J. Pérez-Jiménez. 2015. Simulating FRSN P Systems
with Real Numbers in P-Lingua on sequential and CUDA platforms. In Membrane Computing - 16th International
Conference, CMC 2015 (LNCS), G. Rozenberg, A. Salomaa, J. M. Sempere, and C. Zandron (Eds.). 262–276.

[56] Vincenzo Manca. 2019. From biopolymer duplication to membrane duplication and beyond. Journal of Membrane
Computing 1, 4 (2019), 292–303.

[57] Víctor Martínez, Santiago Alonso, and Abraham Gutiérrez. 2010. Hardware Circuit for the Application of Evolution
Rules in a Transition P-system. Artificial Life and Robotics 15, 1 (01 Aug 2010), 89–92.

[58] Victor Martínez, Fernando Arroyo, Abraham Gutiérrez, and Luis Fernández. 2006. Hardware Implementation of a
Bounded Algorithm for Application of Rules in a Transition P-system. In SYNASC’06. Eighth International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, Viorel Negru, Dana Petcu, Daniela Zaharie, Ajith
Abraham, Bruno Buchberger, Alexandru Cicortas, Dorian Gorgan, and Joel Quinqueton (Eds.). IEEE, 343–349.

[59] Victor Martínez, Luis Fernández, Fernando Arroyo, and Abraham Gutiérrez. 2007. HW Implementation of a Optimized
Algorithm for the Application of Active Rules in a Transition P-system. Information Theories and Applications 14, 4
(2007), 324–331.

[60] Victor J. Martínez, Fernando Arroyo, Abraham Gutiérrez, and Luis Fernández. 2006. Hardware Implementation of a
Bounded Algorithm for Application of Rules in a Transition P-System. In 8th Int. Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2006), Viorel Negru, Dana Petcu, Daniela Zaharie, Ajith Abraham, Bruno
Buchberger, Alexandru Cicortas, Dorian Gorgan, and Joël Quinqueton (Eds.). IEEE Computer Society, 343–349.

[61] Miguel A. Martínez-del-Amor, Manuel García-Quismondo, Luis F. Macías-Ramos, Luis Valencia-Cabrera, Agustin
Riscos-Núñez, and Mario J. Pérez-Jiménez. 2015. Simulating P Systems on GPU Devices: A Survey. Fundam. Inform.
136, 3 (2015), 269–284.

[62] Miguel A. Martínez-del-Amor, Luis F. Macías-Ramos, Luis Valencia-Cabrera, and Mario J. Pérez-Jiménez. 2016. Parallel
simulation of Population Dynamics P systems: updates and roadmap. Natural Computing 15, 4 (2016), 565–573.

[63] Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, Manuel García-Quismondo, Luis F. Macías-Ramos, Luis
Valencia-Cabrera, Álvaro Romero Jiménez, Carmen Graciani Díaz, Agustin Riscos-Núñez, Maria Angels Colomer,
and Mario J. Pérez-Jiménez. 2012. DCBA: Simulating Population Dynamics P Systems with Proportional Object
Distribution. In Membrane Computing - 13th International Conference, CMC 2012 (Lecture Notes in Computer Science),
Erzsébet Csuhaj-Varjú, Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, and György Vaszil (Eds.). 257–276.

[64] Miguel Á. Martínez-del-Amor, Ignacio Pérez-Hurtado, David Orellana-Martín, and Mario J. Pérez-Jiménez. 2020.
Adaptative parallel simulators for bioinspired computing models. Future Generation Comp. Syst. 107 (2020), 469 – 484.

[65] Miguel A. Martínez-del-Amor, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Agustin Riscos-Núñez, and M. Angels
Colomer. 2010. A new simulation algorithm for multienvironment probabilistic P systems. In Fifth International
Conference on Bio-Inspired Computing: Theories and Applications, M. Gong, L. Pan, T. Song, and G. Zhang (Eds.). 59–68.

[66] Neil Mathur. 2002. Beyond the silicon roadmap. Nature 419 (Oct. 2002), 573–575.
[67] George H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell System Technical Journal 34, 5 (1955),

1045–1079.
[68] Anthony Nash and Sara Kalvala. 2019. A P system model of swarming and aggregation in a Myxobacterial colony.

Journal of Membrane Computing 1, 2 (2019), 103–111.
[69] Van Nguyen. 2010. An Implementation of the Parallelism, Distribution and Nondeterminism of Membrane Computing

Models on Reconfigurable Hardware. Ph.D. Dissertation. University of South Australia.
[70] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2007. Balancing Performance, Flexibility, and Scalability in a

Parallel Computing Platform for Membrane Computing Applications. In Membrane Computing, 8th Int. Workshop
(LNCS, Vol. 4860), G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, and A. Salomaa (Eds.). Springer, 385–413.

[71] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2008. An Algorithm for Non-deterministic Object Distribution
in P Systems and Its Implementation in Hardware. In Membrane Computing - 9th International Workshop, WMC 2008
(LNCS, Vol. 5391), D. W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, and A. Salomaa (Eds.). Springer, 325–354.

[72] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2008. An Implementation of Membrane Computing Using
Reconfigurable Hardware. Computing and Informatics 27, 3 (2008), 551–569.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

34 G. Zhang, Z. Shang, S. Verlan, et al.

[73] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2009. A Region-Oriented Hardware Implementation for
Membrane Computing Applications. In Membrane Computing, 10th International Workshop, WMC 2009 (LNCS,
Vol. 5957), Gh. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, and A. Salomaa (Eds.). Springer, 385–409.

[74] Van Nguyen, David Kearney, and Gianpaolo Gioiosa. 2010. An extensible, maintainable and elegant approach to
hardware source code generation in Reconfig-P. The Journal of Logic and Algebraic Programming 79, 6 (2010), 383–396.

[75] Taishin Y. Nishida. 2006. A Membrane Computing Model of Photosynthesis. Springer, 181–202.
[76] David Orellana-Martín, Miguel A. Martínez-del-Amor, Luis Valencia-Cabrera, Bosheng Song, Linqiang Pan, and

Mario J. Pérez-Jiménez. 2018. P systems with symport/antiport rules: When do the surroundings matter? Theoretical
Computer Science (2018).

[77] David Orellana-Martín, Luis Valencia-Cabrera, Agustín Riscos-Núñez, and Mario J. Pérez-Jiménez. 2019. Minimal
cooperation as a way to achieve the efficiency in cell-like membrane systems. Journal of Membrane Computing 1, 2
(2019), 85–92.

[78] Ana Pavel, Octavian Arsene, and Catalin Buiu. 2010. Enzymatic numerical P systems - a new class of membrane
computing systems. In Fifth International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA
2010, A.K. Nagar, R. Thamburaj, K. Li, Z. Tang, and R. Li (Eds.). IEEE, 1331–1336.

[79] Ignacio Pérez-Hurtado, Miguel Á. Martínez-del-Amor, Gexiang Zhang, Ferrante Neri, and Mario J. Pérez-Jiménez. 2020.
A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning. Integrated Computer-Aided
Engineering 27 (2020), 121–138.

[80] Ignacio Pérez-Hurtado, David Orellana-Martín, Gexiang Zhang, and Mario J. Pérez-Jiménez. 2019. P-Lingua in two
steps: flexibility and efficiency. Journal of Membrane Computing 1, 2 (01 Jun 2019), 93–102.

[81] Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez, Gexiang Zhang, and David Orellana-Martín. 2018. Simulation of
rapidly-exploring random trees in membrane computing with P-lingua and automatic programming. International
Journal of Computers, Communications & Control 13, 6 (2018), 1007–1031.

[82] Biljana Petreska and Christof Teuscher. 2003. A Reconfigurable Hardware Membrane System. InMembrane Computing,
International Workshop, WMC 2003 (Lecture Notes in Computer Science, Vol. 2933), Carlos Martín-Vide, Giancarlo
Mauri, Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer, 269–285.

[83] Andrew Pohorille and David Deamer. 2009. Self-assembly and function of primitive cell membranes. Research in
microbiology 160, 7 (2009), 449–456.

[84] Gheorghe Păun. 2000. Computing with Membranes. J. Comput. System Sci. 61, 1 (2000), 108 – 143.
[85] Gheorghe Păun. 2002. Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidelberg.
[86] Gheorghe Păun and Radu A. Păun. 2006. Membrane Computing and Economics: Numerical P Systems. Fundam.

Inform. 73, 1-2 (2006), 213–227.
[87] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). 2009. The Oxford Handbook of Membrane Computing.

Oxford University Press.
[88] Juan Quiros, Sergey Verlan, Julian Viejo, AlejandroMillán, andManuel J. Bellido. 2016. Fast Hardware Implementations

of Static P Systems. Computing and Informatics 35, 3 (2016), 687–718.
[89] Raúl Reina-molina, Daniel Díaz-Pernil, andMiguel A. Gutiérrez-Naranjo. 2011. Integer Linear Programming for Tissue-

like P Systems. In Proceedings of the Ninth Brainstorming Week on Membrane Computing, M.A. Martínez-del-Amor,
Gh. Păun, I. Pérez-Hurtado, F.J. Romero-Campero, and L. Valencia-Cabrera (Eds.).

[90] Haina Rong, Kang Yi, Gexiang Zhang, Jianping Dong, Prithwineel Paul, and Zhiwei Huang. 2019. Automatic
Implementation of Fuzzy Reasoning Spiking Neural P Systems for Diagnosing Faults in Complex Power Systems.
Complexity 2019 (2019), 2635714:1–2635714:16.

[91] Grzegorz Rozenberg and Arto Salomaa (Eds.). 1997. Handbook of Formal Languages. Vol. 1–3. Springer.
[92] Eduardo Sánchez-Karhunen and Luis Valencia-Cabrera. 2019. Modelling complex market interactions using PDP

systems. Journal of Membrane Computing 1, 1 (2019), 40–51.
[93] James E. Smith. 1984. Decoupled Access/Execute Computer Architectures. ACM Trans. Comput. Syst. 2, 4 (1984),

289–308.
[94] Yasuhiro Suzuki, Yoshi Fujiwara, Junji Takabayashi, and Hiroshi Tanaka. 2000. Artificial Life Applications of a Class

of P Systems: Abstract Rewriting Systems on Multisets. InWorkshop on Membrane Computing - Multiset Processing
(LNCS), C. S. Calude, Gh. Păun, G. Rozenberg, and A. Salomaa (Eds.). Springer, 299–346.

[95] Yasuhiro Suzuki and Hiroshi Tanaka. 2006. Modeling p53 Signaling Pathways by Using Multiset Processing. Springer
Berlin Heidelberg, 203–214.

[96] El-Ghazali Talbi, Sanaz Mostaghim, Tatsuya Okabe, Hisao Ishibuchi, Günter Rudolph, and Carlos A. Coello Coello.
2008. Parallel Approaches for Multiobjective Optimization. InMultiobjective Optimization, Interactive and Evolutionary
Approaches (LNCS, Vol. 5252), J. Branke, K. Deb, K. Miettinen, and R. Slowinski (Eds.). Springer, 349–372.

[97] El-Ghazali Talbi. 2018. A unified view of parallel multi-objective evolutionary algorithms. J. Parallel and Distrib.
Comput. 133 (2018), 349–358.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

An Overview of Hardware Implementation of Membrane Computing Models 35

[98] Jorge A. Tejedor, Luis Fernández, Fernando Arroyo, and Sandra Gómez-Canaval. 2007. Algorithm of rules appli-
cations based on competitiveness of evolution rules. In Proceedings of the 8th Workshop on Membrane Computing,
G. Ekeftherakis, P. Kefalas, and Gh. Păun (Eds.). 567–580.

[99] Jorge A. Tejedor, Luis Fernández, Fernando Arroyo, and Abraham Gutiérrez. 2007. Algorithm of Active Rule
Elimination for Application of Evolution Rules. In Proceedings of the 8th Conference on 8th WSEAS International
Conference on Evolutionary Computing, Akshai Aggarwal (Ed.). 259–267.

[100] Jorge A. Tejedor, Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, Ginés Bravo, and Sandra Gómez-Canaval.
2007. Optimizing Evolution Rules Application and Communication Times in Membrane Systems Implementation. In
Membrane Computing, 8th International Workshop, WMC 2007 (Lecture Notes in Computer Science, Vol. 4860), George
Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer, 298–319.

[101] Roman Trobec, Marián Vajteršic, and Peter Zinterhof. 2009. Parallel Computing. Springer.
[102] Christos Tsotskas, Timoleon Kipouros, and Anthony Mark Savill. 2014. The Design and Implementation of a GPU-

enabled Multi-objective Tabu-search Intended for Real World and High-dimensional Applications. Procedia Computer
Science 29 (2014), 2152 – 2161.

[103] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Sravanthi Kota Venkata, Michael Bedford Taylor, and Steven
Swanson. 2011. QSCORES: Trading dark silicon for scalable energy efficiency with quasi-specific cores. 2011 44th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2011), 163–174.

[104] Sergey Verlan. 2010. Study of Language-Theoretic Computational Paradigms Inspired by Biology. Habilitation thesis,
Université Paris Est.

[105] Sergey Verlan. 2013. Using the Formal Framework for P Systems. In Membrane Computing - 14th International
Conference, CMC 2013 (Lecture Notes in Computer Science, Vol. 8340), Artiom Alhazov, Svetlana Cojocaru, Marian
Gheorghe, Yurii Rogozhin, Grzegorz Rozenberg, and Arto Salomaa (Eds.). Springer, 56–79.

[106] Sergey Verlan and Juan Quiros. 2012. Fast Hardware Implementations of P Systems. In Membrane Computing - 13th
International Conference, CMC 2012 (Lecture Notes in Computer Science, Vol. 7762), Erzsébet Csuhaj-Varjú, Marian
Gheorghe, Grzegorz Rozenberg, Arto Salomaa, and György Vaszil (Eds.). Springer, 404–423.

[107] Tao Wang, Gexiang Zhang, and Mario J. Pérez-Jiménez. 2015. Fuzzy membrane computing: theory and applications.
International Journal of Computers, Communications & Control 10 (2015), 904–935.

[108] Tao Wang, Gexiang Zhang, Junbo Zhao, Zhenyou He, Jun Wang, and Mario J. Pérez-Jiménez. 2015. Fault Diagnosis
of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural P Systems. IEEE Trans. on Power Systems (2015).

[109] Xueyuan Wang, Gexiang Zhang, Ferrante Neri, Tao Jiang, Junbo Zhao, Marian Gheorghe, Florentin Ipate, and Raluca
Lefticaru. 2016. Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled
mobile robots. Integrated Computer-Aided Engineering 23, 1 (2016), 15–30.

[110] Xueyuan Wang, Gexiang Zhang, Junbo Zhao, Haina Rong, Florentin Ipate, and Raluca Lefticaru. 2015. A modified
membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. International
Journal of Computers, Communications & Control 10, 5 (2015), 732–745.

[111] Nicholas Wilt (Ed.). 2013. The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison Wesley.
[112] Erica Wiseman. 2016. Next Generation Computing. National Research Council of Canada / Gov. of Canada (2016).
[113] Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, and Yu Cao. 2014. The stochastic loss of spikes in spiking neural

P systems: Design and implementation of reliable arithmetic circuits. Fund. Informaticae 134, 1-2 (2014), 183–200.
[114] Jianying Yuan, Dequan Guo, Gexiang Zhang, Prithwineel Paul, Ming Zhu, and Qiang Yang. 2019. A Resolution-Free

Parallel Algorithm for Image Edge Detection within the Framework of Enzymatic Numerical P Systems. Molecules 24,
7 (2019).

[115] Xiangxiang Zeng, Henry Adorna, Miguel A. Martínez-del-Amor, Linqiang Pan, and Mario J. Pérez-Jiménez. 2010.
Matrix Representation of Spiking Neural P Systems. InMembrane Computing - 11th International Conference, CMC 2010
(LNCS), Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa (Eds.). 377–391.

[116] Gexiang Zhang, Jixiang Cheng, Marian Gheorghe, and Qi Meng. 2013. A hybrid approach based on differential
evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems.
Appl. Soft Comput. 13, 3 (2013), 1528–1542.

[117] Gexiang Zhang, Marian Gheorghe, Linqiang Pan, and Mario J. Pérez-Jiménez. 2014. Evolutionary membrane comput-
ing: A comprehensive survey and new results. Information Sciences 279 (2014), 528 – 551.

[118] Gexiang Zhang, Mario J. Pérez-Jiménez, and Marian Gheorghe. 2017. Real-life Applications with Membrane Computing
(1st ed.). Springer Publishing Company, Incorporated.

[119] Gexiang Zhang, Haina Rong, Ferrante Neri, and Mario J. Pérez-Jiménez. 2014. An optimization spiking neural P system
for approximately solving combinatorial optimization problems. Int. J. of Neural Systems 24, 05 (2014), 1440006.

[120] Weihang Zhu, Ashraf Yaseen, and Yaohang Li. 2011. DEMCMC-GPU: An Efficient Multi-Objective Optimization
Method with GPU Acceleration on the Fermi Architecture. New Generation Computing 29, 2 (2011), 163–184.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2020.

	Abstract
	1 Introduction
	2 The Selection of Hardware
	2.1 FPGA hardware
	2.2 CUDA-enabled GPU hardware
	2.3 Other hardware

	3 The model of P systems
	3.1 Network of Cells
	3.2 Examples of P systems

	4 Reduction of the Computation Step to Multi-criteria Optimization
	4.1 Preliminaries
	4.2 Rule choice as IMCLOP
	4.3 Tentative solutions

	5 Implementation of P systems using hardware
	5.1 Data organization
	5.2 Object Distribution Problem and Non-Determinism

	6 An Overview of Existing FPGA Simulations
	6.1 Region-based Simulations
	6.2 Rule-based simulations

	7 An Overview of Existing CUDA simulations
	7.1 Cell-like P systems
	7.2 Population Dynamics P systems
	7.3 Spiking Neural P systems
	7.4 Other models

	8 Other Approaches
	9 Conclusions
	Acknowledgments
	References

